

A Simple-to-Implement Method for Cutting a Mesh

Model by a Hand-Drawn Stroke

J. Mitani

Department of Computer Science, University of Tsukuba

Abstract
In the field of Computational Geometry, the design of 3D models using hand drawn strokes has been well-studied in
recent years as a way to improve user interfaces. When using hand-drawn strokes to design 3D models, an algo-
rithm for cutting a model by a stroke is required. Previous algorithms have concentrated on precision and are ex-
pensive to implement. This paper gives priority to simplicity and robustness rather than precision. Firstly, mesh
vertices near to the stroke are moved so that they lie on the stroke, to avoid numerical error. Then the stroke is
simplified so that it crosses a triangle at most two times. With this approach, the number of patterns of triangle di-
vision that a system has to implement is reduced to only three. This reduces the time a developer must take to im-
plement a cut operation for a sketching interface.
Categories and Subject Descriptors (according to ACM CCS): J.6: Computer Aided Engineering [Computer Aided
Design]

1. Introduction

In the field of Computational Geometry, the design of
3D models using hand drawn strokes has been well-studied
in recent years as a way to improve user interfaces. The
investigations can be categorized into two groups: one is
analyzing strokes as a gesture [ZHH96] and replacing the
strokes with a command for generating primitives; the
other is to apply user strokes directly to a 3D model. The
latter approach is more intuitive and such interfaces have
commonly been used in recent studies [IMT99, SFMT04].
In such interfaces, an algorithm for cutting a model by a
stroke is required. Cutting a model by a stroke corresponds
to generating a swept surface perpendicular to the screen
and cutting the model by this surface (Fig.1 (a) (b)). Gen-
erally, the stroke (the track of the mouse cursor) is ob-
tained as an array of discrete points, so the swept surface is
expressed as a polygon. When the original model is repre-
sented by a triangulated mesh model, we can obtain the
resulting cut model by executing a boolean operation for
polygons. Alternatively, the same effect can also be
achieved by cutting triangles by a stroke on a projected
screen (Fig.1 (c)).

Figure 1: Cutting operation using a hand drawn stroke.

Although dividing triangles by a polyline is not difficult
geometrically, implementing this operation is problematic
since we cannot avoid numerical errors caused by the rep-
resentation of real numbers in a computer. It is easy for
topological contradiction to occur as a result of these nu-
merical errors. To avoid this, some investigators used a
topology priority method [Sug00]. However, implement-
ing this robustly is a time-consuming (and expensive) cod-

(a)

(b)

(c)

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2005)
Takeo Igarashi, Joaquim A. Jorge (Editors)

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

ing task, and if our objective is to improve a user interface,
we do not want so much trouble over such a comparatively
minor problem.

In this paper, I propose a new, simple-to-implement
method for cutting a mesh model using a stroke. This pa-
per places more value on simplicity and robustness than
precision. Both literally and metaphorically, it cuts corners,
avoiding inessential detail to achieve a simple cutting op-
eration for a sketching interface.

2. Target application and problems in usual imple-
mentation

2.1 Target application

This paper is aimed at applications in which a mesh
model is cut by user strokes and separated into segments.
As shown in Fig.2, the mesh model is cut by lines that the
user draws on the model as projected onto a screen. This
particular application cuts only the front, visible part of the
model. Although other applications may require a cutting
operation that separates a model completely, i.e. also cuts
the back at the same time, there are no essential differ-
ences.

Figure 2: Our target: a cutting operation for triangu-
lated models.

2.2 Problems of usual approach

Cutting a triangulated mesh model by a stroke on a pro-
jected screen is achieved by cutting the individual triangles
of the model by the stroke. For the results to correspond
exactly to each point on the cut-line, each triangle should
be divided by the exact stroke line, and the separated parts
triangulated as shown in Fig.3.

Figure 3: Dividing triangles by a stroke.

With this approach, the points of intersection of the
stroke and the triangle edges are found first. But when a
stroke passes very close to a vertex, numerical error can
make it impossible to reconstruct a consistent topology.
Even in the absence of numerical error, triangulating poly-
gons after dividing triangles by a stroke is cumbersome to
implement when, for example, the triangulation is done by
the CDT (Constraint Delaunay Triangulation) algorithm.
Another problem is that this operation potentially gener-
ates tiny and thin triangles. If we wish to continue editing
the model, it is desirable that the triangles are uniformly-
sized and not thin. So there are three problems with using
strokes directly to generate cut lines.

 Numerical error can cause topological contradiction.
 Implementing triangulation algorithms such as CDT

requires disproportionate effort.
 Tiny and thin triangles are frequently generated.

2.3 Related work

Nealen et al. [NSAC05] moved the vertices that lie near
a stroke so that they lie on the stroke (I also use this ap-
proach for the first part of the operation). After this they
moved other vertices using a relaxation operation to im-
prove triangle shapes. This is a reasonable approach but it
also requires time-consuming implementation. Turquin et
al. [TCM04] proposed a method for designing garments
using strokes. In their method they moved vertices to
strokes, but the vertices have to be arranged initially as a
grid. Krishnamurthy et al. [KL96] proposed a method to
segment mesh models using user strokes. This method was
developed for generating B-spline surfaces, and it is not
applicable for mesh segmentation.

Some investigators propose algorithms that give priority
to topological validity over geometric precision in order to
avoid topological contradictions caused by numerical er-
rors [SI89]. In [IH03], after their system executes opera-
tions in response to user strokes, the mesh model is recon-
structed by removing tiny and thin triangles to improve the
quality of the mesh. These approaches are effective in
solving the problems, but implementing them is far harder
even than implementing CDT (personally, I do not even
want to implement CDT!).

The simplest approach of all is not to divide any trian-
gles, but use edges in the mesh model as segments of the
cut line. However, with this approach, the generated cut
line depends entirely on the structure of the original mesh.

The method proposed in this paper divides a triangle
into no more than four pieces. Hence it can generate better

c© The Eurographics Association 2005.

36

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

results than the method without any triangle division while
being simpler to implement than the usual approaches. The
proposed method is a good compromise between the two
extremes.

2.4 Targeting operation

Strokes are generated by motion of the human hand, and
the reproducibility is poor, so sketching interfaces are not
used in situations where accurate results are required. In an
application such as Teddy [IMT99] it is enough that the
rough outline of a model is defined by a stroke. We do not
have to apply the exact coordinates of the stroke to the
model. Furthermore, the triangulated mesh representation
is itself an approximation of curved surfaces, so we do not
require a level of detail that cannot be represented by tri-
angles of the size of those in the original model. Thus, the
targeting operation characteristics are as follows:

 does not require that the cut matches the stroke ex-
actly.

 does not require details too small to be represented
by the triangles of the original model.

To make problem simpler, this paper assumes:
 strokes are not self-intersecting.
These assumptions are reasonable and commonly ac-

ceptable. This paper proposes a method that achieves a
mesh cut operation that requires implementation of only 3
patterns of triangle division. The implementation is
straightforward and does not require checks for numerical
error. The generated triangles are neither tiny nor thin.

3. Methodology

3.1 Terminology

The following terms are used in this paper.
 stroke-vertex: A vertex of the stroke.

 stroke-segment: A line segment that has stroke-
vertices at both ends.

 model-vertex: A vertex of the mesh model.

 model-edge: An edge of a triangle in the mesh
model.

 Ei: The ith model-edge. Each model-edge has a
unique ID.

 Vj: The jth model-vertex. Each model-vertex has a
unique ID.

3.2 Model-vertices move

Before the main processing stage, model-vertices that lie
close to a stroke on the projected screen are moved so that
they lie exactly on the stroke.

The idea of moving vertices of models so that they lie
on user strokes has also been proposed by Biermann et al.
[Bie01] for boolean operations on subdivided surfaces. By
this means, we can avoid the instability caused by numeri-
cal errors that is often generated when a stroke-vertex and
a model-vertex are close to one another. At the same time,
we can avoid generating thin triangles.

For the method proposed in this paper, this operation is
performed as follows.

Move to a stroke-vertex
Search for the nearest stroke-vertex in screen coordi-

nates to each model-vertex, and if the distance between the
two is smaller than a threshold, move the model-vertex so
that it lies exactly over the stroke-vertex in a plane that is
parallel to the screen. Then set a flag for the stroke-vertex
to indicate that it lies on a model-vertex.

Move to a stroke-segment
Search for the nearest stroke-segment in screen coordi-

nates to each model-vertex except those moved by the
previous operation, and if the distance between the two is
smaller than a threshold, move the model-vertex to the
nearest position on the stroke-segment. Then add a new
stroke-vertex at this position and set a flag to indicate that
the stroke-vertex lies on a model-vertex (Fig.4).

Figure 4: Moving a vertex of the model close to a stroke.

3.3 Simplification of a stroke

For simple implementation, the stroke is simplified to
reduce the number of patterns of triangle division. The
following two steps of simplification are applied.

First simplification
When a stroke crosses triangles as shown in Fig.5(a),

generate new stroke-vertices at intersecting points (b), then
remove stroke-vertices except those at the intersecting
points and those for which the flag was set at the previous
model-vertices move operation. When a stroke-vertex lies
very close to a model-edge, determining whether a stroke-
segment and the model-edge intersect becomes unstable,
sometimes causing the strange result that a stroke crosses a
triangle without any intersecting points! So if the distance

c© The Eurographics Association 2005.

37

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

between a stroke-vertex and the nearest model-edge is
smaller than a threshold, it is assumed that they intersect.
Although this can result in multiple crossing points exist-
ing on a single edge, the second simplification which fol-
lows will remove such excess crossing points.

Figure 5: Cutting by a stroke that does not contain on-
face-vertices.

With this simplification, the detail of strokes inside tri-
angles is ignored, so we no longer represent fine details of
the stroke. This simplification makes it easy to implement
triangulation of the areas generated by dividing the trian-
gle, because we do not have to consider complicated trian-
gulation. After this simplification, each stroke-vertex must
lie on a model-edge or model-vertex. Hence every stroke-
vertex can be identified from the model element Ei or Vj
that the stroke-vertex lies on. From now on, the elements
that stroke-vertices lie on (Ei or Vj) are stored in an array
A; ex. A = (E8, E7, E6, V3, E6, E5).

Second simplification
Even after the first simplification, when a stroke crosses

a single triangle multiple times, the number of possible
patterns of triangulation is infinite, so implementation is
still difficult.

Figure 6: Cutting by a stroke that does not contain on-
face-vertices.

After the first simplification, a second simplification is
applied such that each triangle is not divided into more
than two. When a stroke crosses a triangle only once, the
number of cases we must consider is only two. One is
intersection at a model-vertex and a model-edge (Fig.7 (a)),
the other is intersection at two model-edges (Fig.7 (b)).

Figure 7: A stroke intersecting a triangle at two points.

In both cases, there are exactly two points of intersec-
tion, and corresponding stroke-vertex elements (Ei or Vj)
are neighbours in array A. If there are more than two ele-
ments that belong to the same triangle in A, these elements
have to be removed from A, leaving only two. The second
simplification checks all triangles and searches for ele-
ments of A that belong to that triangle. The one that ap-
pears first in A and the one that appears last in A are la-
belled (Fig.8(a)). During this process, if more than two
elements are found, the second simplification removes all
those elements that are between the first element and the
last (Fig.8(b)).

Figure 8: A stroke crosses a triangle multiple times.

(a)

(b)

(c)

(a) (b)

c© The Eurographics Association 2005.

38

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

foreach(Triangles t) {

for(int i = 0; i < A.size; i++) {

if(A[i].belongs(t)) break;

}

for(int i = A.size - 1; j >= 0; j--) {

if(A[i].belongs(t)) break;

}

}

if(j - i > 1) {

 A.remove(i + 1, j - 1);

}

}

Figure 9: Algorithm for the second simplification.

This algorithm is shown in Fig.9 as pseudo-code. In the

code, A[i] stands the (i-1)th elements in A, A.size is
the number of elements in A. The method
A[i].belongs(t) is true if A[i] belongs to triangle
t, and A.remove(a, b) removes elements A[a] to
A[b] from A. The result of this algorithm depends on the
order in which it is applied to triangles.

Fig.10 shows an example of the simplifications as ap-
plied to a stroke and the triangles shown in (a). Although
this is an exaggerated example, in which a stroke crosses
very close to vertices and edges, topologically complicated
situations like this can easily occur. By applying the first
simplification, the stroke-vertices that lie in a triangle are
removed and the result becomes as shown in (b). From (c)
to (h), the second simplification is applied step by step.
The large black points in Fig.10 are stroke-vertices that the
algorithm decides to retain in A. The white points are to be
removed. A grey triangle is the triangle under considera-
tion at that step. Overall, the input stroke in (a) is simpli-
fied to that in (i).

3.4 End points and angle points

As shown in the previous example, the two simplifica-
tions produce a stroke which crosses each triangle at most
once, so the division of a triangle can be represented by
only two patterns as shown in Fig.7. Although this is very
effective in simplifying implementation, angle points dis-
appear. When a user inputs an angle point such as Fig.11,
retaining the sharp angle may be important.

To keep angle points of a stroke, other cases are added
to the set of allowed patterns. These contain the end point
of a stroke in a triangle. For these cases, there are two
patterns of intersection between a stroke and a triangle, as
shown in Fig.12. One is intersection at a model-vertex (a),
and the other is intersection at a model-edge (b).

When a stroke-vertex corresponds to an angle point, the
stroke is divided at this point into two strokes, and a new
end point is generated (Fig.13). An angle point can be
defined as one where the angle between neighbouring
edges is smaller than a threshold.

Thus the total number of patterns which can result from
a stroke intersecting a triangle is four, as shown in
Fig.14(a)~(d). The corresponding triangle division is
shown below. Since case (d) (an end point and crossing at
a model-edge) can be achieved by performing (c) and then
(a), the number of patterns that we have to implement is
only three; (a), (b) and (c). With only these patterns, we
can achieve all of the triangle division that is required for a
cutting operation.

Figure 10: An example of the second simplification.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

c© The Eurographics Association 2005.

39

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

Figure 11: A stroke that contains a sharp angle.

Figure 12: A stroke that has an end point in a triangle.

Figure 13: A stroke that contains a sharp angle.

Figure 14: Patterns of triangle division.

3.5 Summary of the method

1. Move model-vertices that lie close to a stroke so that
they lie exactly on the stroke.

2. Divide the stroke into multiple strokes at each sharp
angle.

3. Apply the following operations to each division of
the stroke
a. Divide any triangle that contains an end point of

a stroke into three triangles as Fig.14(c).
b. Apply the first simplification.
c. Apply the second simplification
d. Divide triangles that are crossed by a stroke as

Fig.14(a)/(b) according to the pattern.

4. Results

A prototype system was implemented in C++ on a Win-
dows PC (2.0GHz CPU, 1.0GB RAM). The results of cut-
ting a triangle mesh model by a user stroke are shown in
Fig.15 and Fig.16. In Fig.15, (a) shows the detail of the
original stroke, (b) shows the result of the model-vertex
move, (c) shows the result of the second simplification, the
points are the elements in array A, and (d) is the result of
mesh division.

Fig.16 shows the result for a stroke that has an angle
point and two endpoints.

 (a) (b)

 (c) (d)

Figure 15: Result obtained with our implementation.

(a) (b) (c) (d)

(c) + (a)

(a) (b)

c© The Eurographics Association 2005.

40

J. Mitani / A Simple-to-Implementation Method for Cutting a Mesh Model by a Hand-Drawn Stroke

 (a) (b)

Figure 16: Result for a stroke that contains a sharp an-
gle.

5. Conclusion

This paper proposes a method for cutting a mesh model
by a stroke that can be easily implemented. By applying
two stages of simplification, the number of patterns of
triangle division that must be implemented is reduced to
only three. It can be implemented easily without any need
to consider numerical error. The results are not as accurate
as those produced by stricter approaches, but are much
better than those produced by the simplest approach of not
dividing any triangles and using edges in the mesh model
as segments of the cut line.

6. Future Work

The method proposed in this paper is for cutting the
front of a model only. Cutting both front and back to sepa-
rate a model, using the same basic idea to cut both the
front and the back, will require some study of methods for
generating cross-sectional surfaces.

To preserve the detail of stroke lines, adaptive subdivi-
sion as in [KS99] could be added as a preprocessing opera-
tion.

References

[IH03] IGARASHI T., HUGHES J. F.: Smooth Meshes for
Sketch-based Freeform Modeling. ACM Symposium on
Interactive 3D Graphics (2003), 139-142

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy:
A Sketching Interface for 3D Freeform Design. In Proc.
SIGGRAPH '99 (1999), 409-416.

[KL96] KRISHNAMURTHY V., LEVOY M.: Fitting smooth
surfaces to dense polygon meshes. In Proc. SIGGRAPH
'96 (1996), 313-324.

[KS99] KHODAKOVSKY A., SCHRÖDER P.: Fine level fea-
ture editing for subdivision surfaces. In ACM Solid
Modeling Symposium (1999), pp. 203–211.

[NSAC05] NEALEN A., SORKINE O., ALEXA M., COHEN-OR
D.: A Sketch-Based Interface for Detail-Preserving Mesh
Editing. In Proc. SIGGRAPH '05 (2005), to appear.

[SFMT04] OWADA S., NIELSEN F, OKABE M., IGARASHI T.:
Volumetric Illustration: Designing 3D Models with In-
ternal Textures. ACM Transactions on Graphics, Vol.23,
No.3 (2004), 322-328.

[SI89] SUGIHARA K., IRI M.: A solid modelling system free
from topological inconsistency. Journal of Information
Processing, Vol.12, No.4 (1989), 380-393.

[Sug00] SUGIHARA K.: How to Make Geometric Algo-
rithms Robust. IEICE Transactions on Information and
Systems, Vol.E83-D, No.3 (2000), 447-454.

[TCM04] TURQUIN E., CANI M. HUGHES J. F.: Sketching
garments for virtual characters. In Proc.
EUROGRAPHICS Workshop on Sketch-Based Inter-
faces and Modeling (2004).

[ZHH96] ZELEZNIK R.C., HERNDON K.P., HUGHES J. F.:
SKETCH: An interface for sketching 3D scenes. In Proc.
SIGGRAPH '96 (1996), 163-170.

c© The Eurographics Association 2005.

41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

