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ABSTRACT 

 We describe a two-stage approach for interpreting line drawings of curved objects. In the first stage, the user en-
ters a natu-ral line drawing of a polyhedral template; this is automatically interpreted as the corresponding poly-
hedral object. In the second stage, the user enters freehand curves; by relating these to the template, a curved ob-
ject can be constructed 
 
Categories and Subject Descriptors (according to ACM CCS): ): J.6: Computer Aided Engineering [Computer 
Aided Design] 

 

1. Introduction 

Studies such as Jenkins [Jen92] have shown that it is 
common practice for design engineers to sketch their ideas 
on paper before entering them into a CAD package. 
Clearly, valuable time and effort could be saved if a com-
puter could interpret the engineer's initial concept drawings 
as solid models. Furthermore, if this conversion could be 
done within a second or two, it would give helpful feed-
back, further enhancing the designer's creativity [Gri97]. 

In an earlier paper [VSMM00], we described two pro-
grams: one, RIBALD, which interprets line drawings of 
simple solid objects, and another, 3D SKETCH, which 
interpreted freehand drawings in terms of a template. In 
this paper we describe how, by using the descendents of 
these two programs as components of a two-stage 
approach, it is possible to produce a system which inter-
prets line drawings as curved objects. The individual com-
ponents have previously been described elsewhere 
([Var03],[Tak04]); the novel contribution of this paper is 
their combination to provide a flexible system for input of 
curved drawings. 
RIBALD only interprets polyhedra. Its assumptions are 

reasonably flexible: the drawing represents a single mani-
fold polyhedral object viewed from its most informative 
viewpoint and from a general viewpoint where no small 
change in the viewpoint would result in the topology of the 
drawing. It does not assume that the drawing is error-free. 

Interpretation of drawings containing curved lines presents 
several unsolved problems even for perfect drawings. 
Many of the simplifying assumptions made in interpreting 
polyhedra (such as that if two edges meet the same two 
faces, the edges must be collinear) do not hold for curved
objects. 
Another unsolved problem is that in the domain of curved

line drawings even simple facts such as the shape of a cur-
ve often have non-local consequences. This can become a 
serious obstacle to interpretation, as can be seen by consi-
dering Yonas's curves (Figure 1 [BT81]), in which turning 
the bottom line from a straight line to a curve changes the 
perception of the curved top lines. 

 

Figure 1: Yonas's Curves [BT81] 

Another example given by Barrow and Tenenbaum 
[BT81] illustrates the problem of distinguishing similar 
drawings which depend on subtle mathematical points for 
their interpretation. In Figure 2, both the slice of cake (left) 
and the rocket nose-cone (right) are valid drawings; they 
are distinguished by the ``subtle mathematical difference'' 
that in the rocket nose-cone, the bottom curve is tangential 
to the vertical lines. 
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Where freehand drawing errors are allowed, as is neces-
sary if line information is produced by processing a free-
hand sketch, such subtle differences can easily be missed 
(Barrow and Tenenbaum are concerned with drawings 
derived from processed greyscale information; such dra-
wings may also contain small errors, and their point beco-
mes of even more importance when applied to hand-drawn 
sketches). 

   

Figure 2: Slice of Cake, Rocket Nose Cone [BT81] 

A further difficulty in interpreting line drawings of curved 
objects is that many of the established tools for interpreting 
polyhedra cannot be used. For example, line labelling (Sec-
tion 3.2) is a well-established and useful technique for 
interpreting line drawings of polyhedra. It relies on the fact 
that in drawings of polyhedra, each line has the same label 
(convex, concave or occluding) throughout its length. This 
is not the case with drawings of curved objects, as can be 
seen in Figure 3 (where the curved line changes from con-
vex to occluding). 

 

Figure 3: Invisible Junction 

Similarly, many of the fundamental assumptions made by 
existing approaches to constructing hidden topology (Sec-
tion 3.6), such as the supposition that an edge joins two 
vertices, do not remain valid in the domain of curved 
objects (consider a cylinder, with edges but no vertices). 
Considerations such as these suggest that a single-stage 

process for interpreting curved drawings without user 
intervention may well be impossible and is certainly not 
likely to be seen in the near future. 
The field of 2D drawing of 3D scenes has provided some 

work of interest. For example, Tolba et al [TDM99] use a 
limited form of 2½D reasoning to allow a scene, once 
drawn, to be viewed from different angles. 
However, there remains the problem of deducing the hid-

den part of the object. Some investigators have chosen to 
allow unlimited user intervention. For example, Teddy 
[IMT99] (see Figure 4) uses an entirely different approach 
to creating solid models. The user may create, modify or 

delete parts of the model as viewed from the current view-
point, and may also change the viewpoint. The system of 
Ferley et al [FCG00], although using 3D rather than 2D 
input devices and adding a few extra software tools, is 
essentially similar. Schuresko [Sch99] applies the techni-
ques of Teddy to model human faces, in order to make the 
successes and limitations readily apparent. 

 

Figure 4: Teddy Bear Design [IMT99] 

We prefer, instead, to limit the need for user intervention. 
Ideally, we should wish to interpret line drawings of cur-
ved objects without any user intervention at all. However, 
in view of the problems noted above, we propose instead a 
two-stage approach for designing and creating solid models
of curved objects: firstly, draw a polyhedral template for 
the desired object, and secondly sketch the corresponding 
curved object in the same orientation as the template. We 
describe the two components of such an approach separa-
tely. 
To be useful for interpreting curved drawings, the templa-

te must follow certain conventions. The conventions we 
assume are that (a) the template must have the same ver-
tex/edge graph as the curved drawing and (b) it must be 
possible, by matching the extreme (top, bottom, left, right) 
vertices of the template and drawing, to establish the trans-
lation between the two. 
Section 2 outlines our approach. Section 3 describes how

we can create templates. Section 4 describes how a free-
hand sketch including curved lines can be interpreted by 
means of a template.  Section 5 shows examples of curved 
objects modelled using this two-stage process. Section 6 
discusses limitations of our proposed method. Section 7 
summarises our conclusions. 

2. Outline of Approach 

The outline of our proposed approach is as follows (see 
Figure 5 for illustrations): 

a) Create a line drawing of a polyhedral template 
by means of which drawings of curved objects 
are to be interpreted. This drawing should have 
the same vertex-edge graph as the curved dra-
wings, and should be from a similar viewpoint. 
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b) Use the methods of Section 3 to interpret this 
line drawing as a polyhedron. 

c) Create a line drawing of the curved object. 
d) Use the methods of Section 4 and the template 

from (b) to interpret this drawing as a curved 
object, and create the corresponding triangulated 
mesh model. 

e) Repeat from (c) as often as is desired. 

 

 
Figure 5: Illustration of Outline Method 

3. Template Creation 

3.1 Overview. 

The first of our components is one which takes a line dra-
wing of a polyhedral object and produces from it a solid 
model of the object which the drawing represents. 
Although the current state of the art, as exemplified by 

RIBALD [VSMM00, Var03], is not capable of reliably 
interpreting complex drawings, it can reliably take line 
drawings of typical object templates and produce 3D 
models from them. 

 

Figure 6: Two Engineering Object Templates 

The problem is to produce a model of the 3D object the 
engineer would regard as the most reasonable interpreta-
tion of the 2D drawing, and to do so quickly. Obviously, 
there are infinitely many objects which could, if viewed 

if viewed from a particular viewpoint, result in drawings 
such as those in Figure 6. In practice, an engineer would 
usually  be in little doubt as to which was the intended 
interpretation. 
For this reason, the problem is as much heuristic as geo-

metric: it is not merely to find a geometrically-realisable 
solid which corresponds to the drawing, but to find the one 
which corresponds to the engineer's expectations. 

Briefly, the approach taken by RIBALD is as follows (for 
more details, including a discussion of alternative approa-
ches, see [Var03,VMS04b]): 

a) Label the lines in the drawing, to determine 
which are convex, which are concave, and 
which are occluding. This is described in Sec-
tion 3.2. 

b) Determine which pairs of lines in the drawing 
are intended to be parallel in 3D. This is descri-
bed in Section 3.3. 

c) Inflate the drawing to 2½D by determining z-
coordinates for each vertex. This is described in 
Section 3.4. 

d) Determine any symmetry elements (mostly pla-
nes of reflection) in the object. This is described 
in Section 3.5. 

e) Classify the drawing (e.g. extrusion, normalon, 
general case). This is also described in Section 
3.5. 

f) Complete the object topology by determining 
the topology of the hidden part of the object. 
This is described in 3.6. 

g) RIBALD finishes by tidying the geometry of the 
completed object. This is not relevant to our cur-
rent purpose, since intermediate templates need 
not be tidy, and it is not described in this paper. 
See the literature on ``beautification of solid 
models'' problem, which has applications outsi-
de the field of line drawing interpretation, such 
as reverse engineering [VM02]. 

3.2 Which Lines are Convex/Concave 

Line labelling is the process of determining whether each 
line in the drawing represents a convex edge, a concave 
edge or an occluding edge. Unfortunately, there is no sin-
gle best solution to this problem. 
For drawings of genus zero trihedral objects, the line 

labelling problem was essentially solved by Huffman 
[Huf71] and Clowes [Clo70], who elaborated the catalogue 
of valid trihedral junction labels. This translates line label-
ling into a discrete constraint satisfaction problem where 
the constraints are the 1-node constraint that each junction 
must have a label in the catalogue and the 2-node cons-
traint that each line must have the same label throughout its 
length. 
The Clowes-Huffman catalogue for L-, W- and Y-

Junctions is shown in Figure 7. + indicates a convex edge; 
- indicates a concave edge; an arrow indicates an occluding 
edge with the occluding face on the right-hand side of the 
arrow. 
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In trihedral objects, T-junctions (see Figure 8) are always 
occluding. (Although, as in Table 1, these are always listed 
as part of the trihedral catalogue, they are general to all 
catalogues as occluding T-junctions do not correspond 
directly to vertices.) 

 

Figure 7: Clowes-Huffman Catalogue 

 

Figure 8: Occluding T-junctions 
For trihedral objects, algorithms for Clowes-Huffman line 

labelling such as those of Waltz [Wal72] or Kanatani 
[Kan90], although O(en) in theory, are usually O(n) in 
practice [PT94]. It is believed that the time taken is more a 
function of the number of legal labellings than of the algo-
rithm [Var03], and for genus zero trihedral objects there is 
usually only a single legal labelling. 
For this reason, extension to the 4-hedral general case pre-

sents problems. The catalogue of 4-hedral junction labels is 
much larger [Var03]: see Table 1. For this reason, there 
may be many valid labellings (perhaps millions) for a dra-
wing. Non-trihedral line labelling using the simple combi-
natorial algorithms used for solving discrete CSPs is unre-
liable and can be very slow (see [Var03,VMS04b]).  

Junction 3-hedral Ext 3-
hedral 

4-hedral Total 

L 6 0 2 8/16 

T (4) 4 12 20/64 

W 3 0 25 28/64 

Y 5 0 27 32/64 

Table 1: Number of Entries in Junction Catalogues 
The current state of the art for labelling non-trihedral 

drawings is that described in [VMS04a]. This requires a 
preliminary inflation. From the resulting preliminary fron-
tal geometry, predictions are made as to whether each line 
is convex, concave or occluding. Since this preliminary 
inflation cannot make use of line labels or parallel line 
information, these predictions are not in themselves 
entirely reliable, so they are used as seeds in a probabilistic 
labelling algorithm. The probabilities so generated are 

generated are propagated around the lines and junctions of 
the drawing, and the combined junction catalogues of 
Table 1 are used to reject illegal combinations.  This latter 
method can be used to label the two examples of Figure 6 
(amongst others) correctly. 
Choice between the two methods, Clowes-Huffman and 

preliminary inflation plus propagation, is generally 
straightforward: if a drawing can be labelled using Clowes-
Huffman, it should be. RIBALD defaults to choosing its 
labelling method automatically using that rule. There are 
rare occasions when, although a drawing can be labelled as 
trihedral, it should be labelled as non-trihedral; requiring 
the user to specify this in advance on such rare occasions, 
although theoretically unsatisfactory, is hardly onerous. 

3.3 Which Lines are Parallel? 

Which lines in a drawing are intended to correspond to 
edges parallel in 3D? If user inaccuracies are allowed, this 
is not an easy question to answer. 

 

Figure 9: Which Edges are Parallel in 3D? 

It is, for example, obvious to a human which lines in the 
two drawings in Figure 9 are intended to be parallel in 3D 
and which are not, and it proves to be easy enough to dis-
cover rules by means of which these two drawings can be 
interpreted correctly (see [Var03]). However, there remain 
outstanding problems. See [VMS04b] for a discussion of 
the current state of the art. Despite such occasional failu-
res, existing methods are good on the whole. 

3.4 Inflation to 2½D 

Inflation is the process of converting a flat 2D drawing 
into 2½D by assigning z-coordinates (depth coordinates) to 
each vertex, producing a frontal geometry. 
There are many ways of inflating drawings to 2½D. Here, 

we illustrate the simplest: use compliance functions 
[Lip96] to generate equations linear in vertex depth 
coordinates, and solve the resulting linear least squares 
problem, as used in [Var03]. 
Many compliance functions can all be translated into 

linear equations in z-coordinates. [Lip96] provides a list of 
several. Of these, the most useful are: 

Perkins's Cubic Corners [Per68], sometimes called cor-
ner orthogonality, assumes that a W-junction or Y-
junction corresponds to a vertex at which three orthogonal 
faces meet. See Figure 10: the equation relating depth 
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coordinates zA and za to angles C and D is linear in the z-
coordinates.  

 

Figure 10: Cubic Corner 

Line Parallelism assumes that two edges have been iden-
tified as being parallel in 3D. The equation relating the 
four z-coordinates of the vertices at either end of the two 
edges is obviously linear in the z-coordinates. Line paralle-
lism is not, by itself, inflationary: there is a trivial solution 
(z=0 for all vertices) which meets line parallelism cons-
traints. 
Vertex Coplanarity assumes that four vertices have been 

identified as being coplanar. Again, the equation relating 
the z-coordinates of the four vertices is obviously linear, 
and the coefficients are easily obtained from 2D geometry. 
Vertex coplanarity is also not, by itself, inflationary: the 
trivial solution (z=0 for all vertices) also meets vertex 
coplanarity constraints. General use of vertex coplanarity is 
not recommended (Lipson [Lip98] points out that where 
three consecutive vertices on a face are collinear, successi-
ve use of four-vertex coplanarity does not guarantee a pla-
nar face). However, it is invaluable for cases such as those 
shown in Figure 11, where without it the linear system of 
depth equations would be disjoint, with infinitely many 
solutions. 

 

Figure 11: Drawings with Disjoint Subgraphs 

Junction-Label Pairs [Var03] assume that pairs of 
junctions with particular labels have the same depth 
implications they would have in the simplest possible 
drawing containing this pair. It generates an equation 
relating the vertex depths of the ends of the line based on 
the junction labels of those vertices. 
 Given correct inputs, inflation is the most reliable of the 

stages of processing described in this paper. Although it 
occasionally fails to determine correctly which end of a 
line should be nearer the viewer, such failures are in cases 
where a human would also have difficulty. The only sys-

systematic case where the approach of a linear system of 
compliance functions fails is that of the Platonic and 
Archimedean solids, and a known special-case method 
(Marill's MSDA [Mar91]) is successful for these. 
Figures 12 and 13 illustrate the results of inflating two of 

our test drawings, as viewed from different viewpoints. 

 

Figure 12: Inflation to 2½D 

 

Figure 13: Inflation to 2½D 

3.5 Symmetry and Classification 

Once a drawing has been inflated, it is straightforward 
both to identify potential symmetry elements and to assess 
their merit. 
Identification of potential symmetry elements is essen-

tially a topological task. Each face centre is considered as 
the possible location of an axis of rotational symmetry and 
of planes of mirror symmetry. Candidate symmetry ele-
ments which do not match the topology in the region of the 
face under consideration are rejected. 
Assessment of the merit of symmetry elements is twofold: 

topological and geometric. Topological assessment consi-
ders questions such as whether the postulated symmetry 
operation propagates as expected across the visible part of 
the object. Geometric assessment considers whether the 3D 
location of visible vertices matches those which would be 
predicted by the assumption that the postulated symmetry 
operation is genuine. 
Determining the major plane of symmetry of the object is 

required in Section 4: Takahashi’s method of solving the 
problem of curve ambiguity requires this information. 
Determination of other symmetry elements is not strictly 
necessary (the other methods of Section 3 should be suffi-
cient without it) but can help both in avoiding mistakes 
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mistakes when constructing of hidden topology and in 
tidying the geometry of this hidden topology.  
RIBALD’s current algorithm for detecting symmetry is 

known to be suboptimal. It is slow (O(n4), whereas Sugiha-
ra has shown that an  O(n2) algorithm must exist) and in 
some cases unreliable. In particular, although it uses topo-
logical reasoning when propagating matches across the 
visible part of the object, the existing implementation only 
applies this topological reasoning at trihedral vertices. As 
will be seen in Section 6.1, it can also fail to identify mir-
ror planes which run along consecutive edges. 
Classification attempts to classify the depicted template 

(e..g extrusion, normalon, trihedral). Again, this is not 
strictly necessary, there are several short-cuts which can be 
taken when constructing hidden topology if the template 
can be classified in this way, making the process both fas-
ter and more reliable. 

3.6 Determine Hidden Topology 

Once the frontal geometry has been determined, the next 
stage of processing is to add the remaining topology. The 
method is essentially that presented in [VSMM00]: firstly, 
add extra edges to complete the wireframe, and then add 
faces to the wireframe to compete the object, as follows: 

• While the wireframe is incomplete: 
o Project hypothesised edges at each incomplete 

vertex along the appropriate axes 
o Eliminate any edges which would be visible at 

their points of origin 
o Find the locations where the remaining edges 

intersect, assigning merit figures according to how 
certain it is that the edges intersects at this location 
(e.g. an edge which intersects only one other edge 
gives a higher merit figure than an edge which 
intersects two or more other edges) 

o Reduce the merit for any locations which would 
be visible (if drawing errors were not allowed, 
such locations could be eliminated) 

o Find the location at which the crossing merit is 
greatest 

o Add a vertex at this location, and the hypothesi-
sed edges which crossed at this location, to the 
known object topology 

The process of completing the wireframe topology varies 
in difficulty depending on the type of object portrayed in 
the drawing. This paper illustrates two special-case types 
of object, extrusions and normalons, and the general case. 
In some cases (e.g. where the object is symmetrical or 
includes a recognized feature), more than one vertex can be 
added in one iteration; these are described in [Var03]. Such 
cases help both to speed up the process of determining the 
complete wireframe and to make it more reliable. 
Completing the topology of extrusions from a known front 

end cap is straightforward (and useful, since many curved 
objects can be approximated by extrusions). Figure 14 
shows a drawing and the corresponding completed extru-
sion wireframe. 

 

Figure 14: Extrusion 

The knowledge that the object is a normalon makes it 
easier to reconstruct the wireframe correctly, since when 
hypothesised edges are projected along axes, there will 
usually be only one edge projected from any particular 
incomplete vertex. Figure 15 shows a drawing of a norma-
lon and the corresponding completed wireframe. 

 

Figure 15: Normalon 

Similarly, the knowledge that the object is trihedral helps 
reduce the number of possible edges projected at each ver-
tex (again, there will be at most one from each incomplete 
vertex) and thus helps in reconstructing the correct wire-
frame. Figure 16 shows a drawing of a trihedral object and 
the corresponding completed wireframe. Note that 
although the resulting wireframe is topologically correct, 
geometric inaccuracies in the frontal geometry are magni-
fied when this information is used (i) to define the mirror 
plane and then (ii) to reflect known vertices through this 
mirror plane [Var03]. 

 

Figure 16: Trihedral Object [Gri97] 

However, in the general case, where the object is neither a 
normalon nor trihedral, there is the significant difference 
that hypothesised edges may be projected in any direction 
parallel to an existing edge. Even after eliminating edges 
which would be visible, there may be several possibilities 
at any particular incomplete vertex. In practice, the large 
number of possible options rapidly becomes too confusing 
and it is easy to choose an incorrect crossing-point at an 
early stage. Although such errors can sometimes be recti-
fied by backtracking, the more common result is a valid but 
unwanted wireframe. Only very simple drawings can be 
processed reliably. Figure 17 shows a general-case object 
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object and the corresponding completed wireframe; this 
represents the limit of the current state of the art. 

 

Figure 17: General Case Object 

Finally, we note that adding additional faces to a wirefra-
me topology for which the frontal geometry is already 
known is straightforward. We use repeated applications of 
Dijkstrå’s Algorithm [Dij59] to find the best loop of unal-
located half-edges for each added face, where the merit for 
a loop of half-edges is based both on the number of half-
edges required (the fewer, the better) and their geometry 
(the closer to coplanar, the better). Colour Slide I shows 
the completed topology created for two of our test objects, 
as viewed from various viewpoints. 

3.7 Tailoring RIBALD 

The version of RIBALD described previously [Var03] is a 
general-purpose program. When used in this specific appli-
cation, it is possible and beneficial to tailor it to match the 
requirements of Section 4. In particular, there are two rules 
which can be added. 

 
Figure 18: Wrong Interpretation 

Firstly, since Takahashi’s approach (Section 4) requires 
that the template be mirror-symmetric, RIBALD must use 
the best plane of mirror symmetry as its starting point 
when constructing hidden topology. In other applications 
and with other drawings, the merits of preferring symmetry 
to other clues can be argued either way, but for this appli-
cation Figure 18 is unequivocally the wrong interpretation, 
whereas Figure 19 is an acceptable interpretation. 

 
Figure 19: Better Interpretation 

However, Figure 20 is a better interpretation still. 
Although it is not clear at this point whether the added line 
is necessary or not, it might be useful, and since the final 
output from the second stage will be a triangulated mesh 
model, adding the line will do no harm. 

 
Figure 20: Best Interpretation 

In general, for this application, it is always best to add 
such cross-mirror lines, provided only that they are not in 
positions where they ought to be visible in the original line 
drawing. (Figure 26 shows another example where adding 
such lines would clearly be correct.) 

3.8 Alternative Approaches 

We have described in detail an approach for creating 
object templates from natural line drawings, since this is 
our preferred approach. However, creating such templates 
from wireframe drawings is a fully viable alternative 
[Lip98, CCG99]. 

4. Curved Objects 

Our second stage is to interpret a curved drawing by 
means of a polyhedral template. Note that a single template 
can be used to interpret several curved drawings, as will be 
seen in the examples in Section 4. 
Mitani’s original 3D SKETCH [Mit99] applied mirror 

symmetry to enable reconstruction, in an approach based 
on Furushima's method [Fur93]. This illustrated the power 
of the concept but was limited to a single template, that in 
Figure 21. 

P.A.C. Varley, et al. / A Two-Stage System for Interpreting Line Drawings of Curved Objects 

c© The Eurographics Association 2004.

123



 

 

 

Figure 21: Single Template [Mit99] 

Furthermore, the approach also made several assumptions 
about the template and the geometry of any object created 
from it. While some assumptions are certainly necessary, 
those made in [Mit99] were specific to the one template 
and not readily extended to a variety of templates. 

 
Figure 22: Design from Fixed Template [Mit99] 

Takahashi [Tak04] has taken this work further, generali-
sing it so that it allows for alternative templates, and 
improving it to remove the requirement for considerable 
specific knowledge about how to interpret a particular 
template. Where some template-specific knowledge is still 
required (such as the predominant plane of mirror sym-
metry), this is provided in the template, not built into the 
algorithm. 
However, the outline concept remains the same: 

a) The vertex/edge graph of the curved sketch is 
matched to that of the template, using standard 
graph-matching techniques. The extreme 
(uppermost, bottommost, leftmost and rightmost) 
vertices of each as a starting-point. 

b) The edges of the template are bent so as to match 
the curves in the sketch. This is discussed below. 

c) The resulting curved surfaces are smoothed and 
subdivided to produce a triangulated mesh 
model, using standard mesh subdivision techni-
ques (initial triangulation of the template faces 
followed by Loop subdivision [Loo87]). 

When bending edges to match the sketched curves, the 
principle is that each point on the curve is in a 3D location 
which would, in 2D projection, appear as sketched. 
Although theoretically an insoluble problem – there are an 
infinite number of such 3D locations – there are two candi-
date locations which are clearly preferable to the infinite 
number of alternatives. See Figure 23 for an illustrative 
example. 

Curve ambiguity, the choice between these two locations, 
remains an outstanding problem. Does the curved line in 
the central drawing of Figure 23 represent a convexity in 
the “windscreen” face (left-hand drawing) or a concavity in 
the “side” face (right-hand drawing)? 

 

Figure 23: Curve Ambiguity 

Takahashi’s solution to this problem is to assume that cur-
ves drawn in this manner always represent symmetrical 
distortions across the object’s major plane of mirror sym-
metry. If the alternative interpretation is desired, this is 
indicated by adding an extra line. See Figure 24. 

  

Figure 24: Resolving Curve Ambiguity [Tak04] 

While functional, this solution is not ideal, and further 
work in this area is required in order to present a more 
natural, intuitive interface which allows for resolution of 
curve ambiguity. 

 

Figure 25: Car Body Design [Tak04] 
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5. Examples  

Examples of completed templates have already been given 
in Section 3. 
Figure 25 and Colour Slide II [Tak04] show the output 

from the second stage, and illustrate one possible applica-
tion of this approach: car body design. 

6.  Limitations 

The limitations of our approach come from two sources: 
the limitations of RIBALD, and the limitations of Takaha-
shi’s program. 

6.1 Limitations of RIBALD 

Although RIBALD’s ability to label drawings correctly, 
and to determine the hidden topology of objects, is limited, 
these limitations do not appear important in practice. In 
general, the drawings used for templates are those which 
RIBALD handles most successfully. 
 

 

Figure 26: Drawing and Template [Tak04] 

 

Figure 27: Results [Tak04] 

However, there is a major limitation imposed by 
RIBALD’s suboptimal algorithm for detecting mirror 
symmetry in natural line drawings. Consider the line 
drawing in Figure 26. Geometric considerations 
notwithstanding, the mirror symmetry of the drawing is 
evident to a human, but RIBALD fails to detect it. As a 
result, although Takahashi’s program can produce 
interesting results from the corresponding template (see 
Figure 27), this template had to be produced by hand. 

6.2 Limitations of Takahashi’s Program 

Although Takahashi’s implementation only processes 
genus zero templates, there appears no reason in principle 
why it could not be extended to objects with through holes. 
Another limitation is that templates are limited to those 

produced from line drawings which do not contain T-
junctions. The problems here are those of determining how 
far along the partially-occluded line occlusion takes place 
and the curvature of the occluded part of the line. These 
problems, although not trivial, should be soluble, but 
Takahashi’s current implementation does not include solu-
tions. 

7. Conclusions 

We have suggested a method for interpreting 2D line dra-
wings as 3D curved objects by reference to a template, also 
3D but input as a 2D line drawing. We have illustrated this 
concept with reference to a particular industrial application 
in which curved surfaces are important, that of car body 
design. 
Extending the idea to other application areas should be 

straightforward. We also anticipate no difficulties in pro-
cessing non-genus-zero templates. Drawings with T-
junctions may present problems, but these should be solu-
ble. 
In conclusion, the idea presented here is straightforward to 

use, flexible, and although not fully automatic requires less 
manual intervention than previous approaches. 
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