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Abstract
This paper presents a smart interface that automatically extracts and refines pen strokes from images of hand
drawn sketches. The interface allows users to digitize hand-drawn material such sketches of flowcharts, cartoons
or other pen based drawings and automatically isolate and refine the individual strokes making up the sketch. First,
we present a method for extracting pen strokes based on learned constraints on curves. The approach consists of
using a training set that shows good examples of curves and how a user would draw them. Given an image of
a hand-drawn sketch, the system selects the pen stroke that is most statistically consistent with the examples in
the training set and ranks the others based on their likelihood. Users can keep the selected candidate or they
may scroll through the other top candidates to select a preferred solution. Second, we present an overview of our
refinement procedure and its application on the extracted pen strokes. Using the same database of examples, the
extracted pen stroke is refined to make it ’look’ more like those in the database.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Many people find that the easiest and most natural way to
describe a concept is by drawing a rough sketch. Despite
this, the creation of high-quality good-looking sketches re-
mains time consuming and skill dependent. In this work,
we develop an application that allows users to easily edit,
clean up and refine a hand drawn sketch. The emphasis is
on sketches that consist of pen strokes that are either dis-
proportionate, displaced, spurious or lacking the detail of the
objects they attempt to depict. Users can quickly extract pen
strokes from a sketch and perform transformations on them
such as a split, merge, resize and reposition. Users can also
apply an automated refinement process on the extracted pen
strokes [SD04].

While most modern image editing applications provide
standard tools for transforming objects, they always rely on
the assumption that a pen stroke (or any other object) is al-
ready isolated and selected. Manually extracting individual
pen strokes from images that are noisy or include occlusions
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is a tedious task. Further, once the pen strokes are extracted,
the existing methods for detailed editing require either good
artistic talent or strong knowledge of specialized tools. To
address these issues, the main focus of our work is on the
automated extraction of pen strokes from images with a sup-
plementary refinement process.

Sketches are often used as a first order presentation of
concepts for artistic drawings, animations (story board),
comics, prototype designs and diagrams. In all these, the
goal is to quickly construct a coarse visualization of a do-
main specific end-result. While this coarse visualization
lacks the quantitative detail, within a given a context, the
sketch is meant to provide sufficient information for a human
observer to hallucinate the original intention. For example,
in one context, a rough circle may be a coarse representa-
tion of a gear, while in another, it may represent the head
of a stick figure. In order to simulate this, our system must
understand the sketch and resolve ambiguities under various
contexts.

Given the a wide array of drawing styles and contexts,
providing a system that can accommodate for all is a difficult
task. Further, how to computationally characterize different
drawing types in accordance to human perception remains
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an open problem. In our approach, the system learns from
examples the types of pen strokes it expects to see. This in-
cludes learning both the coarse shapes a user will draw and
the refined shapes the user actually intends to draw. As such,
the user can collect different training sets, classifying each
in a different context and applying them in various domains
of application.

Each training set is used to train a Hidden Markov Model,
a modeling formalism used to encode constraints on the se-
quences of hidden states (the refined shape) and the observa-
tions they produce (the shape the user would actually draw
when their intent is the refined one). The user would then
use one of these models to both extract and refine a pen
stroke. If the sketch has been originally entered using a dig-
ital medium (such as a tablet or PDA), then the pen strokes
are readily available and the system skips directly to the re-
finement step. Otherwise, given an image of a sketch, where
the pen strokes are not defined and may be occluded, the user
can simply click near an end-point of the desired pen stroke
and the system would automatically extract it.

2. Related Work

There is an abundance of literature concerning the extraction
of curves from images. This literature typically deals with
several distinct processes: edge detection, curve grouping,
and segmentation. The latter two (grouping and segmenta-
tion) refer to the process of extracting meaningful connected
curves from data that may be confusing, cluttered or incom-
plete.

Curvature information is a key heuristic for building
curves from noisy data. A standard approach in the pres-
ence of ambiguous data is to select the curve that minimizes
a “goodness measure” based on minimum curvature, mini-
mum absolute curvature, or minimum variation in curvature.
Such goodness measures can be posed as energy function-
als, procedural rules, or decision trees. Work by Ullman and
Sha’ashua [US98] use locally connected networks to deter-
mine saliency for smoothness, continuity, and curve length.
Similarly, Jacobs [Jac93] developed a method for extract-
ing curve segments based on a convex saliency measure.
Earlier work by Low showed how curves can be extracted
by applying perceptual grouping rules with proprieties such
as proximity, collinearity and parallelism [Low85]. Estrada
and Jepson [EJ04] use predefined geometry-based affin-
ity measures to evaluate the quality of line segment junc-
tions. All of these approaches have proven very powerful,
but they are based almost universally on an attempt to obtain
generic domain-independent grouping strategies. In most
cases, these strategies are based on rules inspired by visual
psychophysics [Kof22].

Another approach is to use probabilistic methods to main-
tain likelihoods over multiple solutions. These likelihoods
are typically biased using both hard-coded conditionals

(such as a preference on curvature) and learned conditionals
(computed on the fly using a single example or multiple ex-
amples). Williams and Jacobs [WJ97] developed a stochastic
method for contour extraction. In their work, a prior proba-
bility on the shape of a boundary is computed using paths of
particles that undergo a random walk in the image. Recently,
August and Zuker [WJ03] defined the notion of curve in-
dicator fields as generic models for producing edge likeli-
hoods. In particular, their experiments employ a Markov ran-
dom field model for contour enhancements. Similar in spirit
to these methods, our approach consists of applying prob-
abilistic constraints on the candidate pen strokes found in
images. Our system is geared toward understanding images
of sketches where, using a Hidden Markov Model, we learn
not only the constraints on shapes, but also the user’s intent.
Further, unlike many of the previous methods, our method
captures features over multiple scales using a wavelet repre-
sentation.

While the problem of extracting curves from images has
been a long standing research topic in the domain of com-
puter vision, there is an abundance of work specific to
sketching systems that employ techniques similar in princi-
ple for recognizing and grouping sketch components. Saund
[Sau03] developed a method to rank candidate paths for per-
ceptually closed contours. The approach used local prefer-
ences for tightly closed paths and smooth paths. Later, Saund
et al. [SFLM03] developed a sketch editing application
that includes image analysis techniques for the separation
of foreground from background and the perceptual grouping
of sub-regions of a sketch. Other approaches to sketch un-
derstanding typically use predefined primitive fitting for rec-
ognizing curve strokes and include high-level context based
rules. Alvarado and Davis [AD01] develop a smart sketch-
ing interface geared to recognize a mechanical engineer’s
sketch. In their work, ambiguities on shapes are resolved us-
ing prior contextual knowledge and preferred criteria. Lan-
day and Myers [LM01] develop a sketching system that can
recognize predefined curve strokes and widgets (for design-
ing UI), grouping them based on spacial relationships. The
sketch is then refined to produce a cleaner version of the
original.

3. Pen Stroke Extraction

3.1. Overview

Our system allows users to take an image of a sketch and ex-
tract the pen strokes. Once a curve is extracted, the user may
edit it using traditional curve transformations (split, merge,
move, scale, rotate, filter, etc.). The user may also automat-
ically refine the curve (discussed later). Figure 1 show an
example of extracting a curve from an image. The system
identifies the pen stroke that best fits a selected model (in
this case, a leaf). This same model is further used to auto-
matically augment the extracted curve.

The key issue we address is: how do we identify what pen
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Figure 1: Example extraction and refinement. Top left shows
original image and the user pointer, top right shows the au-
tomatically selected curve (in red). Bottom left shows the
curve isolated by dragging it and bottom right shows result
of the automated refinement process.

stroke path the user really intends to select? Figure 2 shows
some of the possible candidate paths that can be extracted
from an example sketch. If we can automatically identify
the path that stands out from the rest, in some context, then
we can include it as a potential candidate for the user’s selec-
tion. Our approach to this consists of using a Hidden Markov
Model (HMM) to model local constraints from a set of ex-
amples that are pre-classified by the user under some se-
mantic context. For example, if the user presents the sys-
tem with examples of flow-chart shapes, the system would
train a HMM then search for the path that best fits the model
constraints. As such, if there is a shape that stand out sig-
nificantly more than others, it can be extracted with high
confidence, even if the shape is not an exact instance from
the training set. Figure 3 shows an example training set for
leaves. The set includes examples of both the refined shapes
and the shapes the user would actually draw when their in-
tent is for the refined ones.

3.2. Generating Paths

We assume that we are given an image of a sketch with
a well defined foreground consisting of thin edges that
are two pixels thick. (In practice, there are well estab-
lished methods that can extract foreground and thin edges,
most prevalent in common edge detectors or skeletal graphs
[SBTZ02, Can86, SFLM03].) When the user clicks on the
image near the desired pen stroke, we wish to generate all
possible paths starting at the nearest edge. Our approach
consists of first finding a starting point, then recursively it-
erating over the neighbors of pixels to create a path segment
tree. This tree encodes all possible paths, from the starting
point, that a pen stroke can take in the image. The nodes rep-
resent path segments and edges represent junctions (Figure
4).

To find the starting point, we first search for the nearest

Figure 2: The pen stroke paths that can be produced form
an image. Top figure show the original image and the figures
below show the possible paths.

Figure 3: Some examples from a leaf training set. The fig-
ures on the right show the refined examples and the figures
on the left show the strokes a user will typically draw when
their intended shape is the associated refined one. These
coarse curves can be manually drawn or can be produced
by filtering the refined curves.

pixel within some distance d to the mouse click. This dis-
tance should span enough pixels such that the user does not
have to deal with the accuracy in clicking exactly on the
sketch. Once we find this pixel, we examine its neighbors in
four directions (up, down, left and right). If there is only one
neighbor, then the current pixel is considered as the starting
point, otherwise, we recursively check for the staring point
at each neighbor. On successive iterations, we only consider
a neighbor if it is not the same pixel from the previous iter-
ation (so that we do not go back the way we came). This is
performed for l steps and if an end-point is not found, then
the original starting point is chosen (this avoid issues with
closed paths).

Once we found the starting point, we perform a similar re-
cursion and construct the path segment tree. We start with the
starting point p0 and create a path segment c0

0 with one point
(p0(x), p0(y)). Then, we examine the neighbors. If there is
only one neighbor p1, then we add that point to c0

0, other-
wise, for each neighbor pi we create a new path c1

i and add
the point. This is performed recursively over all the neigh-
bors in order to complete the tree for all junctions. Figure 4
shows an example path segment tree.
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To avoid issues with loops, we only consider a pixel as
a neighbor if that pixel does not already exist in the current
segment or any of the parent segments up to the root of the
tree. For each node of the tree, we maintain an image mask
in order to have random access to this information. Further,
in order to allow for self-intersection, we always consider
points that have three unmasked neighbors, even if they exist
in the parent segments, they are never marked in the image
mask.

Figure 4: Path segment tree. Top right shows the original
image with the starting point highlighted

In both the search for the starting point and for the paths,
we perform a first order look-ahead that ignores neighbors
falling under certain criteria. In particular, because we as-
sume the width of a pen stroke to be two pixels (and in bad
cases, maybe more), we must prune the neighbors of neigh-
bors as follows: if p0, p1 and p2 are neighbors of p and if all
of p0’s neighbors are neighbors of either p1 or p2, then we
do not consider p0. For consistency, we always follow the
same ordering when pruning neighbors.

Once we have finished the search, we can traverse the tree
and construct N paths capturing every possible pen stroke.
Each path is sampled with the same sampling rate as that
used in training, filtered to reduce aliasing effects and nor-
malized if the training examples are also normalized. The
tangent angles along the paths are also computed from the
Cartesian points.

3.3. Ranking Paths

Our goal is to rank the candidate paths generated by the
method in Section 3.2. Our approach consists of examining
what path can best be explained by our training data. Be-
cause our approach considers local shape similarity, novel
paths, never seen in the training set, can also be classified as
belonging to the set. This is accomplished by using a Hidden
Markov Model that encodes constraints on the sequence of
tangent angles.

3.3.1. Pen Stroke Representation

We represent a pen stroke path by a curve over 2D space
parametrized by the arc-length. Let α represent a paramet-
ric curve (x(t),y(t)) where t is the arc-length of the curve
from 0 <= t <= T . We assume that our curves are suit-
ably normalized and uniformly sampled. We encode them
by their starting point, starting direction, and the sequence of
all edge-lengths and exterior angles (i.e., a planar polyline).
The shape is characterized up to rigid orientation-preserving
transforms by just the latter data (i.e., ignoring start-point
and start-direction).

3.3.2. Markov Model

We assume that a stochastic process ∆ is the source for a
family of curves. Each curve is considered to be a random
signal with characteristics described by the probability
density function of the process. Let α denote a curve and
θ(t) denote the tangent angles of that curve parametrized
over the arc-length t. We assume that the sequence of
samples θ(t) from 0 <= t <= T for all curves exhibit an nth

order Markov property, i.e. ∆ is a Markov Process:

p{θ(t +1) | θ(t),θ(t −1), . . . ,θ(t −n+1)} =

p{θ(t +1) | θ(t),θ(t −1), . . . ,θ(0)}

This locality condition states that information from recent
samples is sufficient to predict the next sample point. Fur-
ther, this dependency can also be position-variant, where sta-
tistical relationships between successive points may be non-
stationary with respect to the arc-length. Thus, the locality
condition suggests that we only consider local constraints.
For many training sets, these local constrains may be appli-
cable anywhere on a curve (e.g. curves that exhibit a regu-
lar properties such as a straight line or zig-zag pattern). For
other training sets, one can manually specify that the con-
straints should change at different regions. (For example, if
the training set consist of examples of leaves, when we are
extracting the left side of the leaf we may not need to con-
sider the constraints from the right side.)

3.3.3. Hidden Markov Model

A Hidden Markov Model encodes the dependencies of suc-
cessive elements from a set of hidden states along with
their relationship to observable states. It is typically used in
cases where a set of states, that exhibit the Markov property,
are not directly measurable but only their effect is visible
through other observable states. Formally, a Hidden Markov
Model Λ is defined as follows:

Λ = {M,B,π} (1)

where M is the transition matrix with transition probabilities
of the hidden states, p{hi(t) | h j(t −1)}, B is the confusion
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matrix containing the probability that a hidden state h j gen-
erates an observation oi, p{oi(t) | h j(t)}, and π is the initial
distribution of the hidden states.

In our work, the hidden states play the role of sample
points from the refined curves while the observation states
play the role of samples points of the coarse curves (Fig-
ure 5). These samples points are the tangent angles along
the training examples. Given an ensemble of training exam-
ples, each example i in the set is an associated pair of re-
fined/coarse curves {θi(t),φi(t)}. We first estimate the tran-
sition probabilities by the statistics of successive elements
from the user defined stationary regions and construct the
transition matrix M where:

Ψθ(t +1) = M(t) Ψθ(t) (2)

The transition matrix propagates the information in the prob-
ability distribution Ψθ(t) to predict the next distribution
Ψθ(t + 1). For sets that exhibit stationarity M(0) = M(1) =
... = M(T ) = M, measured over all sample points of every
training example. Otherwise, the transition matrix is calcu-
lated over fixed local regions of the curves. The ability to
specify the local regions of stationarity (hence global non-
stationarity) allows us to accommodate for styles that in-
herently posses some global constraints (i.e., the constraints
at one area of the curve are not used in other areas of the
curve). We assume a uniform initial probability distribution
π = Ψθ(0), providing equal likelihoods to all examples at
arc-length position zero.

We estimate the probabilities of the confusion matrix B
from the statistics of associated sample points (θi(t),φi(t))
over all examples i. This allows us to predict what the user
may draw given a belief of the intended shape:

Ψφ(t) = B Ψθ(t) (3)

where the elements of the confusion matrix are the condi-
tional probabilities p(φi|θ j) for all states i and j.

Because we cannot expect our inputs to match exactly
with training, we blur our distribution Ψ using a Gaussian
noise model. Further, only encoding first order constraints
on the tangent angles may not sufficiently capture the lo-
cal structure of the examples. Thus, we capture the shape at
multiple scales by first using a wavelet transform [FS94] and
then sampling over the different scales, storing this informa-
tion in the states. The dimensionality of our state space is
augmented to accommodate for this mutli-scale representa-
tion. That is, θ(t) now becomes θ(t,s) where a sample point
at a larger scale represents a summary for the region (simu-
lating a higher order Markov assumption). Because this in-
creases the state space exponentially, we no longer store the
entire transition and confusion matrices for every possible
states but only keep those that are non-zero (labeling the ma-
trices’ index dynamically).

Figure 5: For all curve segments (in gray), the transition
matrix and confusion matrix store the above likelihoods.
This is computed over every example in a given set. The
states store the tangent angles at multiple scales.

3.3.4. Evaluating Curve Candidates

Given a candidate curve Ck = {φk(0),φk(1), ...,φk(T )}, and
a HMM Λ, we wish to compute the likelihood that the obser-
vation sequence φk(0),φk(1), ...,φk(T ) is generated by the
model Λ. This is accomplished by evaluating the HMM over
the sequence of observations using the Forward algorithm.
First, using the confusion matrix B, we take our initial dis-
tribution π over the hidden states and condition it by the ob-
servation φk(0). Then we propagate this forward using the
transition matrix M. We iterate this process over the obser-
vation sequence, up to and including the last sample point
φk(T ):

ψ{θi(t)} = p{φ(t) | θi(t)}ψ{θi(t)}

ψ{θi(t +1)} = ∑
j
[p{θi(t +1) | θ j(t)}ψ{θ j(t)}]

(4)

Once we have reached the last observation, we sum up the
probabilities in the vector Ψ(T ) (accounting for all possible
ways the model can generate the observation sequence). This
value is then used to rank the candidate curve.

Once all candidate curves from our segment tree have
been ranked, we sort them from best to worst and present
to the user the best one. The user can then scroll through
the list to see if there is a preferred solution. Figure 6 shows
the top candidate path selected. This was computed using a
training set consisting of zig-zag patterns at four orientations
(Figure 7).

4. Pen Stroke Refinement

We present an overview of our refinement process applied
to the extracted pen strokes. A more detailed description can
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Figure 6: Extraction of a zig-zag pattern (shown in red).

Figure 7: A sample from the Zig-Zag training set. The full
set consisted of this pattern at four orientations.

be found in [SD04]. Our method consists of producing the
most statistically consistent mixture of segments from the
training set that best explains the observations. That is, when
we extract a coarse curve Φ from the image, the system looks
at the most likely hidden state sequence that would generate
the observations:

max
θi...θN

p{θ(0),θ(1), . . . ,θ(T ) | φ(0),φ(1), . . . ,φ(T ),Λ0}

(5)
We solve for this problem by decoding the HMM using the
Viterbi algorithm.

Figure 8 shows an example where the user draws a sketch
consisting of simple shapes and then automatically refines
the sketch. The training set used for this refinement is shown
in figure 9. Note that the resulting shapes in figure 8 are not
exact instances of the training set but are made to exhibit the
same local features. Figure 10 shows an example where the
user extracted a square shape, refined it and then resized it.
This was also done using the latter training set (Figure 9).

5. Implementation

The core of our application resides in a module that im-
plements the automated extraction (Section 3) and refine-
ment (Section 4) algorithms. This module has been written
in C ++ and can be linked in either a Unix or Windows en-
vironment. There is also a Web based API that allows for
submissions and returns of curve strokes using HTTP post.

We have implemented two interfaces; one in a Linux envi-
ronment which directly links to the core C ++ module, the
other in a web-based environment consisting of a java applet
using HTTP post to the back-end API. The Linux implemen-
tation provides a good developing, testing and debugging en-
vironment while the web-based interface helps gather user
feedback for ongoing studies on the usability of the system.

Figure 8: Left shows a hand draw sketch (given the user pen
stroke) and the right shows the refined version.

Figure 9: Simple shapes training set. The associated coarse
curve (expected observations) consist of blurred version of
the above.

Figure 10: Left shows extraction (in red), middle shows re-
finement, right shows a resize.

6. Future Work

One of the difficulties that our curve extraction system can
run into is where there is an excessive number of candidate
paths. A direction for future work can be to examine method
that dynamically prune the graph in parallel to the evalua-
tion process. While its always best to evaluate a path in its
entirety, one can suggest that an iteratively deepening look-
ahead can help prune candidate path that will never rank high
enough.

7. Conclusion

We have presented a method for extracting and refining pen
strokes from images of hand drawn sketches. Users can eas-
ily select a pen-stroke, even when occluded by other strokes,
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and perform editing operations. The system learns from ex-
amples and can adapt to a wide array of domains.
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