High-Resolution Simulation of Granular Material with SPH

Markus Ihmsen  Arthur Wahl  Matthias Teschner
University of Freiburg

Abstract
We present an efficient framework for simulating granular material with high visual detail. Our model solves the computationally and numerically critical forces on a coarsely sampled particle simulation. We incorporate a new frictional boundary force into an existing continuum-based method which enables realistic interactions and a more robust simulation. Visual realism is achieved by coupling a set of highly resolved particles with the base simulation at low computational costs. Thereby, visual details can be added which are not resolved by the base simulation.

1. Introduction
Granular materials, such as sand, rice or coffee beans are conglomerations of discrete solid elements which show unique physical behavior. They settle in stable piles and act like a solid if the average energy is low. When freely flowing, they have similar characteristics as ordinary Newtonian fluids, but unlike fluids, granular material dissipates energy quickly. The complex dynamics arise from the interplay of contact forces between the elements.

In order to capture this behavior, various simulation methods have been developed in the engineering field, e.g. [Bic04, JLL04], and also in computer animation, e.g. [LM93, SOH99, HBK09, NGL10]. In contrast to computational mechanics, the main focus in animation is set on efficient techniques that achieve visually plausible results. In order to allow for efficient implementation, simplifying assumptions and a coarse discretization are employed. While this avoids simulating each physical grain, it poses a new major challenge, namely how to achieve rich visual detail.

The main contribution of this work is a Lagrangian simulation framework which captures granular dynamics realistically and uncovers high visual detail at low computational costs. Appropriate mechanical behavior is modeled by computing frictional and pressure forces on a coarse scale. High visual detail is obtained in a post-process, where a spatially fine-scaled set of particles is coupled to the base simulation. Our model aligns high-resolution particles well with the surface of the base simulation without perceivable clumping. Since external forces are also acting on the fine resolution,
they can depart freely from the base simulation. The presented upsampling method increases the visual quality dramatically without uncovering the base simulation, even for large upscaling factors and scenarios with dynamic objects, see Fig. 1.

2. Related Work

In computer graphics, granular media is simulated using either discrete [Bic04, LHM95] or continuum methods [ZB05]. In discrete models, the material is discretized into a distinct set of elements and the behavior is captured by directly simulating the interaction between these elements. In [BYM05], grains are modeled by rigid compounds of spheres. Due to the non-spherical shape of the compound structures, stable sand piles can be simulated. By generalizing this approach to rigid bodies, compelling two-way coupling between granular material and solid objects is achieved. Discrete models require a large number of particles to model a fine-grained material. This imposes high computational costs for solving contact dynamics and limits the time step for highly dynamic simulations.

In continuum methods, the grain size is decoupled from the resolution of the simulation. In such models, internal forces are typically computed on a coarse grid. The resulting velocity field is then used to advect a set of fine-scale particles. This was first demonstrated by Zhu and Bridson [ZB05], who simulated sand as an incompressible fluid using the Fluid Implicit Particle (FLIP) method. In order to simulate stable piles, this method classifies the sand domain into regions which are either rigidly moving or flowing. Later, Lenaerts and Dutré [LD09] incorporated this concept to simulate granular material with the Smoothed Particle Hydrodynamics (SPH) method [MCG03]. However, the incompressibility assumption results in undesired cohesive behavior which prevents plausible animations of freely dispersing material. Narain et al. [NGL10] addressed this problem by inserting anisotropic particles in regions where the material diverges. This step is already performed during simulation. In contrast, [ABC+07, ATO09] employ a spatial decomposition for the computation of internal and external forces. In sparse regions, HR particles are not passively advected with the base simulation, but respond to external forces. Thereby, clumping artifacts are significantly reduced.

Our refinement method is inspired by the decomposition idea, but departs significantly from previous work. In [ATO09], HR particles are either advected according to external forces or along the base flow. In contrast, our model does not rely on two complementary cases, but blends external forces with the interpolated base velocity. This yields more natural looking results, particularly for large upscaling factors. Furthermore, as we take velocities of boundaries into account, HR particles interact smoothly with complex moving objects.

3. Granular Simulation Framework

Our framework builds on the SPH-based continuum method proposed in [AO11] which is described in Section 3.1. Section 3.2 discusses how the convergence of the algorithm can be improved by incorporating a more versatile treatment...
of the granular-solid interface. Subsequently, Section 4 describes how the base simulation is refined, in order to efficiently simulate and render fine-grained material.

### 3.1. Coarse Scale Simulation

In SPH, the pressure at a position \( x_i \) is typically determined according to the local density fluctuation \( \rho_{	ext{var}}(x_i) = \rho(x_i) - \rho_0 \), where \( \rho_0 \) is the reference density of the material. The density \( \rho_i \equiv \rho(x_i) \) is computed via the SPH interpolation concept:

\[
\rho_i = \sum_j V_j \rho_j W(x_i - x_j, h) = \sum_j m_j W(x_i - x_j, h),
\]

where \( m_j \) and \( V_j = m_j / \rho_j \) denote mass and volume represented at \( x_j \). \( W(x_i - x_j, h) \) is a kernel function with support \( h \).

Granular flow is governed by unilateral incompressibility which is described by two inequality constraints \( p \leq \rho_0 \) and \( p \geq 0 \), where either \( \rho = \rho_0 \) or \( p = 0 \). Accordingly, pressure values \( p \) are not negative and the material can not be compressed beyond \( \rho_0 \). These constraints can be directly plugged into any incompressible SPH solver by clamping negative pressures to zero. The resultant pressure field is then used to compute the pressure forces as

\[
F_i^p = -m_i \sum_j m_j \left( \frac{\rho_i}{\rho_j^*} + \frac{\rho_j}{\rho_i^*} \right) \nabla W_{ij}.
\]

For simulating granular material, [AO11] introduces a friction model which minimizes relative velocities measured by the strain rate \( \varepsilon \). The strain rate is computed as \( \varepsilon = 0.5 \left( \nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \), where the gradient of the velocity \( \mathbf{u} \) is given by

\[
\nabla \mathbf{u}_i = \sum_j V_j \nabla W_{ij} \mathbf{u}_j.
\]

Then a frictional stress tensor \( \mathbf{s} \) is computed that dissipates the strain rate. In order to simulate material with different angles of repose \( \theta \), the Drucker-Prager yield criterion, \( \sqrt{\sum s_{ij}^2} \leq p \sqrt{2} \sin \theta \) is employed. Thus, friction is limited by pressure, i.e. in the absence of pressure, the frictional stress is zero. The frictional forces are computed with

\[
F_i^f = -m_i \sum_j m_j \left( \frac{s_i}{\rho_i^*} + \frac{s_j}{\rho_j^*} \right) \nabla W_{ij}.
\]

In order to compute (2) and (4), pressure and stress values need to be determined. Therefore, we employ the iterative predictive-corrective PCISPH method [SP09] as proposed in [AO11]. Alternatively, an equation of state [MCG03, BT07] or a global projection scheme [PTB’03] could be used.

### 3.2. Solid Body Interaction

The forces given in the previous section are internal forces, acting inside the material. At interfaces with solid objects, additional considerations have to be employed in order to guarantee non-penetration of objects and to simulate two-way coupled interactions with variable friction.

The direct forcing method [BTT09] used in [AO11] corrects predicted penetrations by constraining positions to the rigid surface. Different slip conditions are realized by directly manipulating particle velocities. This model does not conserve momentum and leads to significant oscillations in the pressure field as shown for fluids in [AIA’12]. Additionally, for the granular model described in Sec. 3.1, the noisy pressure field results in discontinuities of the frictional forces (4). In order to avoid perceivable artifacts, a small time step has to be employed and/or the number of iterations for correcting density errors has to be set high, i.e. larger than five.

We improve the robustness and the quality of the simulation by adapting the boundary handling method of [AIA’12] to interactions with granular material. Thereby, the surface of rigid objects is sampled with particles as in [BMY05]. Boundary particles contribute to the density of a granular particle. Accordingly, (1) is rewritten as

\[
\rho_i = \sum_j m_j W(x_i - x_j, h) + \sum_b \rho_b W(x_i - x_b, h),
\]

where \( \delta_b = 1 / V_{ib} \) is the number density of a boundary particle \( b \), summed up over all boundary particle neighbors \( j \). \( \Psi_b(\rho_b) \equiv \rho_b / \delta_b \) scales the contributions of a boundary particle according to the local boundary sampling and the reference density of the granular material. Thereby, (5) estimates the density correctly at boundaries for arbitrary samplings and material densities. Non-penetration is realized via pressure forces, acting from a boundary particle \( b \) on a granular particle \( i \) with

\[
F_{i\rightarrow b}^p = \frac{m_i}{\rho_i^*} \Psi_b(\rho_b) \frac{\rho_b}{\rho_i^*} \nabla W_{ib}.
\]

A detailed derivation can be found in [AIA’12].

We extend this model to interactions with granular materials by adding contributions of the boundary when computing frictional stresses. Therefore, we modify (3) to

\[
\nabla \mathbf{u}_i = \sum_j V_j \nabla W_{ij} \mathbf{u}_j + \frac{1}{\delta_b} \nabla W_{ib} \mathbf{u}_b^T.
\]

The reformulation of (4) can be derived similar to (6) as

\[
F_{i\rightarrow b}^f = -m_i \Psi_b(\rho_b) \frac{s_i}{\rho_i^*} \nabla W_{ib}.
\]

However, (8) depends on the properties of the granular material, i.e. angle of repose and local pressure, but not on the material properties of the rigid object. In order to model
Algorithm 1: Simulation update of the base solver.

foreach particle i do
  find neighbors
  foreach particle i do
    apply gravity and material viscosity
    reset pressure and stress
    reset pressure and friction force
  k = 0
  while k < 3 do
    foreach particle i do
      predict velocity and position
    foreach particle i do
      predict density \( \rho_i(t + \Delta t) \)
      if \( \rho_i(t + \Delta t) > \rho_{\text{max}} \) then
        predict density error and strain rate
        increment stress and pressure
        apply yield condition
      else
        add discrete particle forces
      k = k + 1
    foreach particle i do
      compute pressure force (2) and (6)
      compute friction force (4) and (10)
  k = k + 1
  foreach particle i do
    update velocity and position

For external friction forces, we additionally employ the artificial viscosity model given in [AIA*12] which is written as

\[
F_{v_i}^{f} = -m_i \Psi_i(\rho_i) \Pi_i \nabla W_{ib},
\]

where \( \Pi_i = \frac{\sigma_{ib} c_s}{\rho_i} \left( \frac{\min(\|\mathbf{v}_i\|, \|\mathbf{x}_i\|)}{\|\mathbf{x}_i\|} \right) \). Here, \( c_s \) denotes the speed of numerical propagation and \( \sigma_{ib} \) controls the friction between the rigid object and the granular material. Applying the sum of (8) and (9) might overshoot the desired dissipative effect. Therefore, we combine both forces by picking the one which maximizes dissipation. Accordingly, the dissipative contribution of a boundary particle \( b \) is computed as

\[
F_{f_i}^{f} = \max(||F_{v_i}^{f}||, ||F_{s_i}^{f}||),
\]

Figure 2: Demonstration of the proposed two-way coupling. Three spheres with different masses are tossed into a sand pool. Due to the friction-based coupling, the sand supports also the heaviest sphere (black) which is three times more dense than the sand.

4. Fine Scale Simulation

The simulation model described in the previous section employs a continuum approach which describes the granular flow at a macroscopic scale. Thereby, a simulation particle should be interpreted as a clump of matter and not as a single grain. Indeed, setting up the particle size to the real size of a sand grain, which is only a fraction of a millimeter, is prohibitive. This would not only explode the memory and computational costs, but also restrict the time step due to the CFL condition. Instead, we propose to simulate the material on a coarse scale and apply a secondary simulation with a set of highly resolved particles which can be directly used for rendering.

4.1. Sampling

Each time a low-resolution (LR) particle with radius \( r_{LR} \) is added, we sample its volume with HR particles. The initial sampling is crucial as it could easily introduce aliasing or distortions. Sampling the spherical volume of a particle leads to gaps while sampling the bounding box might cause staircase patterns. In order to avoid aliasing, we do not only generate HR samples inside the bounding box of the LR particle but also slightly outside, employing a distribution that prefers samples that are inside the LR volume.

Therefore, we divide the bounding box of each LR particle into seven support points, one at the particle center and one at each intersection point of the bounding box with the spherical particle volume. HR particles are randomly sampled around each support point in a cubical volume with length \( 2r_{LR} \). As the seven sample volumes overlap inside the LR volume, this strategy generates three times more HR samples inside the bounding box of the base particle than outside.

4.2. Advection

We derive the advection of HR particles from the following principles: HR particles should follow the mechanical flow
that is given by the base simulation, but also should be allowed to disperse freely. Further, they should smoothly align with the surface of the base simulation without forming perceivable clumps. Finally, in order to guarantee efficient updates at large time steps, the advection method should not compute internal forces or perform collision tests between HR particles.

Alduan et al. [ATO09] set similar requirements to their model. They map the mechanical behavior by interpolating the velocity of LR particles to HR particles for advection. In order to avoid clumping, particles having one or no LR particle neighbors within the influence radius \( h_{HR} \) are only influenced by external forces. However, this simple distinction avoids clumping only if \( h_{HR} \approx r_{LR} \). On the other hand, larger values of \( h_{HR} \) are required for smooth interpolations of the velocities. In all our experiments, we set \( h_{HR} = 3r_{LR} \).

In contrast to [ATO09], we do not employ an explicit distinction of two cases, but propose a weighting that automatically and smoothly blends the contributions of the base simulation and external forces. Therefore, for each HR particle at position \( x_i \), we first compute distance-based weights \( w \) as

\[
    w(d_{ij}) = \max \left[ 0, \left( 1 - \frac{d_{ij}^2}{h_{HR}^2} \right)^3 \right] \quad (11)
\]

where \( d_{ij} = |x_i - x_j| \) is the distance between HR particles and LR simulation or boundary particles \( j \) in the support radius \( h_{HR} \). \( (11) \) is a well-shaped kernel function which smoothly drops to zero. It is typically applied for reconstructing smooth surfaces of particle data [ZB05, AIAT12]. We employ it for computing the average velocity as

\[
    \mathbf{v}_i(t + \Delta t) = \frac{1}{\sum_j w(d_{ij})} \sum_j w(d_{ij}) \mathbf{v}_j \quad (12)
\]

As long as the number of LR samples is sufficient, \( (12) \) interpolates the velocity well. However, in sparsely sampled regions it results in visual clumping. In order to achieve smooth alignments of HR particles without perceivable clumps, we compute the velocities of HR particles as the sum of weighted external forces \( F^e \) and the interpolated velocity with

\[
    \mathbf{v}_i(t + \Delta t) = (1 - \alpha_i) \mathbf{v}_i(t + \Delta t) + \alpha_i \left( \mathbf{v}_i(t) + \Delta t \frac{F^e}{m} \right) \quad (13)
\]

where \( \alpha \) is non-zero in sparse regions only and increases with higher distances of \( x \) to the center of LR particles. It is defined as

\[
    \alpha_i = \begin{cases} 
        1 - \arg \max_j w(d_{ij}) & \arg \max_j w(d_{ij}) \geq 0.6, \\
        1 - \arg \max_j w(d_{ij}) & \arg \max_j w(d_{ij}) \leq w(r_{LR}), \\
        0 & \text{otherwise}
    \end{cases}
\]

where

\[
    \alpha_i = \begin{cases} 
        1 - \arg \max_j w(d_{ij}) & \arg \max_j w(d_{ij}) \geq 0.6, \\
        1 - \arg \max_j w(d_{ij}) & \arg \max_j w(d_{ij}) \leq w(r_{LR}), \\
        0 & \text{otherwise}
    \end{cases}
\]

Here, the constant 0.6 is an empirically tested value which gives the best results when \( h_{HR} = 3r_{LR} \). Finally, the position is integrated as

\[
    x_i(t + \Delta t) = x_i(t) + \Delta t \mathbf{v}_i(t + \Delta t). \quad (14)
\]

Accordingly, external forces are automatically applied in regions where clumping potentially occurs. Contributions of external forces are smoothly faded in and out, which on one hand allows HR particles to disperse freely and on the other hand results in smooth alignment with the materials surface, see Fig. 3. Our model does faithfully upscale scenes with dynamic objects, as we take the positions and velocities of moving objects into account when interpolating the velocities.
5. Results

We present several scenarios which show different aspects of our approach including one-way and two-way solid body interaction. Comparison to previous work and performance evaluation are also provided. Timings are given for a 12-core 3.46 GHz Intel i7 with 24 GB of RAM, see Table 1.

Implementation. For the SPH interpolations, we use the cubic spline kernel [Mon05]. We optimize the base simulation by applying the well-known concept of rigid-body sleeping [Sch02] to SPH particles. Thereby, we do not integrate SPH particles in time as long as their velocity is lower than a user-defined sleep velocity. Particles wake up automatically when their net-acceleration exceeds a critical value. The efficiency is further improved by parallelizing the algorithm with the data structures described in [IABT11] using OpenMP. Images were rendered with mental ray v3.9.4 [NVI11].

5.1. Solid Body Interaction

We demonstrate the effectiveness of the proposed friction and pressure forces applied from and to the boundaries on a simple test scenario, see Fig. 4. In this scene, we simulated three stable piles with different angles of repose. We set the time step to 1 millisecond and used a fixed number of three iterations to compute pressure and stress values. For this setting, the proposed boundary handling enforces smooth pressure gradients at the boundary. In contrast, if we employ direct forcing as in [AO11], the density field oscillates which results in unnatural accelerations perceived as ‘popping of particles’ as is shown in the accompanying video.

Two-way coupling between rigid objects and granular material is demonstrated in Fig. 2. Rigid objects interact differently with the granular material according to their density since the dissipation of energy for lighter objects is much less than for heavy objects. In contrast to fluids, granular material supports even objects with much higher material density than its own. This behavior is faithfully captured as the employed coupling is based on frictional stresses.

5.2. Upsampling

In order to show the benefit of the proposed refinement model, we compare it to [ATO09] on a scene where a heavy sphere hits the sand surface with high velocity, creating a splash. The base simulation sampled the material with 100K particles while the secondary simulation used 20.8M particles. Since in [ATO09], HR particles with more than one LR neighbor are not influenced by external forces, cluster of HR particles move uniformly in splash regions and at the sand surface, see Fig. 3-top. In contrast, our method does not rely on complementary cases to compute the velocity, but weights external forces and base velocities using a well shaped kernel function. Accordingly, HR particles are allowed to disperse freely, see Fig. 3-bottom.

Opposed to previous work, we show that HR particles interact smoothly with moving objects, e.g., a bulldozer, see Fig. 1. This is realized by taking positions and velocities...
of boundary particles into account when interpolating the velocity field. We further demonstrate that our method can cope with very large upscaling factors. Fig. 1-middle shows the refinement with an upscaling factor of 38 which corresponds to the largest value used in [ATO09]. The realism is significantly improved by setting the refinement factor to 500, Fig. 1-right.

We allow particles to depart freely from the base simulation by computing the velocities of HR particles as the weighted sum of external forces and the interpolated velocity field. Thereby, HR particles uncover details that are not captured by the base simulation, see Fig. 5.

5.3. Performance

The presented framework advances the efficiency compared to previous work in two ways. First, the employed boundary handling results in smooth pressure gradients which improves the robustness compared to [AO11]. Thus, larger time steps can be handled at a smaller number of iterations for computing pressure and frictional forces. In all presented scenarios, the primary simulation was performed with a time step of 1 ms and a fixed number of three iterations. Thereby, we measured a speed up of up to 6 compared to [AO11].

Second, we employ the refinement as a post-processing step at a different temporal resolution. In all presented scenarios, the time step for the secondary simulation was set to 10 ms. As no interactions between HR particles are computed, each particle can be updated independently which permits a straightforward parallelization. It should be noticed that our implementation took on average 11 seconds (1.4 s LR + 9.6 s HR) per frame for a scene with 19.4 million particles, see Table 1. In contrast, Alduan et al. [ATO09] reported an update rate of 5.5 minutes for 1.6 million HR particles and the same number of LR particles. Although this comparison does not take the respective hardware configurations into account, it indicates the efficiency of the proposed model.

Table 1: Performance measurements for the given scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th># Particles</th>
<th>Time / Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR</td>
<td>HR</td>
</tr>
<tr>
<td>Bulldozer (Fig. 1)</td>
<td>38K</td>
<td>1.4M</td>
</tr>
<tr>
<td>Spheres (Fig. 2)</td>
<td>96K</td>
<td>13.3M</td>
</tr>
<tr>
<td>Splash (Fig. 3)</td>
<td>83K</td>
<td>20.8M</td>
</tr>
<tr>
<td>Sand-Piles (Fig. 4)</td>
<td>45K</td>
<td>-</td>
</tr>
<tr>
<td>Rope-Ladder (Fig. 5)</td>
<td>138K</td>
<td>17.3M</td>
</tr>
</tbody>
</table>

6. Conclusion

We have presented an efficient framework for computing high-resolution simulations of granular material using a pure Lagrangian method. Performance-critical forces are computed in a primary simulation on a relatively coarse scale. Here, the proposed friction-based coupling models interactions with rigid objects realistically and handles comparable large time steps. Visual detail is added in a secondary simulation where high-resolution particles are coupled to the base flow. For advecting secondary particles, we propose a smooth weighting of external forces with the velocity field of the base simulation. This technique adds detail that is not captured otherwise while clumping of high-resolution particles is avoided, even for very large upscaling factors.

6.1. Limitations and Future Work

The proposed coupling does not model static friction correctly which prevents us from animating some interesting scenes, e.g. an accelerating dumper truck filled with sand. In such a scenario, our model fails to keep the sand pile at rest when the truck starts moving.

Furthermore, in our refinement model HR particles never interact with each other which makes it very efficient to compute on one hand. However, this might cause compression artifacts in sparsely sampled LR regions, e.g. at the edges of a sand pile, as HR particles are attracted to the ground by gravity. As a simple solution, interactions between HR particles could be computed in relevant regions employing either a discrete or a continuum model. Alternatively, we believe that this issue can be addressed more efficiently by finding an adequate extension to the proposed interpolation heuristic.

Massive conglomerations of granular material, e.g. a beach, are more efficiently represented by height-fields [HBK09, KBKS09]. However, in these methods, the level of detail is limited as only two-dimensional information is mapped onto the three-dimensional space. Dispersion effects or the sliding of single grains cannot be captured with such a representation.

In future work, the granular material could be coupled with an SPH fluid simulation in order to animate erosion effects and transitions from dry to moist sand and mud. In this context, we plan to investigate how SPH fluid simulations can benefit from the proposed refinement model.

Acknowledgements

We thank the reviewers for their helpful comments. This project is supported by the German Research Foundation (DFG) under contract numbers SFB/TR-8 and TE 632/1-2. We also thank NVIDIA ARC GmbH for supporting this work.

References


