
Workshop in Virtual Reality Interactions and Physical Simulation VRIPHYS (2008)
F. Faure, M. Teschner (Editors)

Parallel simulation of inextensible cloth

Jan Bender and Daniel Bayer

Institut für Betriebs- und Dialogsysteme, Universität Karlsruhe, Germany

Abstract

This paper presents an efficient simulation method for parallel cloth simulation. The presented method uses an

impulse-based approach for the simulation. Cloth simulation has many application areas like computer animation,

computer games or virtual reality. Simulation methods often make the assumption that cloth is an elastic material.

In this way the simulation can be performed very efficiently by using spring forces. These methods disregard the

fact that many textiles cannot be stretched significantly. The simulation of inextensible textiles with methods based

on spring forces leads to stiff differential equations which cause a loss of performance. In contrast to that, in this

paper a method is presented that simulates cloth by using impulses. The mesh of a cloth model is subdivided into

strips of constraints. The impulses for each strip can be computed in linear time. The strips that have no common

particle are independent from each other and can be solved in parallel. The impulse-based method allows the

realistic simulation of inextensible textiles in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

The dynamic simulation of cloth and fabrics is an important
area of research in computer graphics. Simulation methods
often treat cloth as an elastic material due to performance
reasons. Using this assumption the simulation can be per-
formed efficiently using mass-spring systems. Many textiles
are not very elastic and do not stretch significantly under
their own weight. Methods based on spring forces need very
stiff springs for a realistic simulation regarding this fact. This
leads to stiff differential equations which decrease the sta-
bility of the simulation [HES03]. These equations can only
be solved by special integration methods or by reducing the
time step size. In both cases the performance is also de-
creased significantly. Therefore, these methods are not suit-
able for the simulation of inextensible cloth.

This paper presents a new constraint-based approach for
this problem. In the simulation cloth is handled as a mesh
of particles linked by distance constraints. These constraints
are satisfied by the computation of impulses. In contrast
to methods based on spring forces, the presented impulse-
based method can guarantee a predefined accuracy. This is a
necessary property for a realistic simulation of inextensible
textiles. In order to increase the performance of the simula-
tion first the cloth model is subdivided in acyclic parts. Then
the constraint dependencies of each part are described by

a system of linear equations. If the structure of the model
is taken into account this system can be transformed in an
always sparse system. The sparse system can be solved in
O(n) time and stored in O(n) space which is the optimal
complexity for this problem. In this way the required im-
pulses for each acyclic part can be determined very effi-
ciently. In order to resolve the dependencies between the sin-
gle parts an iterative approach is used.

The acyclic parts can be divided in two groups where all
parts of one group do not depend on another part of the
same group. Therefore, the computation of the impulses for
all parts of a group can be performed in parallel. This is an
important feature, since multi-core systems are already very
popular.

The impulse-based method presented in this paper allows
the real-time simulation of complex cloth models with a high
degree of accuracy. This is shown in the following sections.

2. Related work

Since in [TPBF87] the first general physical model for sim-
ulating two and three-dimensional deformable models was
presented, the research in this area has undergone a long his-
tory. [TPBF87] used a direct matrix solver to compute the
(semi-)implicit time integration. Because this technique was

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

not suitable for larger models, further research generally re-
lied on the use of faster explicit integration, like Euler or
Runge-Kutta methods (e.g. [BHW94, CYTT92]). The used
models are based on a mesh of particles which are linked by
springs and dampers.

The major drawback of using an explicit integration
scheme is, that large spring constants lead to "stiff" sys-
tems of equations (see [HES03]). These large constants are
needed to limit the strain of the cloth which is naturally hard
to stretch and easy to bend and shear. The border case, that
the cloth is completely inextensible, leads to infinite spring
constants and thereby infinite spring forces. For that reason
a very small step size is required in order to get a realistic
simulation.

To restrict the strain to a certain limit, [Pro95] used an iter-
ative post-processing algorithm which moves particles back
into the right position if their distance exceeds 10% of the
original edge’s length. But these displacements might cause
self-intersections of the cloth. In order to avoid this [BFA02]
used a slightly different post-processing method which is
based on velocities to compute collisions, friction and con-
tacts.

Motivated by the problems of the explicit integration the
(semi-)implicit integration was rediscovered for the use of
cloth simulation. At first [BW98] presented such a tech-
nique, which was well analysed by various groups [HE01,
VT00, VMT01]. The result was, that the use of an implicit
method increases the stability and thereby larger time steps
can be performed. On the other hand, a generally, non-linear
system of ODEs has to be solved at each time step.

To address the performance problem mixed implicit and
explicit methods (so called: IMEX-methods, e.g. [BMF03,
EEH00]) were introduced. The basic idea behind this ap-
proach is to split the ODEs in stiff and a non-stiff parts. The
stiff parts are then solved using a computational expensive
implicit method and the non-stiff ones using a fast explicit
method.

In [HCJ∗05] for example constraints are only used if the
strain exceeds 10% or to prevent penetrations. In [GHF∗07]
constraints are used to restrict the strain using an iterative
fast projection method. The implementation is described as
a velocity filter to incorporate with existing simulation code
or other velocity filters (like collision response).

Another mixed scheme is proposed in [MHTG05,
MHHR07]. This so called position based dynamics method
takes explicit Euler integration steps for a preview of the
new positions. In an iterative post-processing step these
positions are altered until they satisfy the constraints.

A drawback of multiple velocity filters, or post and pre-
processing methods, is the independence of the different
passes. The next pass may violate the already enforced con-
straints of the prior one. Therefore, ideal constraint enforce-
ment can only be achieved if the passes are combined.

Other works are based on simplifications to circumvent
the performance problem by the cost of quality. For exam-
ple [KCC∗00] and [MDDB01] are using a filter matrix to
simulate several hundred particles. This work was extended
in [KC02] by using a sparse mesh for global movement and
a fine mesh for details. Some other works using multi reso-
lution or adaptive techniques are [DDCB01, GKS02, ST08].

[HB00, Bri03] and [MTV05] give a comprehensive sur-
vey on cloth animations. Current research problems in cloth-
ing simulation are summarized in [CK05].

3. Cloth simulation

In the dynamic simulation cloth is represented by a mesh of
particles. On each edge of the mesh a distance constraint is
defined for the corresponding particles. The following sec-
tions describe first the simulation of an unconstrained parti-
cle. Then a distance constraint is introduced that can be sat-
isfied by computing a single impulse. The mesh of the sim-
ulated cloth is subdivided into acyclic parts. It is shown that
these parts can be simulated in linear time. At the end of the
section a parallel method for the simulation of a whole mesh
of particles, linked by distance constraints, is presented.

3.1. Particle simulation

A particle is a body consisting of a single point with no di-
mensions. Although a particle has no volume it has a mass
m. The state of a particle during the simulation is defined
by its position c(t) and its velocity v(t) at time t. The mo-
tion of an unconstrained particle only depends on the exter-
nal forces, like gravity, acting on the particle. A simulation
step is performed by integrating its state over time regarding
these forces. In the following, it is assumed that the sum of
all external forces Fext, acting on a particle, is constant dur-
ing a simulation step. In this case its velocity and its position
can be determined by these equations:

v(t0 +h) = v(t0)+
∫ h

0

Fext

m
dt = v(t0)+

Fext

m
h (1)

c(t0 +h) = c(t0)+
∫ h

0
v(t0)+

Fext

m
t dt (2)

= c(t0)+ v(t0)h+
Fext

2m
h

2

where h is the time step size. If the external forces are not
constant during the time step, numerical integration methods
must be used. In addition to dynamic particles, the simula-
tion also supports static particles which have no velocity and
a fixed position. These particles can be used to fix a cloth
model to certain points.

3.2. Distance constraints

In a mesh of a cloth model a distance constraint is defined
for each edge. This constraint ensures that the distance of the

c© The Eurographics Association 2008.

48

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

two particles at the end points of the edge stays constant over
time. There exist different approaches to satisfy such con-
straints. A simple approach is to introduce a damped spring
for each constraint. The spring has the length of the corre-
sponding edge. When the constraint is not satisfied during
the simulation, a spring force is acting on the particles that
reduces the occurring error. Elastic cloth can be simulated
using this method but it is not suitable for the simulation of
inextensible textiles, since the constraint is not exactly sat-
isfied. In the following, it is described how a distance con-
straint is solved exactly by applying impulses to the corre-
sponding particles.

A distance constraint defines a constraint for the positions
of two particles a and b and for their velocities. The distance
of the particles at time t is determined by

d(t) = |ca(t)− cb(t)|.

In the simulation this distance must stay constant over time.
This is realised by the following position constraint:

d(t)−d0 = 0

where d0 is the distance at the beginning of the simulation.
In order to satisfy the position constraint an impulse is com-
puted and applied. This impulse is determined by using a
preview of the constraint state. The distance of the particles
d(t + h) after a simulation step of size h is computed by in-
tegrating the positions of the corresponding particles using
equation 2. The difference epos = d(t +h)−d0 describes ex-
actly the error that would occur if the simulation step was
performed without regarding the constraint (see figure 1(a)).
In order to prevent this error an impulse p is applied at the
beginning of the simulation step. The same impulse must be
applied in opposite directions to the particles in order to sat-
isfy the conservation of momentum (see figure 1(b)). Since

(a) Preview (b) Correction impulses

Figure 1: Correction of a position constraint

the relative motion of the particles is linear, the impulse must
change their relative velocity by epos/h to correct the error
epos in a time step of size h. Therefore, the required impulse
is determined by solving the equation

∆va(p)−∆vb(−p) = (cb(t)− ca(t))
epos

h

where ∆va(p) is the velocity change of particle a, when the
impulse p is applied. In order to support static and dynamic
particles the velocity change is computed by

∆va(p) = ka p

where ka is defined as follows

ka =

{
1

ma
if particle a is dynamic

0 otherwise.
(3)

The resulting equation for the correction impulse is

(ka + kb) p = (cb(t)− ca(t))
epos

h
.

This equation has an unique solution if the particles have dif-
ferent positions and at least one of the particles is dynamic.
If the distance constraint is satisfied at the beginning of the
step, the first condition is met. The impulse p must be ap-
plied in positive direction to particle a and in negative direc-
tion to particle b at the beginning of the simulation step. The
resulting velocity change will satisfy the position constraint
at time t +h.

The distance constraint also defines a constraint for the
velocities of the particles:

(vb(t)− va(t))(cb(t)− ca(t)) = 0.

This constraint prevents the particles from having a differ-
ent velocity in direction of the constraint. After a simulation
step, the constraint is generally not satisfied due to the im-
pulses applied for the correction of the position constraint.
In order to satisfy the velocity constraint another impulse is
computed. This time no preview is required, since an im-
pulse changes the velocity of a particle immediately. The
equation for the impulse is

(ka + kb) p = (cb(t)− ca(t))evel.

where the error evel is determined by the difference of the
particle velocities

evel = (vb(t)− va(t))(cb(t)− ca(t)).

The correction of the velocity constraint provides a higher
degree of accuracy but it is not essential for a stable simu-
lation of a distance constraint. Therefore, the velocity cor-
rection can even be skipped completely to achieve a better
performance.

3.3. Linear-time simulation of acyclic models

Any dynamic model consisting of particles that are linked
by distance constraints can be subdivided into parts with
an acyclic constraint structure. In this section an impulse-
based method is introduced that allows the simulation of
such acyclic parts in linear time using linear space. First, it
is shown how the impulses for multiple distance constraints
can be determined at once using a system of linear equations.
Then, this system is transformed into an equivalent system

c© The Eurographics Association 2008.

49

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

which is always sparse and which can be solved in linear
time.

In the previous section a distance constraint has been in-
troduced. The impulses for this constraint can be determined
directly by solving simple equations. If a particle is part of
multiple distance constraints, then the impulse of one con-
straint influences the correction of the other constraints. This
means that constraints with a common particle depend on
each other. There are different ways to solve these depen-
dencies.

A simple approach is to correct the constraints in an iter-
ative process. This process converges and the result is phys-
ically correct (the proof is given in [SBP05]). This iterative
method has the advantage that even models with cycles in the
constraint structures can be simulated. But the problem of
this approach is, that the process converges slowly if the sim-
ulated model has many dependencies. Hence, this approach
is not suitable for the simulation of a mesh model.

A mesh model can be subdivided into acyclic parts. The
dependencies of each part can be described by a system of
linear equations:

A p = ∆v. (4)

The matrix A ∈ R
nc×nc represents the constraint structure of

the model where nc is the number of distance constraints in
the mesh. For each constraint the vector p contains the mag-
nitude of the corresponding correction impulse that should
be determined. The vector ∆v on the right side contains the
errors of all joints that must be corrected. In order to use the
same system of linear equations for the position and the ve-
locity correction, the entries of the vector ∆v are defined as
follows:

∆vi =

{
epos,i

h in the case of position correction

evel,i in the case of velocity correction.

The number of constraints nc in the simulated model deter-
mines the size of the system of linear equations. Each row
and each column of the matrix A correspond to a certain
constraint. The value Ai, j of the matrix describes how the
constraint i depends on the constraint j. Therefore, it is not
zero if and only if the corresponding constraints have a com-
mon particle. When computing the values of the matrix, it
has to be considered, whether this common particle is the
first or the second particle of the corresponding constraints.
To take this into account, the following matrix is defined:

Bi, j =

ki1 if i1 = j1∧ i2 6= j2

ki2 if i2 = j2∧ i1 6= j1

−ki1 if i1 = j2∧ i2 6= j1

−ki2 if i2 = j1∧ i1 6= j2

ki1 + ki2 if i = j

0 otherwise

(5)

where i1 is the index of the first particle of joint i and the
value ki is determined by equation 3.

If two constraints depend on each other, the correction
impulses of both constraints influence the velocity of their
common body. Hence, when computing the impulses for a
constraint, the side effects of all dependencies must be re-
garded. Therefore, the impulses of the dependencies are pro-
jected into the space of the actual constraint. The required
projection matrix is defined as follows:

Pi =
(
ci2(t)− ci1(t)

)T
∈ R

1×3.

The matrix A of the system of linear equations is deter-
mined by projecting the matrices Bi, j using the projection
matrices Pi(t):

P1B1,1PT
1 . . . P1B1,nPT

n

...
. . .

...
PnBn,1PT

1 . . . PnBn,nPT
n

p1
...

pn

 =

∆v1
...

∆vn

where pi is the magnitude of the i-th correction impulse. The
corresponding three-dimensional impulses are computed by

p
′

i = pi P
T
i .

The presented system of linear equations takes all depen-
dencies of the model into account. Hence, all correction im-
pulses can be determined in a single step. The system can be
solved by using a LU factorization for example which has a
time complexity of O(n3). Since the system is often sparse,
even special solvers like PARDISO [SG04] can be used to
improve the performance of the simulation. Regarding the
fact that the simulated parts have an acyclic constraint struc-
ture, the system can even be solved in linear time which is
shown in the following.

First, the system of linear equations for the correction im-
pulses must be transformed in the following form:

CM
−1

C
T

x = ∆v, (6)

where C is a block matrix that represents the distance con-
straints and M is the mass matrix of all particles that are part
of a constraint. M is a block matrix which contains the mass
matrices of all particles on the diagonal. The mass matrix Mi

of a single particle with index i is defined by:

Mi =

mi 0 0
0 mi 0
0 0 mi

 . (7)

Each row in the constraint matrix C represents a distance
constraint in the model and each column block a particle.
In a system with nc constraints and np particles the matrix
C has the dimension nc× 3np. A block Ci, j ∈ R

1×3 of the
matrix is not zero if and only if j is the index of a dynamic
particle which is part of the constraint with index i. If the

c© The Eurographics Association 2008.

50

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

system of linear equations for the impulses (see equation 4)
can be transformed in the form of equation 6, then

(
M −CT

−C 0

)

︸ ︷︷ ︸

H

(
y

x

)

=

(
0
−∆v

)

︸ ︷︷ ︸

b

is an equivalent system. This system is larger but has the
advantage that the matrix H is always sparse. To solve this
new system in linear time, first the matrix H must be rear-
ranged. Therefore, a graph is required which represents the
constraint structure. An example for such a graph is shown in
figure 2. Each particle pi is represented by a box in the graph

Figure 2: The constraint structure graph of a simple model.

The particles pi are linked by the distance constraint d j.

and each distance constraint d j by a circle. The new order of
the rows and columns of matrix H are found by a depth-
first search in this graph. The numbers in figure 2 under the
nodes show the resulting row and column indices of the cor-
responding particles and constraints respectively. Hence, the
rows and columns of particles and constraints alternate in
the resulting matrix H. After rearranging the matrix the row
and column index of each simulation object is greater than
the indices of its children. The factorization of the matrix
is performed by a decomposition H = LDLT where L is a
lower-triangular matrix whose diagonal values are 1 and D

is a diagonal matrix. The new order of H has the effect that
the decomposition does not introduce new nonzero elements
to the matrix. David Baraff shows in [Bar96] that a matrix
with the described property can be solved in O(n) time and
stored in O(n) space by using algorithm 1 for the factoriza-
tion of H. This factorization requires linear time.

Algorithm 1: Factorization

for i← 1 to n do

foreach j ∈ children(i) do

Hi,i = Hi,i−HT
j,i Hj, j Hj,i

if i 6= n then

Hi,parent(i) = H−1
i,i Hi,parent(i)

The system of linear equations is then solved by using algo-
rithm 2 which also has a time complexity of O(n).

Algorithm 2: Solution

for i← 1 to n do
xi = bi

foreach j ∈ children(i) do

xi = xi−HT
i, j x j

for i← n to 1 do

xi = H−1
i,i xi

if i 6= n then
xi = xi−Hi,parent(i) xparent(i)

After solving the system of linear equations the vector x con-
tains the magnitudes of all correction impulses. The value xi

must be multiplied with the direction of the constraint i at the
actual point of time to get the three-dimensional impulse:

pi = xi P
T
i .

The resulting impulses solve all constraints at once.

The linear-time algorithm presented above can only be
used if a decomposition A = CM−1CT of the matrix A ex-
ists. The mass matrix M is already known. Since it is a diag-
onal matrix, its inverse M−1 is also a diagonal matrix. The
matrix M contains a block Mi (see equation 7) for each dy-
namic particle on the diagonal. Hence, the diagonal blocks
of the inverse of M are computed as follows:

M
−1
i =

1
mi

0 0

0 1
mi

0

0 0 1
mi

 =

ki 0 0
0 ki 0
0 0 ki

 .

Therefore, only the block matrix C has to be determined.

A block of matrix A for two constraints with a common
particle is computed by the equation

Ai, j = Pi Bi, j P
T
j .

This block describes how the velocity of constraint i

changes, when an impulse is applied to the common particle
l for the correction of constraint j. For the decomposition of
matrix A the block Ai, j must be described by the constraint
blocks Ci,l and Cj,l and by the mass matrix Ml of particle l

in the following form:

Pi Bi, j P
T
j = Ci,l M

−1
l C

T
j,l . (8)

Both sides of the equation look already very similar. The
value Bi, j describes the inverse mass of the common body l

of constraint i and j just like the matrix M−1
l

. The problem
is that Bi, j is computed by a case differentiation (see equa-
tion 5) which determines the sign of the value. Since the ma-
trix M−1

l
is well-defined, this case differentiation must be

c© The Eurographics Association 2008.

51

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

performed for the constraint blocks. This is done in the fol-
lowing form:

Ci,l =

C̃i,l if l = i1

−C̃i,l if l = i2

0 otherwise

where i1 and i2 are the first and second particle of constraint
i respectively. The block C̃i,l must be equal to the projection
matrix of the constraint i in order to satisfy equation 8:

C̃i,l = Pi =
(
ci2(t)− ci1(t)

)T
.

So, the system of linear equations of the acyclic model can
be transformed in the form of equation 6 which is the condi-
tion for the linear time method.

The equations above demonstrate how the decomposition
of the matrix A is determined for an arbitrary acyclic model.
Since the decomposition can always be found, the dynamic
simulation of an acyclic model of particles linked by dis-
tance constraints can always be performed in linear time and
only linear space is required for the computation.

3.4. Parallel mesh simulation

In the previous section a method has been introduced for
the linear-time simulation of acyclic models. Since in gen-
eral a cloth model has no acyclic structure, the mesh must be
subdivided in smaller acyclic parts. Two of these parts de-
pend on each other if they have a common particle. These
dependencies can even have a cyclic structure which must
be resolved. The parts that have no common particle are in-
dependent from each other and therefore can be solved in
parallel.

At the beginning of section 3.3 it was mentioned that the
distance constraints of a model can also be solved in an it-
erative process. The advantage of this approach is that even
models with cycles can be simulated. But for complex mod-
els with many dependencies the iterative process converges
slowly.

The combination of the linear time method and the it-
erative approach solves the problem with the cycles in the
constraint structure and still shows a good performance. The
acyclic parts are divided into groups of independent parts.
This means that each part of a group has no dependency with
another part of the same group. In general only two different
groups are required for a cloth model. All parts of a group
can be processed in parallel, since they are independent from
each other.

In an iteration step the groups are processed one after an-
other. The impulses for each part of a group are determined
using the linear-time method presented in this paper. Since
the matrix A of the system of linear equations is constant at
time t, the factorization for each part has to be performed
only once per simulation step. The matrix for the velocity

constraints equals the one for the position constraints of the
same point of time. This means that the factorization of the
velocity correction can even be reused for the position cor-
rection of the next simulation step.

The factorization of the matrices is the most time-
consuming part of the impulse computation. Since this
has to be done only once per simulation step, it does not cost
much performance to solve the systems multiple times in the
iteration process. In the same process collision and contact
handling with friction can be performed. In order to support
collisions, the method described in [BS06] was integrated in
the simulation.

4. Results

In this section results concerning the performance of the
impulse-based method are presented. All simulations in this
section were performed on a PC with a 2.4 GHz Intel Core 2
Quad processor. The cloth model used for the performance
tests consists of a regular grid of particles. This grid is sub-

Figure 3: Example of a regular grid that is subdivided in

eight strips

divided in horizontal and vertical acyclic strips (see fig-
ure 3). Since they are acyclic, the linear-time algorithm of
section 3.3 can be used for the simulation of the strips. In
the group of all horizontal strips and in the group of all ver-
tical ones, there are no direct dependencies. Therefore, all
strips in each group can be solved in parallel.

The tolerance value defines the allowed strain of the tex-
tile. Figure 4 shows a cloth model with a 41× 41 grid of
particles that are linked by 3280 distance constraints. The
cloth was pinned at two corners in order to study the relax-
ation due to gravity. The tolerance was set to values between
0.1 and 0.0001 to simulate an allowed strain between 10%
and 0.01%. Even smaller tolerance values can be used for
the simulation with the introduced method. In the following,
the model of figure 4 is used to measure the performance of
the method.

Cloth models with different grid sizes were simulated in
order to measure the performance of the simulation method.

c© The Eurographics Association 2008.

52

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

(a) 10% (b) 1%

(c) 0.1% (d) 0.01%

Figure 4: A cloth model was simulated with different toler-

ance parameters. The tolerance value was chosen so that the

allowed strain was between 10% and 0.01%.

Grids of between 10× 10 and 50× 50 particles were used.
The smallest model had 180 distance constraints whereas
the largest model had 4900 constraints. The performance
does not only depend on the complexity of the mesh, it also
depends on the allowed strain. Therefore, the models were
simulated with different tolerance values for a performance
analysis. The time step size of the simulation was set to
h = 1

30 s in order to get 30 frames per second. At the begin-
ning of the simulation, the cloth was parallel to the floor and
some impulses were applied to randomly chosen particles in
order to measure the performance under realistic conditions.
After 500 simulation steps, the average computation time per
frame was determined. The simulation was performed us-
ing all four cores of the CPU. Figure 5 shows these average
computation times for all models. The horizontal line in the
figure marks the value of 1

30 s. If the simulation steps are per-
formed faster than this time, then the simulation runs faster
than real-time.

The 30× 30 mesh could even be simulated faster than
real-time, when using an allowed strain of 0.1% and 1% per-
cent. The smallest mesh was simulated about six times faster
than real-time, when using the smallest tolerance value of
0.0001. The model consisting of 50×50 particles linked by
4900 constraints was not even six times slower than real-
time using an allowed strain of 0.01%. The use of four cores
instead of one caused a speed-up of a factor of about 1.9 on
the used system.

Figure 5: Average computation times per simulation step for

different cloth models simulated with a allowed strain be-

tween 10% and 0.01%

If only plausible results are demanded, the simulation can
be accelerated by stopping the iterative process after a max-
imum number of iterations. In this case, the tolerance val-
ues are not reached but the simulation is still stable and the
results are visually plausible. In a simulation with a maxi-
mum of five iterations, the model with a 30× 30 mesh and
an allowed strain of 0.1% was simulated 3.7 times faster than
real-time whereas the 50× 50 mesh was simulated in real-
time.

Collision and contact handling with friction can be inte-
grated in the iteration process. This is demonstrated in fig-
ure 6. The model in the figure was simulated by using the

Figure 6: Example for a cloth simulation with collision han-

dling

method of Bender et al. [BS06] for resolving the collisions
and contacts with friction.

c© The Eurographics Association 2008.

53

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

5. Conclusion

An impulse-based method for the simulation of cloth is pre-
sented in this paper. In contrast to methods based on mass-
spring systems, the impulse-based approach allows the effi-
cient simulation of inextensible textiles. Cloth is simulated
by using a mesh of particles linked by distance constraints.
These constraints are solved by the computation of impulses.
An impulse is determined by using a preview of the state
of the corresponding constraint. In this way a constraint is
solved exactly in a single step.

If a particle is part of multiple constraints, the constraints
depend on each other. The dependencies for an acyclic
model are resolved by using a system of linear equations
which describes the constraint structure. This system can be
solved in O(n) time and stored in O(n) space which is the op-
timal complexity. In general, a cloth model contains cycles
in its constraint structure. To solve this problem the model
is subdivided in acyclic parts. Each part is then simulated
in linear time. To solve the cyclic dependencies between the
single parts an iterative method is used. Since parts with no
common particle do not directly dependent on each other, in
an iteration step, their correction impulses can be computed
in parallel.

The presented approach allows the real-time simulation
of complex cloth models. The method guarantees a prede-
fined accuracy which is defined by the used tolerance value.
Since a distance constraint is directly satisfied by using a
preview, even destroyed models can be repaired. Therefore,
an early result can be obtained by interrupting the iterative
process of a simulation step without the loss of stability. This
provides another way to increase the performance. Collision
and contact handling with friction can also be integrated in
the simulation process.

References

[Bar96] BARAFF D.: Linear-time dynamics using la-
grange multipliers. In SIGGRAPH ’96: Proceedings of

the 23rd annual conference on Computer graphics and in-

teractive techniques (New York, NY, USA, 1996), ACM
Press, pp. 137–146.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Ro-
bust treatment of collisions, contact and friction for cloth
animation. In SIGGRAPH ’02: Proceedings of the 29th

annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 2002), ACM, pp. 594–
603.

[BHW94] BREEN D. E., HOUSE D. H., WOZNY M. J.:
Predicting the drape of woven cloth using interacting par-
ticles. In SIGGRAPH ’94: Proceedings of the 21st annual

conference on Computer graphics and interactive tech-

niques (New York, NY, USA, 1994), ACM, pp. 365–372.

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simu-
lation of clothing with folds and wrinkles, 2003.

[Bri03] BRIDSON R. E.: Computational aspects of dy-

namic surfaces. PhD thesis, Stanford, CA, USA, 2003.
Adviser-Ronald Fedkiw.

[BS06] BENDER J., SCHMITT A.: Constraint-based colli-
sion and contact handling using impulses. In Proceedings

of the 19th international conference on computer anima-

tion and social agents (Geneva (Switzerland), July 2006),
pp. 3–11.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth
simulation. Computer Graphics 32, Annual Conference
Series (1998), 43–54.

[CK05] CHOI K.-J., KO H.-S.: Research problems
in clothing simulation. Computer-Aided Design 37, 6
(2005), 585–592.

[CYTT92] CARIGNAN M., YANG Y., THALMANN

N. M., THALMANN D.: Dressing animated synthetic
actors with complex deformable clothes. In SIGGRAPH

’92: Proceedings of the 19th annual conference on Com-

puter graphics and interactive techniques (New York, NY,
USA, 1992), ACM, pp. 99–104.

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P.,
BARR A. H.: Dynamic real-time deformations using
space & time adaptive sampling. In SIGGRAPH ’01:

Proceedings of the 28th annual conference on Com-

puter graphics and interactive techniques (New York, NY,
USA, 2001), ACM, pp. 31–36.

[EEH00] EBERHARDT B., ETZMUSS O., HAUTH M.:
Implicit-explicit schemes for fast animation with particle
systems. In Proc. Eurographics Workshop Computer An-

imation and Simulation (2000), pp. 137–154.

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of
inextensible cloth. ACM Transactions on Graphics 26, 3
(2007), 49.

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.:
Charms: a simple framework for adaptive simulation. In
SIGGRAPH ’02: Proceedings of the 29th annual confer-

ence on Computer graphics and interactive techniques

(New York, NY, USA, 2002), ACM, pp. 281–290.

[HB00] HOUSE D. H., BREEN D. E. (Eds.): Cloth model-

ing and animation. A. K. Peters, Ltd., Natick, MA, USA,
2000.

[HCJ∗05] HONG M., CHOI M.-H., JUNG S., WELCH S.,
TRAPP J.: Effective constrained dynamic simulation us-
ing implicit constraint enforcement. In International Con-

ference on Robotics and Automation (Apr 2005).

[HE01] HAUTH M., ETZMUSS O.: A high performance
solver for the animation of deformable objects using ad-
vanced numerical methods. In EG 2001 Proceedings,
Chalmers A., Rhyne T.-M., (Eds.), vol. 20(3). Blackwell
Publishing, 2001, pp. 319–328.

[HES03] HAUTH M., ETZMUSS O., STRASSER W.:

c© The Eurographics Association 2008.

54

J. Bender & D. Bayer / Parallel simulation of inextensible cloth

Analysis of numerical methods for the simulation of de-
formable models. The Visual Computer 19, 7-8 (2003),
581–600.

[KC02] KANG Y.-M., CHO H.-G.: Bilayered approxi-
mate integration for rapid and plausible animation of vir-
tual cloth with realistic wrinkles. In CA ’02: Proceed-

ings of the Computer Animation (Washington, DC, USA,
2002), IEEE Computer Society, p. 203.

[KCC∗00] KANG Y., CHOI J., CHO H., LEE D., PARK

C.: Real-time animation technique for flexible and thin
objects. In Proceedings of WSCG (2000), pp. 322–329.

[MDDB01] MEYER M., DEBUNNE G., DESBRUN M.,
BARR A. H.: Interactive animation of cloth-like objects
in virtual reality. The Journal of Visualization and Com-

puter Animation 12, 1 (2001), 1–12.

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX

M., RATCLIFF J.: Position based dynamics. J. Vis. Co-

mun. Image Represent. 18, 2 (2007), 109–118.

[MHTG05] MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M.: Meshless deforma-
tions based on shape matching. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
ACM, pp. 471–478.

[MTV05] MAGNENAT-THALMANN N., VOLINO P.:
From early draping to haute couture models: 20 years
of research. The Visual Computer 21, 8-10 (2005),
506–519.

[Pro95] PROVOT X.: Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In Graph-

ics Interface ’95 (1995), Davis W. A., Prusinkiewicz P.,
(Eds.), Canadian Human-Computer Communications So-
ciety, pp. 147–154.

[SBP05] SCHMITT A., BENDER J., PRAUTZSCH H.:
On the Convergence and Correctness of Impulse-Based

Dynamic Simulation. Internal Report 17, Institut für
Betriebs- und Dialogsysteme, 2005.

[SG04] SCHENK O., GÄRTNER K.: Solving unsymmetric
sparse systems of linear equations with pardiso. Future

Generation Computer Systems 20, 3 (2004), 475–487.

[ST08] SPILLMANN J., TESCHNER M.: An adaptive con-
tact model for the robust simulation of knots. Computer

Graphics Forum 27, 2 (apr 2008), 497–506.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A.,
FLEISCHER K.: Elastically deformable models. In SIG-

GRAPH ’87: Proceedings of the 14th annual conference

on Computer graphics and interactive techniques (New
York, NY, USA, 1987), ACM, pp. 205–214.

[VMT01] VOLINO P., MAGNENAT-THALMANN N.:
Comparing efficiency of integration methods for cloth
simulation. In CGI ’01: Computer Graphics International

2001 (Washington, DC, USA, 2001), IEEE Computer
Society, pp. 265–274.

[VT00] VOLINO P., THALMANN N. M.: Implementing
fast cloth simulation with collision response. In CGI ’00:

Proceedings of the International Conference on Computer

Graphics (Washington, DC, USA, 2000), IEEE Computer
Society, p. 257.

c© The Eurographics Association 2008.

55

