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Abstract 
This paper deals with a real-time implementation on graphic processor of the “dynamic particle coating 
method” (DPCM) first proposed by [HL02] and founded on a mass-interaction formalism. When this method 
was proposed, it was too much time-consuming to be inserted in an interactive application. This paper solves 
this major drawback. Our real-time implementation allows inserting this method in a real-time simulation 
chain composed of a haptic device, an upstream mass-interaction model that interacts with the user through 
this device and the new real-time implementation of the DPCM method to visualize this model 
 
Categories and Subject Descriptors (according to ACM CSS): I.3.5 Physically based modeling, I.3.3 real-time 
visualization of particle models, I.3.1 GP/GPU, I.3.6 haptic interactions

 
 
 
1. Introduction

At the heart of the engraving process, there is a relationship 
between two bodies, one that is hard and that can be called 
“marker” and that modifies the state of another one that can 
then be called the “engraving surface”.  

When considering natural phenomena, a sedimentary 
rock that shows a fossil is a durable engraving surface 
marked by a prehistoric animal body. On the contrary, 
water surface can be seen as a more voluble engraving 
surface for the memory of a ricochet for instance. But the 
engraving surface is always a memory, a trace of the 
marker presence, of the effect that it had on the engraving 
surface, whatever fleeting this memory can be. 

A certain number of animation movies have used 
engraving as a central process for the creation of pictures. 
Indeed, the engraving process allows an artist to obtain 
shapes with  fuzzy, fleeting outlines.  

Amongst the amount of such work, Alexandre 
Alexeïeff’s approach is to be noticed [Ben01]. In the early 
30’s, this atypical engraver built an engraving surface made 
of thousands of pins able to orthogonally slide along a 
fastening plan. Alexeïeff engraved this surface by moving 
these pins thanks to various marking objects. Four light 
sources light up this “pinscreen”. White areas appear where 
the pins are the lowest and black areas when they are the 
highest. The successive shots taken by a camera with 
various configuration changes of the pinscreen artificially 
create animated pictures. 

 

 
Figure 1: Picture obtained with the pinscreen. Extract 
from Alexeïeff’s short film “Eine Nacht Auf Dem Kahlen 
Berge”, Berlin, 1933.  

 
In Computer Graphics community, Alexeïeff’s pinscreen 

has been implemented by Faria Lopes et al. [FR92] to 
make this engraving technique possible through the
computer. 

 
On a different scale than Faria Lopes et al., Habibi et al. 

[HL02] goal is not to implement a new pinscreen method 
but to use this engraving metaphor, called “Dynamic 
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Particle Coating Method” (DPCM), in order to solve a part 
of the problem of particle models visualization.  

 
Interacting particles whose movement is simulated are 

able to product various rich behaviors as different as 
deformable and non-deformable objects, smoke, pasts, 
liquids, crowds, etc. [ECL06]. It is also well adapted to 
interact with humans through haptic devices. But a major 
limit to this kind of formalism when producing animated 
pictures is that the space that particles occupy is restricted 
to moving points if a visualization process, a coating mean, 
is not applied. How do we pass from points to shapes? 

This is an opened question that can hardly be solved in 
most cases. Partial answers can be brought by: (1) adding 
geometrical primitives to the points; (2) controlling explicit 
representation of shapes (polygons, NURBS) by the 
moving points; (3) extending points by using potential 
fields with isosurface as in the implicit surfaces methods 
[Bli82, BBB*97]. The first types of method (based on 
explicit geometrical features) are unwieldy to render fuzzy 
or highly deformable phenomena. The DPCM method can 
be considered as a method close to the implicit surfaces 
principle by considering that each moving point is creating 
a potential field, whose profile is evolving along time 
according to the dynamic of the point (velocities and 
acceleration) whereas implicit surface evolution results 
from a fixed potential field. 

 
 

 
Figure 2: Real-time simulation chain. Haptic device – 
upstream model – DPCM. 

 
Habibi’s approach is to model a physical phenomenon 

(smoke, water, etc) by a cascade of two physically based 
particle models (see Figure 2). The first one (the upstream 
model) has a variable topology. For example, in smoke 
model, there are several moving masses between which the 
graph of interactions varies according to the distances or 
the velocities [HL02]. It models a general behavior and 
interacts with human through an haptic device. The second 
one, the DPCM, has a fixed topology. This means that 
masses are linked by a predefined graph of interactions (as 
it is the case in a deformable visco-elastic surface). These 
masses are not moving in the whole space. They are 
attached to a grid in the space and they only deform 
themselves. The DPCM is engraved by the first upstream 
model. This engraving is a deformation around the points 
of the upstream model that engrave it. DPCM is thus able 

to add to the points of the upstream model a spatial 
evolving extension. Following the metaphor of engraving, 
the upstream model plays the role of the markers and the 
DPCM plays the role of the engraving surface. The 
difference with material static engraving surface (such as 
copper plate, wood, etc.) is that the DPCM, as it is 
physically modeled, exhibits other physical behaviors (such 
as fluid propagation as if one engraves in water, plastic 
pastes, sand, …).  

Similarly with the Alexeïeff’s pinscreen, the engraved 
surface is discretized at the resolution of the final display 
(in our case the computer screen), but each pin is replaced 
by a dynamic pin able to move by itself. The marking 
objects, the markers come from the upstream simulation 
that sends particles positions that evolve in time.  

Convincing sequences of smokes, sands, waters and even 
solids have been produced by [HL02]. However, their 
method was relatively time-consuming and it wasn’t 
possible to integrate it inside an interactive application that 
could include an haptic device for VR applications. 

This paper aims at using “shaders”, which are programs 
that are compiled and executed on modern graphic cards, 
and taking advantage of calculation parallelization they 
offer to obtain a real-time implementation of the DPCM 
method described by Habibi et al. Indeed, the fixed and 
regular topology of the DPCM suits well to large parallel 
calculation. 

Section 2 briefly reminds the DPCM method. Section 3 
draw a brief state of the art on particle models on GPU. 
Section 4 deals with our implementation. Section 5 shows 
the incorporation of the method in a real-time simulation 
chain that includes an upstream mass-interaction network 
simulation. Section 6 gives obtained performances. Section 
7 proposes an end-user interface. Section 8 finally exhibits 
results. The most of them are new ones because human 
gesture intervenes. 

 
 

2. The Dynamic Particle Coating Method (DPCM) 

More details on the DPCM can be found in [HL02]. One 
could notice that the DPCM is a mass-interaction network 
model as described in [LJF*91]. 

 
The inputs of the DPCM are a set of positions of points

along time. These points are the “markers” of the 
engraving process. They mark, they engrave, the DPCM, 
i.e. they act on it by creating tracks but the DPCM do not 
act on it in return. That’s why we can speak about the
coating of an upstream particle model. We then simulate 
upstream particle model and the DPCM in separate 
architectures. Actually, any process like a simulation, 
gestural captors or the reading of a motion file can supply 
evolutions in time of the markers.  

The DPCM is composed of a set of physical elements 
called “phyxels” (for “physical elements”) by Habibi et al. 

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

70



 

Such phyxels are slightly different than those defined by 
[MKN*04]. They are composed of a mass linked to a fixed 
point by a one-dimensional physical interaction (figure 3). 
The simplest interaction is the linear damped-spring but 
more complex interaction such as plastic one will also be 
used in this paper. 

To model spatial physically based extensions of the 
tracks made by the markers, physical interactions are 
placed between phyxels. Each mobile mass interacts with 
the mobile masses of its neighboring phyxels (and more 
generally with any other phyxels). Our present 
implementation of the DPCM is a 2D implementation, i.e. 
a 2D array of phyxels, in which each phyxel interacts 
physically with its 8 neighbors. 

 
The markers are physically acting on each mobile mass 

of the phyxels, pushing the phyxels and engraving the 
DPCM, perpendicularly to the DPCM 2D surface, creating 
a 3D engraving. From this action, the DPCM exhibits 
physical behaviors (deformations, propagations, etc.) 
according to its own physical parameters (i.e. the 
parameters of all the interactions between the phyxels). 
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Figure 3: Mass-interaction model of the DPCM. 
 
Outputs of the DPCM are deformation scalar values that 

correspond to the distance between the fixed and the 
mobile masses of a phyxel. This array of scalar is used as 
an input of a rendering method. The simplest method 
proposed by [HL02], is the control of pixels color by linear 
combination of the deformations values of some 
neighboring phyxels. An extension is to control surfaces 
points in a 3D space or orientations of normal orientations. 
Some other rendering methods are presented at §4.2.3 to 
extend the results of [HL02]. 

 
 

3. Implementation of particle models on GPU.  

Programming on graphical processor units (GPU) has 
been a success for some years. It is not only used for the 
rendering of 3D scene but also for any kind of numerical 
calculations that are well adapted to parallel processing. 

Indeed, a fundamental difference of GPU with CPU is this
structural parallelization of calculations. For a global 
review of the use of GPU programming in Computer 
Graphics community see [OLG*05]. 

A general programming principle on this type of 
architecture is to stock simulation variables inside GPU-
specific data structures like textures (that were initially 
created to stock the RGBA components of the texture that 
are usually displayed). Another principle is to use 
programmable area of the GPU called “shaders” that will 
process these data on the GPU. Calculation on these data 
will by parallelized.  

 
A number of recent works have been dedicated to the 

implementation on GPU of particle systems immersed in 
force fields [KKK*05] by following these principles. Other 
implementations have taken into account interactions with 
rigid objects [KLR04] or with others particles [GW05, 
CL06]. Our work is quite close to these works while 
implementation and applications are noticeably different. 

In the quoted works, the variables stocked inside textures 
are 3D positions of particles or of controlling points of 
shapes directly rendered. A vector value directly 
corresponds to a geometrical element of the 3D scene. In 
our case, the scalar values we product with the DPCM 
cannot directly correspond to a geometrical element in the 
3D scene. These values control a rendering process: from 
the simple direct control of the pixels color to a more 
complex process (e.g. normal orientation used to determine 
illumination of a surface). Moreover, interactions that were 
implemented in quoted papers were simple linear 
interactions like damped-springs. Another difference is that 
more complex interactions are used in the model designed 
by the end-user. 

 
 

4. Implementation of the DPCM on GPU 

 
4.1. Encapsulation of the simulation variables 

Variables and some parameters that will evolve during 
the simulation are encapsulated in texture data structures. 

Given a DPCM of m by n phyxels, a texture whose size 
is m x n is created on the graphic card (we use rectangular 
textures to work with normalized coordinates). As a result, 
each phyxel is located by a (x,y) position inside the texture. 
For each phyxel, the texture contains its position at time t 
(red component), its position at time t-1 (green 
component). The blue component is used to stock 
interaction parameters that will evolve during the 
simulation. 
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Figure 4: Global implementation scheme of the software 
architecture of the DPCM simulation on GPU.  

 
 

4.2. Steps in the algorithm 

The algorithm is a loop made of three distinct passes (see 
figure 4). 

 
For each loop we have: 
• to execute a “reading” pass during which the current 

position of each marker is written in a specific texture 
called “Markers texture”. 

• to launch execution of the “simulation” pass which 
writes inside the “phyxels texture” the new phyxel’s 
height that depends on the calculation of the physical 
algorithm. 

• to execute a “rendering” pass which displays an image 
controlled by the scalar value of the phyxels heights 
on screen. 

 

4.2.1. The reading pass 
 

A texture is created to encode the positions of markers at 
time t and t-1. This pass transfers this texture to the GPU. 
Its size is k x 1 for k markers. The first two components are 
used to encode positions. The last ones are used to encode 
parameters of the interaction between a marker and the 
DPCM like stiffness or a flattening coefficient [see HL02]. 

We have implemented 3 different origins for markers 
trajectories: 
• A motion file that can be produced by a simulation, 

which is not necessarily a real-time simulation. We 
used the motion and gesture encoding file format 
called GMS (for gesture and motion signal [LEC*06]) 
that is well adapted to the real-time treatment of this 
kind of motion data.  

• A data flow that comes from a network connection. 
An upstream simulation can then be done and be 
synchronized in real-time with the DPCM (see section 
5). 

• Positions of a gesture captor 
 
As a result, the markers’ evolution in time can come 

from an upstream physical simulation like a particle system 
or a mass-interaction network. This simulation can 
temporally be uncorrelated to the DPCM simulation 
because markers do not act on the DPCM. Nevertheless, 
the real-time is wished for the DPCM simulation, whatever 
the markers origin can be, the reading pass can’t be a 
blocking step. That’s why latency caused by the hardware 
access to this data must be strictly included in a simulation 
time-step.  

 

4.2.2. The simulation pass 
 

The simulation pass takes the markers’ positions and the 
phyxel’s height at time t and t-1 (the height of the mobile 
mass compared to the height of the fixed mass). It writes in 
a texture called the “phyxels texture” the new values of the 
phyxels height by using the frame buffer object. It also 
keeps positions at time t and updates the value of the 
modifiable parameters of the interactions.  

 
This simulation pass is divided into 4 steps: 
 

• Calculation of the force applied on each phyxel by 
the markers 

 
Each marker interact with each phyxel that have 

neighboring (x,y) coordinates. This interaction is a simple 
viscous-elastic interaction with a threshold on distance 
between the marker and the pin. This interaction is also a 
unidirectional one [LJF*91] as said before. 

 
• Calculation of the force applied on each phyxel by 

its neighbors.  
 
The mobile mass of each phyxel is linked by an 

interaction to some of its neighbors. The topological choice 
of the neighbors has a huge influence on the global 
dynamic behavior. Section 8.2 shows an interesting result 
that is obtained while considering a complex topology of 
neighborhood. 

 
• Calculation of the force applied on each phyxel by 

an interaction with the ground. 
 
This interaction is the interaction between the mobile 

mass and the fixed mass of each phyxel.  
 

• Calculation of the new heights of the phyxels 
 
The new height of the phyxels is assessed from the sum 

Fn of the forces described before.  
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New height is given by: 
 
Zn+1 = 2.Zn – Zn-1+Fn(Tech2/m) 
 
Where m is the mass of the phyxel, Zn and Zn-1 the height 

of the phyxel at time t and t-1, and Tech the sampling 
period of the movement. 

 
These calculations are made by the “simulation” shader 

for each phyxel. This shader is a fragment shader of the 
GPU. The obtained values (heights of the phyxels at time t 
and t+1, updated parameters of the interactions) are sent 
through the “phyxels texture” to the rendering pass. 

 

4.2.3. The rendering pass 
 
We make a second pass on the GPU to display the scalar 

data (the height of the phyxels) on the computer screen. 
Actually, this pass aims at transforming phyxels into 
pixels. The way of applying this transformation can be 
more or less complicated. We have experimented 3 
different rendering methods for the DPCM: 

 
• Mapping of colors: 

 
The color of the pixel is chosen in accordance with the 

height of the phyxels. Basically, this is a transformation 
from 1 scalar to 3 components in a color space like RVB. 
The user can choose the axis in this space. This kind of 
rendering is very simple but close to Alexeïeff’s pinscreen 
philosophy. For instance by defining white for a minimal 
height and black for a maximal height the whole gray scale 
is obtained (see figure 10). 

 
• Bump Mapping [Bli78]: 

 
This technique consists in emulating a relief from a 

“normal” map and the position of a light source. We obtain 
this effect by creating a “normal map” with a shader in 
accordance with the derivation of the phyxels height 
(considering the neighborhood). It is then possible to 
brighten or to darken the diffuse light emitted by each pixel 
to obtain a relief (see figure 5).  

 

 
Figure 5: The resulting normal from the derivation of 
neighboring phyxels.  

 
• Displacement mapping: 

 
It can also be interesting to visualize the 2D DPCM 

inside a 3D space. This type of rendering method is notably 
used to calibrate the screen i.e. placing it in accordance 
with the markers positions. It also allows use to better 
understand some dynamic phenomena by watching the 
DPCM from another point of view.  

We use the geometry shader to cut a surface in a huge 
number of vertices that are controlled by the DPCM. A 
dynamic surface is thus defined inside a 3D space.  

 

4.2.4. Initialization 
 

The system initialization is done by giving a height to the 
phyxels equal to the rest length of interaction between the 
mobile mass and the fixed one. 

Noticeably it allows:  
• being assured that each phyxel start from the same 

height 
• making a first test on the stability of the DPCM (the 

heights of the phyxels do not vary before a 
perturbation).  

• preparing the DPCM to interact with markers. This 
initialization is done each time the user wants the 
DPCM to be in its initial balance state.  

 

4.2.5. Variable encoding 
 

The first implementation exhibited some noise in the 
balance state due to data quantification. Indeed, data had 
been encoded in an 8 bits number clamped in 0 and 1 (low 
level mechanism in OpenGL). This quantification noise 
was very huge (see figure 6). It was then necessary to 
choose a higher appropriate quantification to make this 
noise disappear. We finally obtained good results with a 32 
bits float quantification.  
 

 
Figure 6: Noise at the balance state while choosing a bad 
encoding of the variables (here 8 bits) 
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5. The DPCM in a real-time simulation chain 

A simulation is done on an upstream computer. It gives to 
the DPCM the trajectory of a certain number of markers. 
The problem is to transfer theses data as fast as possible, 
from this computer to the computer that hosts the GPU. 

We have used UDP protocol in an Ethernet network 
because it is simple and fast. A frame is defined to 
encapsulate the position data and to deal with the 
coherence of the received data. Figure 7 describes this 
frame. 

 

Flag 
number  

of 
masses 

N° 
Frame 

N° 
Mass posX posY N° 

Mass 

FFFF 
FFFF 3 245 0 12.5 3.3 1 

32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 

Figure 7: A frame containing one sample of the upstream 
simulation 

 
This organization allows the receiving computer to 

resynchronize itself on a new frame thanks to the flag. This 
is a non-blocking reading step that allows both simulations 
to run in parallel. Communication between both machines 
is asynchronous because a new frame constrains the DPCM 
simulation. But the goal is to obtain upstream simulations 
that are fast enough to prevent this locking. The number of 
masses is important information when the number of 
markers changes during the simulation. The DPCM is then 
able to readapt itself when this change occurs. The frame 
number locates a lost frame while the mass number avoids 
a discrepancy in the markers indexes. If a frame is not 
correct, the user is warned and this frame is ignored.  

Figure 8 shows a psychophysics Virtual Reality 
experiment using a real-time platform. On the bottom left, 
on can see the haptic feedback device that is connected to 
the simulation. 

 

 
Figure 8: The DPCM within a real-time simulation 
platform 

6. Obtained performances 

The DPCM simulation has been achieved on a GTX 8800 
(768 Mo) GPU plugged to a PC with a Dual Core II 2,4 
GHz CPU. 
These performances greatly depend on the number of 
markers. They are presented here for a 1100 x 1100 
resolution of phyxels.  

 
In the case of the real-time chain (section 5) one should 

take into account 3 possible blocking parameters: 
• The speed of the upstream simulation. 
• The speed of the communication between this 

simulation and the computer used to visualize this 
simulation. In our case it is a 100 Mbits/s Ethernet 
communication that uses UDP protocol. 

• The simulation speed of the DPCM. 
 
The DPCM is used for visualization aims, so we can 

accept a latency provided it is non visible. But a coherent 
rate with the upstream chain has to be respected. Problems 
of latency (due to the Ethernet communication as well as 
the DPCM) occur for a number of markers greater than 
300. This is quite acceptable for a number of real-time 
applications like the one proposed at section 8.1. Indeed, if 
the number of markers is too high, the usefulness of the 
DPCM as a coating and visualization method for particle 
models progressively disappears because particles occupy 
the whole space. Then, the DPCM does not add a useful 
spatial extension anymore. 

 
Table 1 gives the performances obtained when an 

upstream computer directly send markers to the DPCM 
through the network. To respect a certain maximal limit in 
the frequency of the display, frames are ignored when an 
overloading occurs.  

.  
Number of 

markers 
1 20 50 10

0 
300 

Frequency 690 220 104 55 23 
Table 1: Performances for a 1100x1100 DPCM with data 
coming from Ethernet. 

 
 

7. Interface 

Our DPCM implantation has been made usable for end-
users thanks to an interface developed with QT 4. 
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Figure 9: User interface. On the left: the calibration mode. 
On the right: the simulation mode. 

 
This interface is divided into two different modes: a 

calibration mode and a simulation mode (see figure 9). 
 
 

7.1. The calibration mode   

This mode allows calibrating the DPCM before the 
simulation. The user can change its size and its position in 
accordance with positions of the markers in order to 
visualize the part of the space he wants. In this mode, the 
markers are represented by spheres whose ray is equal to 
the distance threshold of the viscous-elastic interaction 
with the DPCM. This threshold does not define a spherical 
shape that will be printed on the DPCM except when the 
stiffness is close to infinity. Nevertheless this 
representation gives an idea of the influence area of the 
markers. This information is very useful when the user 
defines the spatial parameters of the DPCM.   

 
 

7.2. The simulation mode 

Once the spatial properties of the DPCM are given, the 
user starts the physical modeling of the engraving process. 
To do so, he chooses: (1) the interactions for the mobile 
mass and the fixed mass of each phyxel; (2) the 
interactions between the phyxels and the topology for these 
interactions (for instance, interaction between 8 neighbors, 
4 neighbors, or more) The interactions are chosen from a 
library of various interactions (viscous, elastic, plastic, 
etc.). Then, he tunes the physical parameters of the 
interactions in real-time to obtain the expected behavior for 
the DPCM.  

A library of behavior examples is offered to the non-
expert user of the DPCM that covers a large panel of 
physical behaviors (propagation, plasticity, etc.). Some 
examples of behaviors are presented in section 8. 

The user finally chooses a type of visual rendering of the 
DPCM. He notably defines a color map that will 
correspond to a scale of deformations of the phyxels.  

 
 

8. Results 

This section shows some results we obtained. Results are 

classified by types of behavior. 
 

 

 
Figure 10: Real-time Dynamic Coating of a mass-
interaction model of smoke thanks to the DPCM method. 
Top: The upstream model without coating. Bottom: the 
same model coated thanks to the DPCM. 

 
 

8.1. Adding physically based warping and fraying  

In this example, we test the maximal real-time 
capacities of our application. The model we choose to 
visualize is the same than in [HL02]. It is simulated on a 
quadriprocessor Opteron 248 with 3 GB of RAM linked by 
an Ethernet connection to the PC that hosts the GPU on 
which the DPCM has been implemented. The smoke is 
simulated by 300 masses interacting through 3002 viscous 
interactions with spatial thresholds. So we are in a limit 
case of real-time physically based simulation. The final 
visualization frequency is around 23 Hz. The aim of the 
coating is to add in real-time physically consistent micro-
effects such as warping, fraying, micro-turbulences that do 
not belong to the upstream mass-interaction model of 
smoke. Figure 10 shows the results. 

 
8.2. Propagations effects 

In this example, the DPCM is used to add propagation 
effects to the dynamic of the upstream model. 

In a first example, the DPCM is used to render 
propagations on a lake surface. The physical parameters of 
the interaction have been tuned to obtain a fluid 
propagation (low viscosity and high stiffness). Markers are 
set on the water line (4 markers for each boat). We apply a 
background texture to simulate refraction. Reflection is 
achieved by making a first pass. This pass projects the 
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scene and reverses it on the water surface. The final 
rendering pass receives this texture and reads it to simulate 
the reflect deformation in accordance with the DPCM 
deformations (see figure 4). Figure 11 shows three boats on 
this lake. Waves are automatically mixed thanks to the 
physical model of the DPCM and bounce against the coast. 

 

 
Figure 11: Furrows caused by 3 boats on a lake 
 
The choice of topology of the interactions between 

neighboring phyxels is decisive in the propagation of 
behaviors exhibited by the DPCM.  

In Figure 12, the effect is the same if we choose to 
connect the four nearest neighbors or if we choose to 
connect the four diagonal neighbors. But the propagation 
speed is higher in the second case.  

 

  
Figure 12: Difference between two configurations in 
neighboring interactions for the same initial conditions. On 
the left: x-neighboring and y-neighboring phyxels  interact. 
On the right: diagonal phyxels  interact.  

 
Interesting chaotic behavior can be obtained by choosing 

more complex interactions topology. The behavior 
exhibited by figure 13 is a kind of dynamic Oil painting 
obtained by randomly deciding if two neighboring phyxels 
interact or not. 

 

 
Figure 13: A Real time “dynamic Oil painting” behavior 
obtained by a stochastic topology of the neighboring 
interactions.  

 
 

8.3. Plastic behaviors 

Non-linear interactions are used to create irreversible 
behaviors that allow obtaining permanent engraved tracks. 
We use a plastic interaction as proposed by [CLH96]. This 
interaction exhibits a hysteretic behavior by modifying its 
rest length when an elastic threshold is reached. Phyxels do 
not interact with their neighbors because propagation 
effects are not necessary.  
 
In a first example shown in (figure 14), we modeled tracks 
of vehicles engraved in a loose soil. 

 

 
Figure 14: Vehicles on a loose soil. 

 
In a second example shown in (figure 15), the plastic 

interaction is used to interactively generate sandy terrain 
outlines. In this case, the user digs the soil in real time by 
means of a gesture device such as mouse of force feedback 
device. 
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Figure 13: Sandy terrain. 

 
 

8.4. Plastic behaviors mixed with propagation 

By mixing plastic behaviors and propagation effects, 
markers create waves that permanently mark the DCPM. 
Shapes, that can be more or less permanent according to 
the values of the physical parameters of the DPCM, are 
then emerging. One can use the metaphor of the wind or of 
the earthquake that model a terrain outline.  

Figure 14 shows a terrain profile generated in real time 
by the user through a gesture device.  

 

 
Figure 14: Interactive Real time terrain generation 
obtained by propagation and plastic behavior. 
 
In the last two examples (figure 15 and 16), a similar 
model is used to create sedimentary materials. An upstream 
mass-interaction model controlled by a gesture device 
engraves its tracks in this material to render a kind of 
fossilization-like effect. 
 

 
Figure 15: Interactive Real time Fossil tracks obtained by 
means of user action. 

 

 
Figure 16: Interactive Real time Fossil tracks in a harder 
material 
 
 
9. Conclusion and perspectives 

This paper proposed a real-time implementation of the 
DPCM method on GPU architecture. Real-time limits are 
reached with 1100x1100 phyxels and about 300 markers or 
more. Thanks to these performances, it is possible to cover 
a wide number of real-time coating processes in virtual 
reality interactive scenes.  

We have presented a new VR platform including a 
complete real-time simulation chain with a haptic force 
feedback device, a mass-interaction model that runs at the 
gesture frequency (more than 1000 Hz) and a complex 
coating process for complex phenomenon such as smokes, 
sand, water effects. 

Optimizations of the DPCM implementation can still be 
foreseen. One of the main drawbacks are the dependence of 
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the computation time to the number of the upstream 
markers. A new implementation is in progress to 
decorrelate the performances of the DPCM and the number 
of markers.  

Nevertheless, when dealing with implementation on 
hardware architecture that is not initially designed for the 
desired goal, such as the use of GPU for physically based 
models, we have to take care of what could seem to be an 
optimization. For instance, we have made geometrical tests 
on markers and phyxels to prevent the assessment of 
useless interactions. When a marker is to far from a 
phyxels, the calculation of the square root could seem 
useless. One can imagine not calculating this square root 
by using a kind of octree structure. But this kind of 
optimization has dramatically reduced the performances of 
the method. A test on a condition was more time 
consuming than a lot of parallel square root calculations.  

The 3D generalization of this 2D DPCM is now started. 
Nevertheless, a lot of physically based visual rendering can 
already be obtained with a 2D DPCM.  
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