
A real-time implementation of the dynamic particle coating
method on a GPU architecture

Kevin Sillam1, Matthieu Evrard1 and Annie Luciani1,2

1ICA laboratory, INP Grenoble, France

2ACROE, INP Grenoble, France

Abstract
This paper deals with a real-time implementation on graphic processor of the “dynamic particle coating
method” (DPCM) first proposed by [HL02] and founded on a mass-interaction formalism. When this method
was proposed, it was too much time-consuming to be inserted in an interactive application. This paper solves
this major drawback. Our real-time implementation allows inserting this method in a real-time simulation
chain composed of a haptic device, an upstream mass-interaction model that interacts with the user through
this device and the new real-time implementation of the DPCM method to visualize this model

Categories and Subject Descriptors (according to ACM CSS): I.3.5 Physically based modeling, I.3.3 real-time
visualization of particle models, I.3.1 GP/GPU, I.3.6 haptic interactions

1. Introduction

At the heart of the engraving process, there is a relationship
between two bodies, one that is hard and that can be called
“marker” and that modifies the state of another one that can
then be called the “engraving surface”.

When considering natural phenomena, a sedimentary
rock that shows a fossil is a durable engraving surface
marked by a prehistoric animal body. On the contrary,
water surface can be seen as a more voluble engraving
surface for the memory of a ricochet for instance. But the
engraving surface is always a memory, a trace of the
marker presence, of the effect that it had on the engraving
surface, whatever fleeting this memory can be.

A certain number of animation movies have used
engraving as a central process for the creation of pictures.
Indeed, the engraving process allows an artist to obtain
shapes with fuzzy, fleeting outlines.

Amongst the amount of such work, Alexandre
Alexeïeff’s approach is to be noticed [Ben01]. In the early
30’s, this atypical engraver built an engraving surface made
of thousands of pins able to orthogonally slide along a
fastening plan. Alexeïeff engraved this surface by moving
these pins thanks to various marking objects. Four light
sources light up this “pinscreen”. White areas appear where
the pins are the lowest and black areas when they are the
highest. The successive shots taken by a camera with
various configuration changes of the pinscreen artificially
create animated pictures.

Figure 1: Picture obtained with the pinscreen. Extract
from Alexeïeff’s short film “Eine Nacht Auf Dem Kahlen
Berge”, Berlin, 1933.

In Computer Graphics community, Alexeïeff’s pinscreen

has been implemented by Faria Lopes et al. [FR92] to
make this engraving technique possible through the
computer.

On a different scale than Faria Lopes et al., Habibi et al.

[HL02] goal is not to implement a new pinscreen method
but to use this engraving metaphor, called “Dynamic

4th Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2007)
J. Dingliana, F. Ganovelli (Editors)

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

Particle Coating Method” (DPCM), in order to solve a part
of the problem of particle models visualization.

Interacting particles whose movement is simulated are

able to product various rich behaviors as different as
deformable and non-deformable objects, smoke, pasts,
liquids, crowds, etc. [ECL06]. It is also well adapted to
interact with humans through haptic devices. But a major
limit to this kind of formalism when producing animated
pictures is that the space that particles occupy is restricted
to moving points if a visualization process, a coating mean,
is not applied. How do we pass from points to shapes?

This is an opened question that can hardly be solved in
most cases. Partial answers can be brought by: (1) adding
geometrical primitives to the points; (2) controlling explicit
representation of shapes (polygons, NURBS) by the
moving points; (3) extending points by using potential
fields with isosurface as in the implicit surfaces methods
[Bli82, BBB*97]. The first types of method (based on
explicit geometrical features) are unwieldy to render fuzzy
or highly deformable phenomena. The DPCM method can
be considered as a method close to the implicit surfaces
principle by considering that each moving point is creating
a potential field, whose profile is evolving along time
according to the dynamic of the point (velocities and
acceleration) whereas implicit surface evolution results
from a fixed potential field.

Figure 2: Real-time simulation chain. Haptic device –
upstream model – DPCM.

Habibi’s approach is to model a physical phenomenon

(smoke, water, etc) by a cascade of two physically based
particle models (see Figure 2). The first one (the upstream
model) has a variable topology. For example, in smoke
model, there are several moving masses between which the
graph of interactions varies according to the distances or
the velocities [HL02]. It models a general behavior and
interacts with human through an haptic device. The second
one, the DPCM, has a fixed topology. This means that
masses are linked by a predefined graph of interactions (as
it is the case in a deformable visco-elastic surface). These
masses are not moving in the whole space. They are
attached to a grid in the space and they only deform
themselves. The DPCM is engraved by the first upstream
model. This engraving is a deformation around the points
of the upstream model that engrave it. DPCM is thus able

to add to the points of the upstream model a spatial
evolving extension. Following the metaphor of engraving,
the upstream model plays the role of the markers and the
DPCM plays the role of the engraving surface. The
difference with material static engraving surface (such as
copper plate, wood, etc.) is that the DPCM, as it is
physically modeled, exhibits other physical behaviors (such
as fluid propagation as if one engraves in water, plastic
pastes, sand, …).

Similarly with the Alexeïeff’s pinscreen, the engraved
surface is discretized at the resolution of the final display
(in our case the computer screen), but each pin is replaced
by a dynamic pin able to move by itself. The marking
objects, the markers come from the upstream simulation
that sends particles positions that evolve in time.

Convincing sequences of smokes, sands, waters and even
solids have been produced by [HL02]. However, their
method was relatively time-consuming and it wasn’t
possible to integrate it inside an interactive application that
could include an haptic device for VR applications.

This paper aims at using “shaders”, which are programs
that are compiled and executed on modern graphic cards,
and taking advantage of calculation parallelization they
offer to obtain a real-time implementation of the DPCM
method described by Habibi et al. Indeed, the fixed and
regular topology of the DPCM suits well to large parallel
calculation.

Section 2 briefly reminds the DPCM method. Section 3
draw a brief state of the art on particle models on GPU.
Section 4 deals with our implementation. Section 5 shows
the incorporation of the method in a real-time simulation
chain that includes an upstream mass-interaction network
simulation. Section 6 gives obtained performances. Section
7 proposes an end-user interface. Section 8 finally exhibits
results. The most of them are new ones because human
gesture intervenes.

2. The Dynamic Particle Coating Method (DPCM)

More details on the DPCM can be found in [HL02]. One
could notice that the DPCM is a mass-interaction network
model as described in [LJF*91].

The inputs of the DPCM are a set of positions of points

along time. These points are the “markers” of the
engraving process. They mark, they engrave, the DPCM,
i.e. they act on it by creating tracks but the DPCM do not
act on it in return. That’s why we can speak about the
coating of an upstream particle model. We then simulate
upstream particle model and the DPCM in separate
architectures. Actually, any process like a simulation,
gestural captors or the reading of a motion file can supply
evolutions in time of the markers.

The DPCM is composed of a set of physical elements
called “phyxels” (for “physical elements”) by Habibi et al.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

70

Such phyxels are slightly different than those defined by
[MKN*04]. They are composed of a mass linked to a fixed
point by a one-dimensional physical interaction (figure 3).
The simplest interaction is the linear damped-spring but
more complex interaction such as plastic one will also be
used in this paper.

To model spatial physically based extensions of the
tracks made by the markers, physical interactions are
placed between phyxels. Each mobile mass interacts with
the mobile masses of its neighboring phyxels (and more
generally with any other phyxels). Our present
implementation of the DPCM is a 2D implementation, i.e.
a 2D array of phyxels, in which each phyxel interacts
physically with its 8 neighbors.

The markers are physically acting on each mobile mass

of the phyxels, pushing the phyxels and engraving the
DPCM, perpendicularly to the DPCM 2D surface, creating
a 3D engraving. From this action, the DPCM exhibits
physical behaviors (deformations, propagations, etc.)
according to its own physical parameters (i.e. the
parameters of all the interactions between the phyxels).

Phyxel
= d ynamic pin

Fixed mass

Mobile mass

Marker

Interact ion
between mobil e

mass and fix ed

mass

Visco-e lastic

interaction with a
threshold on

distance

Neighboring
interact ions

X

Z

Figure 3: Mass-interaction model of the DPCM.

Outputs of the DPCM are deformation scalar values that

correspond to the distance between the fixed and the
mobile masses of a phyxel. This array of scalar is used as
an input of a rendering method. The simplest method
proposed by [HL02], is the control of pixels color by linear
combination of the deformations values of some
neighboring phyxels. An extension is to control surfaces
points in a 3D space or orientations of normal orientations.
Some other rendering methods are presented at §4.2.3 to
extend the results of [HL02].

3. Implementation of particle models on GPU.

Programming on graphical processor units (GPU) has
been a success for some years. It is not only used for the
rendering of 3D scene but also for any kind of numerical
calculations that are well adapted to parallel processing.

Indeed, a fundamental difference of GPU with CPU is this
structural parallelization of calculations. For a global
review of the use of GPU programming in Computer
Graphics community see [OLG*05].

A general programming principle on this type of
architecture is to stock simulation variables inside GPU-
specific data structures like textures (that were initially
created to stock the RGBA components of the texture that
are usually displayed). Another principle is to use
programmable area of the GPU called “shaders” that will
process these data on the GPU. Calculation on these data
will by parallelized.

A number of recent works have been dedicated to the

implementation on GPU of particle systems immersed in
force fields [KKK*05] by following these principles. Other
implementations have taken into account interactions with
rigid objects [KLR04] or with others particles [GW05,
CL06]. Our work is quite close to these works while
implementation and applications are noticeably different.

In the quoted works, the variables stocked inside textures
are 3D positions of particles or of controlling points of
shapes directly rendered. A vector value directly
corresponds to a geometrical element of the 3D scene. In
our case, the scalar values we product with the DPCM
cannot directly correspond to a geometrical element in the
3D scene. These values control a rendering process: from
the simple direct control of the pixels color to a more
complex process (e.g. normal orientation used to determine
illumination of a surface). Moreover, interactions that were
implemented in quoted papers were simple linear
interactions like damped-springs. Another difference is that
more complex interactions are used in the model designed
by the end-user.

4. Implementation of the DPCM on GPU

4.1. Encapsulation of the simulation variables

Variables and some parameters that will evolve during
the simulation are encapsulated in texture data structures.

Given a DPCM of m by n phyxels, a texture whose size
is m x n is created on the graphic card (we use rectangular
textures to work with normalized coordinates). As a result,
each phyxel is located by a (x,y) position inside the texture.
For each phyxel, the texture contains its position at time t
(red component), its position at time t-1 (green
component). The blue component is used to stock
interaction parameters that will evolve during the
simulation.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

71

Figure 4: Global implementation scheme of the software
architecture of the DPCM simulation on GPU.

4.2. Steps in the algorithm

The algorithm is a loop made of three distinct passes (see
figure 4).

For each loop we have:
• to execute a “reading” pass during which the current

position of each marker is written in a specific texture
called “Markers texture”.

• to launch execution of the “simulation” pass which
writes inside the “phyxels texture” the new phyxel’s
height that depends on the calculation of the physical
algorithm.

• to execute a “rendering” pass which displays an image
controlled by the scalar value of the phyxels heights
on screen.

4.2.1. The reading pass

A texture is created to encode the positions of markers at
time t and t-1. This pass transfers this texture to the GPU.
Its size is k x 1 for k markers. The first two components are
used to encode positions. The last ones are used to encode
parameters of the interaction between a marker and the
DPCM like stiffness or a flattening coefficient [see HL02].

We have implemented 3 different origins for markers
trajectories:
• A motion file that can be produced by a simulation,

which is not necessarily a real-time simulation. We
used the motion and gesture encoding file format
called GMS (for gesture and motion signal [LEC*06])
that is well adapted to the real-time treatment of this
kind of motion data.

• A data flow that comes from a network connection.
An upstream simulation can then be done and be
synchronized in real-time with the DPCM (see section
5).

• Positions of a gesture captor

As a result, the markers’ evolution in time can come

from an upstream physical simulation like a particle system
or a mass-interaction network. This simulation can
temporally be uncorrelated to the DPCM simulation
because markers do not act on the DPCM. Nevertheless,
the real-time is wished for the DPCM simulation, whatever
the markers origin can be, the reading pass can’t be a
blocking step. That’s why latency caused by the hardware
access to this data must be strictly included in a simulation
time-step.

4.2.2. The simulation pass

The simulation pass takes the markers’ positions and the
phyxel’s height at time t and t-1 (the height of the mobile
mass compared to the height of the fixed mass). It writes in
a texture called the “phyxels texture” the new values of the
phyxels height by using the frame buffer object. It also
keeps positions at time t and updates the value of the
modifiable parameters of the interactions.

This simulation pass is divided into 4 steps:

• Calculation of the force applied on each phyxel by
the markers

Each marker interact with each phyxel that have

neighboring (x,y) coordinates. This interaction is a simple
viscous-elastic interaction with a threshold on distance
between the marker and the pin. This interaction is also a
unidirectional one [LJF*91] as said before.

• Calculation of the force applied on each phyxel by

its neighbors.

The mobile mass of each phyxel is linked by an

interaction to some of its neighbors. The topological choice
of the neighbors has a huge influence on the global
dynamic behavior. Section 8.2 shows an interesting result
that is obtained while considering a complex topology of
neighborhood.

• Calculation of the force applied on each phyxel by

an interaction with the ground.

This interaction is the interaction between the mobile

mass and the fixed mass of each phyxel.

• Calculation of the new heights of the phyxels

The new height of the phyxels is assessed from the sum

Fn of the forces described before.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

72

New height is given by:

Zn+1 = 2.Zn – Zn-1+Fn(Tech2/m)

Where m is the mass of the phyxel, Zn and Zn-1 the height

of the phyxel at time t and t-1, and Tech the sampling
period of the movement.

These calculations are made by the “simulation” shader

for each phyxel. This shader is a fragment shader of the
GPU. The obtained values (heights of the phyxels at time t
and t+1, updated parameters of the interactions) are sent
through the “phyxels texture” to the rendering pass.

4.2.3. The rendering pass

We make a second pass on the GPU to display the scalar

data (the height of the phyxels) on the computer screen.
Actually, this pass aims at transforming phyxels into
pixels. The way of applying this transformation can be
more or less complicated. We have experimented 3
different rendering methods for the DPCM:

• Mapping of colors:

The color of the pixel is chosen in accordance with the

height of the phyxels. Basically, this is a transformation
from 1 scalar to 3 components in a color space like RVB.
The user can choose the axis in this space. This kind of
rendering is very simple but close to Alexeïeff’s pinscreen
philosophy. For instance by defining white for a minimal
height and black for a maximal height the whole gray scale
is obtained (see figure 10).

• Bump Mapping [Bli78]:

This technique consists in emulating a relief from a

“normal” map and the position of a light source. We obtain
this effect by creating a “normal map” with a shader in
accordance with the derivation of the phyxels height
(considering the neighborhood). It is then possible to
brighten or to darken the diffuse light emitted by each pixel
to obtain a relief (see figure 5).

Figure 5: The resulting normal from the derivation of
neighboring phyxels.

• Displacement mapping:

It can also be interesting to visualize the 2D DPCM

inside a 3D space. This type of rendering method is notably
used to calibrate the screen i.e. placing it in accordance
with the markers positions. It also allows use to better
understand some dynamic phenomena by watching the
DPCM from another point of view.

We use the geometry shader to cut a surface in a huge
number of vertices that are controlled by the DPCM. A
dynamic surface is thus defined inside a 3D space.

4.2.4. Initialization

The system initialization is done by giving a height to the
phyxels equal to the rest length of interaction between the
mobile mass and the fixed one.

Noticeably it allows:
• being assured that each phyxel start from the same

height
• making a first test on the stability of the DPCM (the

heights of the phyxels do not vary before a
perturbation).

• preparing the DPCM to interact with markers. This
initialization is done each time the user wants the
DPCM to be in its initial balance state.

4.2.5. Variable encoding

The first implementation exhibited some noise in the
balance state due to data quantification. Indeed, data had
been encoded in an 8 bits number clamped in 0 and 1 (low
level mechanism in OpenGL). This quantification noise
was very huge (see figure 6). It was then necessary to
choose a higher appropriate quantification to make this
noise disappear. We finally obtained good results with a 32
bits float quantification.

Figure 6: Noise at the balance state while choosing a bad
encoding of the variables (here 8 bits)

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

73

5. The DPCM in a real-time simulation chain

A simulation is done on an upstream computer. It gives to
the DPCM the trajectory of a certain number of markers.
The problem is to transfer theses data as fast as possible,
from this computer to the computer that hosts the GPU.

We have used UDP protocol in an Ethernet network
because it is simple and fast. A frame is defined to
encapsulate the position data and to deal with the
coherence of the received data. Figure 7 describes this
frame.

Flag
number

of
masses

N°
Frame

N°
Mass posX posY N°

Mass

FFFF
FFFF 3 245 0 12.5 3.3 1

32 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits

Figure 7: A frame containing one sample of the upstream
simulation

This organization allows the receiving computer to

resynchronize itself on a new frame thanks to the flag. This
is a non-blocking reading step that allows both simulations
to run in parallel. Communication between both machines
is asynchronous because a new frame constrains the DPCM
simulation. But the goal is to obtain upstream simulations
that are fast enough to prevent this locking. The number of
masses is important information when the number of
markers changes during the simulation. The DPCM is then
able to readapt itself when this change occurs. The frame
number locates a lost frame while the mass number avoids
a discrepancy in the markers indexes. If a frame is not
correct, the user is warned and this frame is ignored.

Figure 8 shows a psychophysics Virtual Reality
experiment using a real-time platform. On the bottom left,
on can see the haptic feedback device that is connected to
the simulation.

Figure 8: The DPCM within a real-time simulation
platform

6. Obtained performances

The DPCM simulation has been achieved on a GTX 8800
(768 Mo) GPU plugged to a PC with a Dual Core II 2,4
GHz CPU.
These performances greatly depend on the number of
markers. They are presented here for a 1100 x 1100
resolution of phyxels.

In the case of the real-time chain (section 5) one should

take into account 3 possible blocking parameters:
• The speed of the upstream simulation.
• The speed of the communication between this

simulation and the computer used to visualize this
simulation. In our case it is a 100 Mbits/s Ethernet
communication that uses UDP protocol.

• The simulation speed of the DPCM.

The DPCM is used for visualization aims, so we can

accept a latency provided it is non visible. But a coherent
rate with the upstream chain has to be respected. Problems
of latency (due to the Ethernet communication as well as
the DPCM) occur for a number of markers greater than
300. This is quite acceptable for a number of real-time
applications like the one proposed at section 8.1. Indeed, if
the number of markers is too high, the usefulness of the
DPCM as a coating and visualization method for particle
models progressively disappears because particles occupy
the whole space. Then, the DPCM does not add a useful
spatial extension anymore.

Table 1 gives the performances obtained when an

upstream computer directly send markers to the DPCM
through the network. To respect a certain maximal limit in
the frequency of the display, frames are ignored when an
overloading occurs.

.
Number of

markers
1 20 50 10

0
300

Frequency 690 220 104 55 23
Table 1: Performances for a 1100x1100 DPCM with data
coming from Ethernet.

7. Interface

Our DPCM implantation has been made usable for end-
users thanks to an interface developed with QT 4.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

74

Figure 9: User interface. On the left: the calibration mode.
On the right: the simulation mode.

This interface is divided into two different modes: a

calibration mode and a simulation mode (see figure 9).

7.1. The calibration mode

This mode allows calibrating the DPCM before the
simulation. The user can change its size and its position in
accordance with positions of the markers in order to
visualize the part of the space he wants. In this mode, the
markers are represented by spheres whose ray is equal to
the distance threshold of the viscous-elastic interaction
with the DPCM. This threshold does not define a spherical
shape that will be printed on the DPCM except when the
stiffness is close to infinity. Nevertheless this
representation gives an idea of the influence area of the
markers. This information is very useful when the user
defines the spatial parameters of the DPCM.

7.2. The simulation mode

Once the spatial properties of the DPCM are given, the
user starts the physical modeling of the engraving process.
To do so, he chooses: (1) the interactions for the mobile
mass and the fixed mass of each phyxel; (2) the
interactions between the phyxels and the topology for these
interactions (for instance, interaction between 8 neighbors,
4 neighbors, or more) The interactions are chosen from a
library of various interactions (viscous, elastic, plastic,
etc.). Then, he tunes the physical parameters of the
interactions in real-time to obtain the expected behavior for
the DPCM.

A library of behavior examples is offered to the non-
expert user of the DPCM that covers a large panel of
physical behaviors (propagation, plasticity, etc.). Some
examples of behaviors are presented in section 8.

The user finally chooses a type of visual rendering of the
DPCM. He notably defines a color map that will
correspond to a scale of deformations of the phyxels.

8. Results

This section shows some results we obtained. Results are

classified by types of behavior.

Figure 10: Real-time Dynamic Coating of a mass-
interaction model of smoke thanks to the DPCM method.
Top: The upstream model without coating. Bottom: the
same model coated thanks to the DPCM.

8.1. Adding physically based warping and fraying

In this example, we test the maximal real-time
capacities of our application. The model we choose to
visualize is the same than in [HL02]. It is simulated on a
quadriprocessor Opteron 248 with 3 GB of RAM linked by
an Ethernet connection to the PC that hosts the GPU on
which the DPCM has been implemented. The smoke is
simulated by 300 masses interacting through 3002 viscous
interactions with spatial thresholds. So we are in a limit
case of real-time physically based simulation. The final
visualization frequency is around 23 Hz. The aim of the
coating is to add in real-time physically consistent micro-
effects such as warping, fraying, micro-turbulences that do
not belong to the upstream mass-interaction model of
smoke. Figure 10 shows the results.

8.2. Propagations effects

In this example, the DPCM is used to add propagation
effects to the dynamic of the upstream model.

In a first example, the DPCM is used to render
propagations on a lake surface. The physical parameters of
the interaction have been tuned to obtain a fluid
propagation (low viscosity and high stiffness). Markers are
set on the water line (4 markers for each boat). We apply a
background texture to simulate refraction. Reflection is
achieved by making a first pass. This pass projects the

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

75

scene and reverses it on the water surface. The final
rendering pass receives this texture and reads it to simulate
the reflect deformation in accordance with the DPCM
deformations (see figure 4). Figure 11 shows three boats on
this lake. Waves are automatically mixed thanks to the
physical model of the DPCM and bounce against the coast.

Figure 11: Furrows caused by 3 boats on a lake

The choice of topology of the interactions between

neighboring phyxels is decisive in the propagation of
behaviors exhibited by the DPCM.

In Figure 12, the effect is the same if we choose to
connect the four nearest neighbors or if we choose to
connect the four diagonal neighbors. But the propagation
speed is higher in the second case.

Figure 12: Difference between two configurations in
neighboring interactions for the same initial conditions. On
the left: x-neighboring and y-neighboring phyxels interact.
On the right: diagonal phyxels interact.

Interesting chaotic behavior can be obtained by choosing

more complex interactions topology. The behavior
exhibited by figure 13 is a kind of dynamic Oil painting
obtained by randomly deciding if two neighboring phyxels
interact or not.

Figure 13: A Real time “dynamic Oil painting” behavior
obtained by a stochastic topology of the neighboring
interactions.

8.3. Plastic behaviors

Non-linear interactions are used to create irreversible
behaviors that allow obtaining permanent engraved tracks.
We use a plastic interaction as proposed by [CLH96]. This
interaction exhibits a hysteretic behavior by modifying its
rest length when an elastic threshold is reached. Phyxels do
not interact with their neighbors because propagation
effects are not necessary.

In a first example shown in (figure 14), we modeled tracks
of vehicles engraved in a loose soil.

Figure 14: Vehicles on a loose soil.

In a second example shown in (figure 15), the plastic

interaction is used to interactively generate sandy terrain
outlines. In this case, the user digs the soil in real time by
means of a gesture device such as mouse of force feedback
device.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

76

Figure 13: Sandy terrain.

8.4. Plastic behaviors mixed with propagation

By mixing plastic behaviors and propagation effects,
markers create waves that permanently mark the DCPM.
Shapes, that can be more or less permanent according to
the values of the physical parameters of the DPCM, are
then emerging. One can use the metaphor of the wind or of
the earthquake that model a terrain outline.

Figure 14 shows a terrain profile generated in real time
by the user through a gesture device.

Figure 14: Interactive Real time terrain generation
obtained by propagation and plastic behavior.

In the last two examples (figure 15 and 16), a similar
model is used to create sedimentary materials. An upstream
mass-interaction model controlled by a gesture device
engraves its tracks in this material to render a kind of
fossilization-like effect.

Figure 15: Interactive Real time Fossil tracks obtained by
means of user action.

Figure 16: Interactive Real time Fossil tracks in a harder
material

9. Conclusion and perspectives

This paper proposed a real-time implementation of the
DPCM method on GPU architecture. Real-time limits are
reached with 1100x1100 phyxels and about 300 markers or
more. Thanks to these performances, it is possible to cover
a wide number of real-time coating processes in virtual
reality interactive scenes.

We have presented a new VR platform including a
complete real-time simulation chain with a haptic force
feedback device, a mass-interaction model that runs at the
gesture frequency (more than 1000 Hz) and a complex
coating process for complex phenomenon such as smokes,
sand, water effects.

Optimizations of the DPCM implementation can still be
foreseen. One of the main drawbacks are the dependence of

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

77

the computation time to the number of the upstream
markers. A new implementation is in progress to
decorrelate the performances of the DPCM and the number
of markers.

Nevertheless, when dealing with implementation on
hardware architecture that is not initially designed for the
desired goal, such as the use of GPU for physically based
models, we have to take care of what could seem to be an
optimization. For instance, we have made geometrical tests
on markers and phyxels to prevent the assessment of
useless interactions. When a marker is to far from a
phyxels, the calculation of the square root could seem
useless. One can imagine not calculating this square root
by using a kind of octree structure. But this kind of
optimization has dramatically reduced the performances of
the method. A test on a condition was more time
consuming than a lot of parallel square root calculations.

The 3D generalization of this 2D DPCM is now started.
Nevertheless, a lot of physically based visual rendering can
already be obtained with a 2D DPCM.

9.1. Acknowledgements

We would like to thank Mathias Paulin of IRIT
(Toulouse, France) for its fruitful advises on GP/GPU.
Thank you also to Julien Castet (ICA-INPG) and Jean-
Loup Florens (ACROE) for their help in the real time
implementation of the model of smoke and the Ethernet
communication protocol.

References

[BBB*97] BLOOMENTHAL J., BAJAJ C., BLINN J., CANI-

GASCUEL M.P., ROCKWOOD A., WYVILL B., WYVILL G..
In Introduction to implicit surfaces. Morgan Kaufmann,
1997.

[Ben01] BENDAZZI G. Alexeieff: Itinerary of a Master.
Dreamland, Paris, France. ISBN 2-910027-75-9. 2001.

[Bli78] BLINN J. F., James F. Simulation of Wrinkled
Surfaces, Computer Graphics, Vol. 12 (3), pp. 286-292
SIGGRAPH-ACM (August 1978)

[Bli82] BLINN J.F.. A Generalization of algebraic surface
drawing. ACM Transaction on Graphics, 1(3), pp 235-
256, 1982.

[CL06] CHANG L., LIU D.. Deformable Object Simulation
in Virtual Environment. In Proceedings of the 2006
ACM international conference on Virtual reality
continuum and its applications ISBN:1-59593-324-7, pp
327-330.

[ECL06] EVRARD M., CASTAGNE N., LUCIANI L.
MIMESIS: Interactive Interface for Mass-Interaction
Modeling. In Proceedings of CASA 2006, Geneva, July
2006, Nadia Magnenat-Thalmann & al. editors. pp177-
186.

[FR92] FARIA LOPES P., RUI GOMES M.. A Computer
Model For Pinscreen Simulation: A New Animation

Paradigm. Computer Graphics Forum 11 (1), 31–42
(1992).

[CLH96] CHANCLOU B., LUCIANI A., HABIBI A. Physical
Models of Loose Soils Dynamically Marked by a
Moving Object. In Proceedings of the Computer
Animation. June 1996, Geneva, Switzerland, pp 27-35.

[GW05] GEORGII J., WESTERMANN R. Mass-Spring
Systems on the GPU. In Simulation Practice and Theory
2005, Elsevier Science July 2005

[HL02] HABIBI A., LUCIANI A.. Dynamic Particle Coating.
In IEEE Transactions on Visualisation and Computer
Graphics, vol. 8, no. 4, Octobre-Decembre 2002, pp 383-
394.

[KKK*05] KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R. A Particle System for Interactive
Visualisation of 3D Flows. In IEEE transactions on
visualization and computer graphics, ISSN: 1077-
26262005 Nov-Dec,11(6):744-56

[KLR04] KOLB A., LATTA L., REZK-SALAMA C. Hardware-
based Simulation and Collision Detection for large
Particle Systems. In Graphics Hardware 2004. August
2004, pp 123-132.

[LEC*06] LUCIANI A., EVRARD M., CASTAGNÉ N.,
COUROUSSÉ D., FLORENS J.-L., CADOZ C.. A basic
gesture and motion format for virtual reality multisensory
applications. Proceedings of the GRAPP conference,
February 2006.

[LJF*91] LUCIANI A., JIMENEZ S., FLORENS J.-L., CADOZ
C., RAOULT O. Computational physics: a modeler
simulator for animated physical objects. Proceedings of
the European Computer Graphics Conference and
Exhibition. Eurographics’91, pp 425-436, Vienna,
Austria, Elsevier Ed, Sep. 1991.

 [MKN*04] MÜLLER M., KEISER R., NEALEN A., PAULY
M., GROSS M., ALEXA M. Point Based Animation of
Elastic, Plastic and Melting Objects. In Proceedings of
ACM SIGGRAPH Symposium on Computer Animation
(SCA), pp.141-151, 2004.

[OLG*05] OWENS J.D., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A., PURCELL T. J.. A
Survey of General-Purpose Computation on Graphics
Hardware. In Proceedings of Eurographics 2005, State of
the Art Reports. Dublin, Ireland, 29 August - 2
September, pp 21-51.

Sillam, Evrard, Luciani / A real-time implementation of the dynamic particle coating method on a GPU architecture

c© The Eurographics Association 2007.

78

