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Abstract

We present a Finite Element Method (FEM) implementation for cloth simulation on the GPU. The advantages of
FEM are twofold: the realism of cloth simulations using this method is improved compared with other methods
like the widely used mass-spring one, and it has a wider application rank because it can be used for general
triangulated cloth meshes.
We are able to detect collisions between cloth and other objects (solids or deformables) and also we deal with
self cloth collisions. This is also done in the GPU using image-based collision methods. We have also improved a
GPU-Gradient Conjugate method for solving the linear equation systems involved in the FEM solution.
Two more methods are also implemented in the GPU to compare with the FEM method: a mass-spring model
(based on rectangular meshes) and a constraint method (based on triangular meshes).

1. Introduction

Cloth simulation can be considered as a particular case in-
cluded at the more general framework of deformable mod-
els. A deformable model simulation requires the update of
the model vertex positions at each time step according to
some deformation law. This can be considered like a new
object representation at each time step and was not possible
take advantage of the old graphic cards for deformable sim-
ulations. Nowadays graphic cards incorporate programable
capacity for their GPU (Graphics Processor Unity) and al-
lows to read vertex positions from a texture in a vertex or
shader program.

On the other hand, to achieve a realistic cloth simulation,
one has to choose a dynamic model in order to obtain a
good approximation of the actual cloth behavior. One of the
most used models in the computer graphics community is
the mass-spring model [Pro95]. Nevertheless this model has
two main drawbacks, first it is designed for structured (or
rectangular) meshes. It gives poor results when applied to
general unstructured (or triangular) meshes. And second, it
is difficult to simulate an actual cloth material because the
elasticity parameters included in the model have no relation
with the physical parameters used in the industry.

We are interested in dealing with these two drawbacks and
also to implement the simulation in the GPU. This way we

have decided to choose the Finite Element Method (FEM)
as dynamical model using triangular elements in order to ap-
ply FEM to unstructured meshes, which gives us more flexi-
bility when modelling a garment. Moreover, Finite Element
methods are obtained directly from elasticity theory which
means that material parameters are naturally included in the
method.

Figure 1: Garment simulation in the GPU for a moving hu-
manoid.

When the implementation is aimed to the GPU, structured
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meshes are easier to include in the GPU internal texture cod-
ification. If unstructured meshes are used, it can be still done
but it will require an extra texture to deal with the vertex
connectivity. We have implemented the FEM method in the
GPU and compare its performance with the implementation,
also in the GPU, of the mass-spring model and with the first
GPU implementation of the Baraff and Witkin cloth con-
strain model [BW98] using implicit integration. This model
has been considered because, like FEM, it is also defined for
unstructured meshes.

The paper is organized as follows, section 2 is devoted
to previous work in the area, section 3 describes the cloth
simulation model and its GPU implementation. Results and
conclusions are shown on last section.

2. Previous work on cloth simulation

Cloth simulation is a well known and widely studied com-
puter graphics problem. We can roughly classify previous
work according to the emphasis on modelling, simulation
and computational efficiency. A good reference survey for
the field is [NG96].

Early works are essentially devoted to the modelling as-
pects. Papers by Terzopoulos et al. [TPB87], [TF88] where
the first physically-based ones. They introduce cloth simu-
lation for graphics community as a problem of deformable
surfaces and used techniques from mechanical engineer-
ing like the finite element method and energy minimisa-
tion. Other approaches on the dynamic modelling have been,
the particle-based models from the works of Breen et al.
[BHW94] and Eberhardt et al. [EWS96], the energy-based
models from Carignan et al. [CYT92] and Baraff and Witkin
[BW98]. The most successful approach in modelling has
been the mass-spring one, introduced by Provot [Pro95].

One of the first, present and more successful work in cloth
simulation is devoted to the MiraLab team leaded by N.
Magnenat-Thalmann. Their contributions start in the early
80’s and have reached many important results in all the
above areas classification [Miralab].

Like in other graphics topics, the efficiency of an im-
plementation is related both with the chosen model and
the hardware performance. Moreover, a trade-off between
speed and precision has to be assumed, the work of Hauth
and Etzmuss [HE01], and the one of Volino and Magnenat-
Thalmann [VMT01] discuss the convenience of numerical
integrators. The final decision for choosing one simulation
model or another is mainly related with the final application
field, for video-games or films the requirements are totally
different. The work of Jacobsen [Jac01] for the game indus-
try has been the pioneer in introducing a dynamic model for
the cloth together with the numerical integrator, the Verlet
method, which is suitable for GPU implementations. The
first GPU cloth implementation is due to S. Green [Gr03],
a structured rectangular mesh cloth and a solid sphere are

simulated using Verlet method on the GPU. Only stretch
forces has been simulated. For dealing with collisions on the
GPU image based methods are introduced by Vassilev et al.
[VSC01] for walking humanoids without dealing with oc-
clusions. Other recent papers by Kolb et al. [KJ01], [KLR04]
studies collisions with complex but static objects.

Müller et al. [MDM02] presented a FEM-based approach
for real-time deformations on the CPU. By estimating the
rotational part of the deformation and using linear elastic-
ity, they create plausible animations free of the disturbing
artifacts present in linear models and faster than non-linear
models. Teschner et al. [THM04] perform deformations on
low resolution tetrahedral meshes, coupled with high reso-
lution surface meshes used to visualize the deformed body.
FEM methods applied to cloths use typically non-linear el-
ements, because textiles are very flexible and bend easily,
forcing deformation being modelled by the Green’s strain
tensor. Eztmuss [EKS03] introduce a FEM linear method
that can be applied for large deformations using rotation cor-
rection directly deduced from the non-linear Green’s tensor.

We use ideas from this last paper to implement the FEM
method in the GPU and we compare it with our own GPU
implementations of the other approaches: the mass-spring
model [Gr03] using Verlet integrator, but taken into ac-
count also shear and bending forces; and the Baraff-Witkin
[BW98] constrain model using implicit integration.

3. Model Description

In this section we will describe the method we have used for
modelling cloth behavior according to elasticity laws.

The dynamics of the cloth will be determined by the La-
grange equation assuming that forces are non-conservative,
[GOL50]

Mẍ+Cẋ+
∂V (x)

∂x
= fext (1)

where x is the position, V (x) is the elastic potential, M is
the mass density, C is the damping density and fext are the
applied external forces.

ẋ = v (2)

Mv̇ = −Cv−K(x− x0)+ fext . (3)

Here K denotes the stiffness matrix computed from the elas-
tic potential as it will be explained next.

The deformations produced in the cloth can be expressed
in terms of the metric tensor. For in-plane deformations:

εi j =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

(4)
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where ui, u j are displacements in the cloth and εi j denotes
the deformation terms. If i = j deformation represents the
elongation of the cloth, whereas i 6= j is related to shear de-
formation. Deformations out-plane are obtained using bend-
ing forces.

The FEM allows to find the solution of a differential equa-
tions system representing a model of a physical problem in
a continuous medium [ZT93].

Linear elasticity uses a linear strain formulation, the
Cauchy strain tensor, as well as a linear material law and
yields linear partial differential equations that can be han-
dled efficiently by an implicit time integrator. The reason
why linear elasticity is not adequate to simulate cloth be-
havior is that a linear strain approach is only valid for small
displacements or rotations. However, since textiles are very
flexible and bend easily, the linear formulation, based on the
Cauchy strain tensor is not valid.

3.1. The shape functions

FEM methodology is based on considering the continuous
material problem as a discrete problem which is solved on
a set of points (nodes) associated to the elements that de-
composed the geometry domain. The solution is extended to
the whole domain by interpolation using the shape polyno-
mial functions Ni associated to each node. Now we present
a different way, from the one usually found in many books,
to compute the shape functions which is more suitable for
GPU implementations.

In the linear interpolation case, elements are triangles and
nodes are the vertex. Shape functions are linear functions
defined implicitly as
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where (xi,yi,zi), i = 1,2,3 are the vertex coordinates.

One important property of the shape functions is the nor-
malization condition, included in the first equation of (5) is
written as N1 + N2 + N3 = 1. This can be used in order to
remove one of the shape functions in the above expression
yielding





x− x3
y− y3
z− z3



 =





x1 − x3 x2 − x3
y1 − y3 y2 − y3
z1 − z3 z2 − z3





[

N1
N2

]

,

that can be expressed using the notation

ei = (xi − x3,yi − y3,zi − z3)
T , i = 1,2 as





x− x3
y− y3
z− z3



 =
[

e1 e2
]

[

N1
N2

]

(6)

Multiplying by the transposed matrix [et
1et

2] one can obtain

the explicit expressions for the shape functions and their
derivatives:

N1 = [(et
2 · e2)(et

1 ·X)− (et
1 · e2)(et

2 ·X)]/det

N2 = [(et
1 · e1)(et

2 ·X)− (et
1 · e2)(et

1 ·X)]/det

N3 = 1−N1 −N2

dN1 = [(et
2 · e2)e1 − (et

1 · e2)e2]/det

dN2 = [(et
1 · e1)e2 − (et

1 · e2)e1]/det

dN3 = −dN1 −dN2

where X = (x− x3,y− y2,z− z3)
t and

det = (et
1 · e1)(et

2 · e2)− (et
1 · e2)

2.

As we pointed out in the previous subsection for large de-
formations, Cauchy’s strain tensor is not valid and usually
Green’s stain tensor G is used. G is expressed in terms of the
deformation gradient J = ( ∂D

∂u1
, ∂D

∂u2
):

G =
1
2
(JtJ− Id).

The linearization of Green’s tensor, with the assumption that
the deformation derivatives ∂D

∂ui
are small, yields to Cauchy’s

strain tensor.

For each triangle T we compute the shape functions N j

and their derivatives ∂N j
∂ui

associated to each vertex j in the
rest state.

3.2. Corotational Method

As mentioned above, large rotations prevent the use of the
linear strain formulation. This is due to that Cauchy’s tensor
is not invariant under rotations. Hence, in each time step we
are going to remove these rotations before computing the de-
formation forces. This is known as corotational method and
it is equivalent to build a rotated rest state and linearizing
with respect to this rest state. For that we consider the po-
lar decomposition of the deformation gradient , that is, the
deformation gradient J can be decomposed into a rotation R
and a pure deformation U .

J = R ·U (7)

For tetrahedra elements Müller et al. [MDM02] uses a per
vertex stiffness warping approach to compute the rotational
part. Etmuss et al. [EKS03] introduces another CPU algo-
rithm for triangles based on a SVD decomposition to find the
involved rotation. We have implemented a triangle version
for the GPU consisting of a new adaptation of the method
introduced on [MDM02], [NPF05]. Instead of making a ver-
tex based calculation, we compute a stiffness warping based
on the triangle face.

If we denote by e1 and e2 two adjacent edges of a triangle
in its rest position, we obtain an orthonormal base of the
space from a Gram-Schmidt step ẽ2 = e2 − (e1 · e2) · e1 and
finally using the cross product e3 = e1 × ẽ2. This way we
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obtain a base N = [e1, ẽ2,e3] of the space. Analogously, if Ñ
denotes the corresponding base associated to the deformed
triangle, then the rotational part R is computed as

R = N · Ñ (8)

Finally we follow [EKS03] to compute the terms associ-
ated to stretch and shear forces. Here the elasticity parame-
ters are introduced according to the type of simulated mate-
rial.

3.3. Bend Forces

For simulating real cloth a bending term has to be intro-
duced. Most bend forces in textile animation rely on some
Laplacian formulation as all models based on springs lead to
such a formulation [EG02]. This includes the notable work
of Choi et al. [CK02]. Here, we also follow [EKS03] for
compute a bending force term.

4. Integration method

For the sake of stability, to solve the dynamic system (2) we
use an implicit method. We consider the system

ẋi+1 = xi +hvi+1 (9)

Mv̇i+1 = Mvi +h( fext −Cvi+1 −K(xi+1 − x0)) (10)

Substituting (9) in (10) we get a linear system of equations

(M +hC +h2K)vi+1 = Mvi +h( fext −K(xi − x0)) (11)

Denoting

A = M +hC +h2K

and

b = Mvi +h( fext −K(xi − x0))

(11) is reduced to the usual form Ax = b.

4.1. Conjugate Gradient on the GPU

The above linear system can be solved using different meth-
ods. Due to our restriction to the GPU, we have chosen an
iterative method well suited for GPU implementation. Al-
though there exists previous GPU implementations of the
Conjugate Gradient method [KW03],[GPU-2], we present
here an optimal implementation for present graphic cards.

The traditional gradient conjugate algorithm using orthog-
onal directions consists in the following steps:

p0 = r0 = b−Ax

for each step

u = Api

α =
rt

i · ri

pt
i ·u

xi+1 = xi +α pi

ri+1 = ri −αu (12)

if (|rt
i+1 · ri+1| < tolerance ) break;

β =
rt

i+1 · ri+1

rt
i · ri

(13)

pi+1 = ri+1 −β pi

If we substitute (12) in (13), then GC has the following
form

p0 = r0 = b−Ax (14)

for each step

u = Api (15)

dr = rt
i · r

t
i+1, dg = pt

i ·u, db = rt
i ·u, da = ut ·u (16)

α =
dr

dg
, β =

dr −2αdb +α2da

dr

xi+1 = xi +α pi (17)

ri+1 = ri −αu (18)

pi+1 = ri+1 +β pi (19)

if (|βdr| < tolerance) break;

This new formulation of the GC method allows to a better
data compactification and gives a better performance when
using the GPU. We use only two framebuffer objects, in
short FBO. One of them attaches the textures of unknown x,
residual term r and previous unknown values p. This FBO is
used to render the fragment shader which compute the equa-
tion (14) and the fragment shader which compute simultane-
ously equations (17), (18) and (19). We would like to point
out that the output of the fragment shader is two colors (p0
and r0) in the first case, and three colors (x, r and p) in the
second case. To do this we employ the Multi Render Target
extension. Furthermore, the draw buffer and read buffer are
the same texture saving in this way GPU memory and swap
time between textures.

The second FBO is used to solve the equation (15) and
parallel reduction (16), see [GPU-2] for the details.

4.2. Collision Detection

A lot of effort has been done in this field, however in most
cases the collision detection is not carried out integrally on
the GPU. Algorithms are divided in two groups: Collisions (
cloth/object ) and Self-collisions (cloth/cloth).

For the first case, we use the technique introduced in
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[RSS05] inspired on [VSC01]. This method is an image
based technic, consisting in grabbing the object depth-buffer
in each time step such that object deformations, like a human
body in our case, are also taken into account. Moreover, the
collision detection is made between corresponding pieces of
the object and the cloth in a fragment shader. When, based in
the corresponding depth, a collision is reported, the involved
cloth vertex is marked as a collision vertex for response. One
of the key points for having a robust collision detection is
related with the number and position of the local cameras
chosen to grab the associated depth buffer object.

Figure 2: Local camera position for collision detection.

To handle self-collisions we decide to implement on GPU
an optimal spatial hashing method [THM03] with the differ-
ence that we make a local voxelization for each time step
only in the space covered by the cloth.

The corresponding hash function for each point X =
(x,y,z) is defined as

hash(X) =

((

x−mx

Mx −mx
+

y−my

My −my

)

GS +
z−mz

Mz −mz

)

GS.

where m = (mx,my,mz) and M = (Mx,My,Mz) are the
minimum and maximum respectively of the cloth in each
time instant, and GS is the fixed grid size.

4.3. Collision Response

In order to achieve a stable collision response, we have
adapted a solution introduced in [BW98]. This solution mod-
ify both velocity and position using an arbitrary correction
term, y, introduced only to move a particle to a desired lo-
cation during the backward Euler step such that small jumps
are filtered. This correction term modifies expression (2) to
the following one

ẋ = v+ y

Mv̇ = −Cv−K(x+ y− x0)+ fext .

When implemented on the GPU this correction term in-
troduces only an extra texture.

Figure 3: Collision and Self-collision response example.

5. Results

We have made a performance test between the three methods
discussed in this paper: Mass-Spring, Constraint method and
FME. We use a simple cloth model consisting in a rectangu-
lar geometry hanging for two points (see fig. 4). The results
are shown in table 1 frame rates are obtained using a PC
with an AMD 3Ghz and 7800 Nvidia GTX graphic card. As
one can see, our FME implementation is still real time for
the biggest test mesh. It obtains similar time performance
for 64× 64 mesh but with much more realisme due to the
dynamic model.

Figure 4: FEM simulation corresponding to the test model
used for the three methods.

In figure 5 we show an exemple of a more complex cloth
scene simulated with FEM on the GPU. Both, collisions and
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Table 1: Frame rates obtained with the three methods with
CPU and GPU implemetations

CPU (GPU) Mass-Spring Constraints FEM
32×32 333 (724) 11 (80) 72 (648)
64×64 22 (181) 1.7 (14.4) 19 (171)

128×128 8 (60) 0.3 (2.6) 3 (27)

self-collisions with the woman body and the cloth respec-
tively are detected and treated according to the method ex-
plained in the previous sections.

6. Conclusions

We have presented an optimal implementation of the FME
method for cloth simulation on the GPU. The realism
achieved by this approach is ensured by the model because it
is based on engineering parameters. The fact that the method
is appropriate for unstructured meshes gives more versatility
for modelling garments or other cloth pieces.

Our complete simulation runs on the GPU, this include
the solver for differential equations, the linear system solver
and collisions and self-collisions. We have implemented also
in the GPU two more methods in order to compare efficiency
and visual results.
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