
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

Screen Space Spherical Harmonic Occlusion

S. Herholz1,2, T. Schairer1, A. Schilling1, W. Straßer1

1University of Tübingen WSI/GRIS, Germany
2Stuttgart Media University, Germany

Abstract

In this paper we present a new algorithm for real-time directional occlusion sampling. We combine the real-time
capabilities of Screen Space Ambient Occlusion (SSAO) with the Spherical Harmonics (SH) representation of lo-
cal directional occlusion. SH are well established and used in modern off-line rendering implementations such as
PantaRay [PFHA10].
Through our combination we are able to transfer a method for realistic local directional occlusion effects from off-
line rendering to dynamic real-time applications. These local occlusion effects react to the environmental lighting
situation and lead to dynamic and colored local occlusion shadows while only generating a small computational
overhead compared to SSAO. Unlike other real-time directional occlusion algorithms such as Screen Space Di-
rection Occlusion (SSDO) [RGS09] our occlusion sampling is separated from the actual lighting process and
therefore can be easily integrated in existing SH lighting methods such as Irradiance Volumes [GSHG98]. We
furthermore extend our algorithm to include first bounce indirect illumination effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The major goal in rendering is to solve the rendering equa-
tion introduced by Kajiya [Kaj86]. Especially when it comes
to the simulation of global illumination effects solving the
integral over the incoming radiance and computing the visi-
bility of the upper hemisphere of a point is a major task. A
complete solution of this integral for each point in a scene is
extremely complex and time consuming. This is why mod-
ern rendering techniques make approximations to get a good
result in an acceptable time. In off-line rendering for stills
and animated movies, methods such as stochastic raytracing,
point based global illumination (PBGI) [Chr10], and ambi-
ent occlusion (AO) are used to generate realistic global illu-
mination effects. Especially the use of AO has become very
popular in recent years.

1.1. Ambient Occlusion

AO was first introduced by Millers [Mil94]. It assumes that
local shading effects only depend on the neighboring geom-
etry of a point and therefore can be represented by a scalar
factor describing the percentage of occlusion by local geom-

etry. This concept makes the calculation of AO independent
from the irradiance calculation. Local occlusion shadows are
added to a scene by multiplying the calculated irradiance by
the AO factor. Langer and Bülthoff [LB00] have shown that
the use of AO increases the perceived realism of a scene, es-
pecially when fine structures are involved. In modern film
industry methods based on Monte-Carlo raytracing or PBGI
are used to calculate the AO of a point in the scene. Because
of the complexity of these methods they are not directly ap-
plicable for real-time applications such as games, where the
AO of a dynamic scene needs to be updated at every frame.
Therefore Mittring [Mit07] and Shanmugan et al. [SA07]
developed a screen space sampling algorithm (SSAO) to ap-
proximate the AO factor of a point in the scene by just taking
the depth information of the surrounding pixels of this point
in screen space into account. The current work of McGuire et
al. [MOBH11] and Hoang et al. [HL10] optimized the orig-
inal algorithm in terms of speed, artistic adjustability and
reliability. Figure 1 shows an example of the use of a SSAO
algorithm.

Even though AO increases the perceived realism of a
scene it has one drawback: Due to the fact that AO repre-

c© The Eurographics Association 2012.

DOI: 10.2312/PE/VMV/VMV12/071-078

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV12/071-078

S. Herholz & T. Schairer / S3HO

Figure 1: An example of a scene rendered using SSAO: (left)
the diffuse lighting of the scene, (middle) the ambient occlu-
sion factor for the scene calculated using SSAO and (right)
the combined image.

sents the local occlusion of a point just by a scalar factor,
all directional information of the occlusion is disregarded.
This leads to static shadows which appear to be grayish even
under complex lighting environments. The AO shadows also
do not change if the incoming lighting situation of a point
changes.

One way to overcome this shortcoming is presented by
Sloan et al. [SKS02]. They use spherical harmonics (SH) to
represent the directional occlusion of a point in the spheri-
cal frequency domain. In combination with a SH representa-
tion of the environmental lighting situation as described by
Ramamoorthi and Hanrahan [RH01] the irradiance integral
E(p) can be evaluated as the scalar product of the coeffi-
cient vectors c[Lin] and c[t] for the incoming light Lin(s) and
a SH representation of a transfer function t(s) (e.g. cosine
lobe and the directional occlusion) in the frequency domain.

E(p) =
∫

S
Lin(s)t(s)ds ≈ c[Lin] · c[t] (1)

As a result of this combination the local occlusion reacts
to the environmental lighting situation, causing colored and
dynamic shadows. This method is extensively used by Pan-
taleoni et al. [PFHA10] for the feature film Avatar. Because
the calculation of the SH representation of the directional oc-
clusion function is based on raytracing its calculation is not
real-time capable and therefore not applicable for interactive
dynamic applications.

The recent work of Ritschel et al. [RGS09] and Klehm et
al. [KRES11] integrate local directional occlusion effects in
interactive real-time applications.
With their "Screen Space Direction Occluion" (SSDO) algo-
rithm Ritschel et al. [RGS09] combine the calculation of lo-
cal occlusion and lighting in screen space. During the screen
space occlusion sampling the incoming light for each unoc-
cluded direction is evaluated by sampling an environment
map. Because only light from unoccluded directions is taken
into account, the resulting local shadows depend on the di-

rection of the incoming environmental light.
The "Screen Space Bent Normals and Cones" (SSBN) ap-
proach described by Klehm et al. [KRES11] combines the
concept of bent normals from Landis [Lan02] with the SSAO
sampling method. In a separate pass a bent normal is calcu-
lated for each point using a screen space sampling algorithm.
This bent normal is then used with a set of pre-convolved en-
vironment maps during lighting calculation.
While both concepts generate directional occlusion effects
such as colored shadows they either need to sample the oc-
clusion during the lighting calculation (SSDO), making it
hard to reuse the directional occlusion information in ex-
isting pipelines, or need time consuming pre-calculations
(SSBN), making it hard to react on changes of the environ-
mental lighting setup.

2. Our Technique

With our new "Screen Space Spherical Harmonic Occlu-
sion" (S3HO) algorithm we combine the benefits of spher-
ical harmonics in the lighting calculation as described by
Sloan et al. [SKS02] with the real-time capabilities of SSAO
algorithms. This enables us to calculate the SH coefficients
for the directional occlusion in real-time for dynamic scenes.
When combined with a SH lighting method (as described in
Section 2.2) the algorithm generates realistic local occlusion
effects when compared to a raytraced directional occlusion
implementation. Our algorithm even outperforms SSDO in
terms of noise and computational time and SSBN in terms
of accuracy in the color of the occlusion shadows.
Because the calculation of the SH occlusion coefficients is
independent from the lighting calculation, it can be done in
a separate rendering pass. Therefore it should be easy to inte-
grate them in existing SH lighting methods such as described
by Tatarchuk [Oat05], which is extensively used by Disney
in there game related to Cars 2 [HHE11].
We also present an extension of our algorithm to support
screen space indirect illumination effects.

2.1. Screen Space Spherical Harmonic Occlusion
Sampling

To determine the SH representation of the local directional
occlusion for each pixel all directions of the upper hemi-
sphere have to be checked for occluders till a defined dis-
tance is reached. The traditional method as described by
Sloan et al. [SKS02] is using a raytracing-based method to
evaluate the local visibility. This method is not real-time ca-
pable and thus not usable for interactive dynamic scenes.
In our S3HO approach, we calculate the SH coefficients for
the local occlusion of each pixel by evaluating the visibility
function in screen space. Since we want to use the SH coeffi-
cient vector later to evaluate the diffuse irradiance of a point
we add a normal oriented cosine lobe to the function. We
calculate the SH coefficient c[S3HO]i for the SH basis func-
tion yi by using a Monte-Carlo integration of the product of

c© The Eurographics Association 2012.

72

S. Herholz & T. Schairer / S3HO

Figure 2: Graphical representation of the S3HO sampling
method: (left) example of the screen space occlusion sam-
pling method and (right) the SH representation of the occlu-
sion function generated with S3HO.

the visibility function VSS and the SH basis function.

c[S3HO]i(p) =
4π

2N

N

∑
j=1

VSS(p,p j,dmax)yi(s j)(n · s j) (2)

To evaluate the visibility of a pixel in screen space, we just
need the position and normal of each visible point of the
scene represented by a screen pixel. We calculate the SH
coefficient c[S3HO]i for the point p using a set of N sample
points p j, which are uniformly distributed in all directions s j
of the upper hemisphere of p. Since we want to sample the
direction from p to the border of the local upper hemisphere,
the distance of the sampling points and p is distributed be-
tween 0 and dmax. The diffuse cosine lobe is added by mul-
tiplying the visibility by the scalar product of the surface
normal n at p and the sampling direction s j.
The left image in Figure 2 shows how the screen space visi-
bility function VSS evaluates the visibility of a point p using
screen space information. The samples p j and pk are po-
sitions picked from inside the upper hemisphere of p. The
points p′ j and p′k are the positions of scene objects at the
projected screen space positions of p j and pk. The point p′ j
is closer to the camera as p j therefore the direction p j is
tagged as occluded and VSS(p,p j) returns 0. The point p′k
lies outside the upper hemisphere of p. Therefore, the di-
rection pk is tagged as unoccluded and VSS(p,pk) returns 1,
although it is closer to the camera than pk. For a smooth lo-
cal occlusion effect a visibility increasing with the distance
d such as (1− 1

1+λ∗d) can be used to weight the visibility for
occluded directions. Lambda is used to control the strength
of the effect.
The right image in Figure 2 shows the SH directional occlu-
sion function generated using this sampling method. The two
red cones represent the unoccluded directions from where
light can access the point p.

2.2. Diffuse Spherical Harmonics Lighting

We calculate the diffuse lighting of a scene by using a de-
ferred shading pass and the concept of spherical harmon-

ics lighting as described in Section 1.1. When using SH for
evaluating the lighting of a scene the irradiance integral is
calculated by using the scalar product of the SH coefficient
vectors of the incoming radiance and a transfer function. We
calculate the diffuse irradiance Ediff of a point p by using the
incoming radiance c[Lin] and our previously calculated di-
rectional occlusion function combined with the cosine lobe.

Ediff(p) = c[Lin](p) · c[S3HO](p) (3)

Due to the additivity of light and spherical harmonics coeffi-
cients the SH coefficient vector c[Lin] for the incoming light
function for each pixel at the scene position p can be cal-
culated by accumulating the SH coefficient vectors for the
environment/ambient light function c[env] and the SH coeffi-
cient vectors c[l](p) for each light source l with respect to p.

c[Lin](p) = c[env]+
n

∑
l=1

c[l](p) (4)

Since the environmental/ambient light is typically static its
SH representation is the same for each point in the scene.
It can be generated from an ambient color, an environment
map, or from a HDR light probe such as presented by De-
bevec [Deb05].
We continue the calculation of c[Lin] by evaluating the in-
coming radiance arriving at p from each light source. Sim-
ilar to Sloan [Slo08] we are using zonal harmonics and the
SH representation of the Hanning function to generate an SH
light function from the direction of the light source relative
to p.
Figure 3 shows two examples for this lighting procedure
where two points get lit by the same incoming light function
but with different directional occlusion functions. The in-
coming light function c[Lin] is projected on a sphere where
the color on the surface of the sphere is equal to the light
coming from this direction. The scenario contains two light
sources: one orange one from the upper left and one blue one
from the upper right. The SH representation of directional
occlusion of the points p1 and p2 are projected on a sphere
where the distance to the origin is equal to the value of the
occlusion function in this direction, forming red cones in the
unoccluded directions. In the left image p1 is occluded from
the right. Through the SH occlusion function only light from
the upper left can access p1, so only orange light can light p1
and its color gets orange. In the right image the situation is
vice versa.

2.3. Screen Space Indirect Illumination

In their paper Sloan et al. [SKS02] present a method that
uses the SH transfer function to not only represent the vis-
ibility and diffuse reflection but also integrates indirect il-
lumination effects. In combination with Ritschel and col-
leagues [RGS09] idea of using the identified screen space
occluders as indirect illumination sender, we extended the

c© The Eurographics Association 2012.

73

S. Herholz & T. Schairer / S3HO

Figure 3: Examples of spherical harmonic lighting using
an occlusion transfer function. Both images are lit by the
same incoming light setting but have different occlusion sit-
uations: (left) p1 is occluded from the right and (right) p2
is occluded from the left. This different occlusion situations
lead to different irradiance colours for p1 (orange) and p2
(blue).

SH transfer function of our S3HO algorithm to take in-
direct illumination into account. The new transfer func-
tion c[S3HOGI] for a point p is an additive combination of
the SH coefficient vector c[S3HO](p) and an SH coefficient
vector for the indirect illumination c[SSGI](p). Because the
indirect illumination can be of different colors than the ma-
terial at point p the c[S3HOGI] and c[SSGI] consist of three
separate coefficient vectors, one for each RGB color. The SH
coefficient vectors for the indirect illumination are generated
during the occlusion sampling process. For each of the m
samples identified as an occluder oi is treated as an indirect
illumination sender. Therefore the form factor f between p
and oi is calculated. The indirect illumination which p re-
ceives from oi is represented by the product of the diffuse
SH transfer function and the diffuse BRDF (ρ

π
) of oi. The

diffuse transfer function of oi is a SH coefficient vector c[cos]
of a cosine lobe oriented to the surface normal of oi.

c[SSGI](p) =
m

∑
i=1

f (p,oi)
ρ

π
c[cos] (5)

Instead of approximating an unoccluded transfer function
for each occluder it is possible to reuse the calculated occlu-
sion information of an occluder from the previous frame, as
done by Ritschel and colleagues [RGS09]. However, since
the colored occlusion transfer function contains three SH-
coefficient vectors for each RGB color this would increase
amount of data needed to be accessed for each occluder,
which would affect the execution time of the algorithm ad-
versely.

Figure 4 shows an example of the generation of a SH coef-
ficient vector for the occlusion and indirect illumination for
a point p. The left image shows the calculated SH occlusion
function c[S3HO] of point p. During the screen space sam-
pling process the points o1 and o2 are identified as occluders
of p. The surface of o1 is blue and a blue SH representation

Figure 4: Example of the integration of 1-bounce indirect il-
lumination effect in the SH occlusion function. (Left) the SH
occlusion function for p and the SH transfer functions for the
indirect illumination from screen space occluders. (Right) il-
lustration of the accumulated occlusion function.

of a cosine lobe is generated and scaled using the BRDF
of o1 and the form-factor between p and o1. The surface
of o2 is green which leads to a green scaled SH representa-
tion of a cosine lobe.
The right image shows the combination of the SH occlusion
function for p and SH transfer functions for the indirect il-
lumination from o1 and o2. When light comes from the left,
green indirect illumination from o2 is added to the evaluated
irradiance for p. Otherwise, when light comes from the right
blue indirect illumination is added from o1.

3. Implementation

Our algorithm is implemented on the GPU using OpenGL
and GLSL fragment shaders. Each step is implemented in a
separate deferred rendering pass. To access the screen space
information we are using a GBuffer holding the position and
normal in camera space for each visible point of the scene,
with both information stored in a Float16 render target.
The spherical function of the local directional occlusion is
stored in a SH representation using four bands, which leads
to SH coefficient vectors with 16 coefficients. Ramamoorthi
et al. [RH01] showed that for diffuse lighting and without
taking the local occlusion into account three SH bands are
sufficient for representing the diffuse transfer function. Due
to the integration of the local occlusion more high frequency
components are introduced in the transfer function and we
increased the number of bands to four. This is a good choice
since the 16 coefficients can compactly be stored in two
Float32 rendering targets using Nvidia’s pack_2half
function to store two Float16 values in one Float32
value.
To evaluate the SH basis functions during the sampling pro-
cess in real-time on the GPU we use the real spherical
harmonics representation listed at the end of Sloan’s arti-
cle [Slo08].

Sampling For the sampling process itself we are using a
set of 32 samples with directions uniformly distributed over

c© The Eurographics Association 2012.

74

S. Herholz & T. Schairer / S3HO

the surface of the upper hemisphere. Since 32 samples are
not enough to fully sample all directions of the upper hemi-
sphere the approximated SH representation of the local oc-
clusion can be incorrect. To reduce the error of the estimated
local occlusion we are using a 4x4 interleaved sampling pat-
tern as introduced by Keller et al. [KH01]. The high fre-
quency noise that is introduced by the interleaved sampling
pattern is reduced by using a geometry aware 8x8 bilateral
filter ([Tom98]). For the bilateral filter we are using two
weighting functions: One for taking the distance and the
other for taking the orientation of the surface of the neigh-
boring pixel into account.
The result of the sampling can also be improved by us-
ing ray-marching, where a direction is sampled on multiple
lengths as described by Ritschel et al. [RGS09].

4. Results

As test environment we used a Core i7 2.8 GHz ma-
chine with 8GB of RAM and a Nvidia GTX 470 with
1GB of RAM. All images were rendered at a resolution of
1280x720. At this resolution it takes the S3HO algorithm
16.5ms to calculate and store the SH representation of the
local directional occlusion when using 16 samples and two
ray marching steps. An equivalent SSAO implementation us-
ing the same sampling pattern took 14.9ms to calculate the
AO factor without any directional information.
With S3HO the directional information of the local occlu-
sion is preserved and in combination with the spherical har-
monics lighting technique described in Section 2.2 this in-
formation is taken into account during the diffuse lighting
calculation. This leads to local occlusion shadows, which
consider the current light situation from the unoccluded di-
rections.
Figure 5 shows a scene consisting of boxes, where diffuse
lighting is calculated using S3HO. The scene is lit by two
light sources: a pink one from the left and a turquoise one
from the right. The figures on the middle left and right
show SH representations of the directional occlusion for the
points p1 and p2 calculated with S3HO. The occlusion situ-
ation at these points is similar to the ones in Figure 3. The
figure at the middle center shows the SH representation of
the incoming light projected on a unit sphere where the color
of the surface is equal to the incoming light function in this
direction. Because the local occlusion at p1 is blocking all
light coming from the right p1 gets mainly lit by the pink
light source and the local shadow is pinkish. At p2 the lo-
cal occlusion is blocking all light coming from the left and
so p2 is mainly lit by the turquoise light source and the local
shadows at p2 get greenish.

In bottom image of Figure 5 the positions of the light
sources are switched. Due to the change of the incoming il-
lumination function the color of the local occlusion shadows
changed. This shows that the images generated with S3HO

Figure 5: The diffuse lighting of a scene using S3HO:
(top/bottom) the rendered scene consisting of 3 boxes and
(middle) the SH representation for the occlusion (middle
left/right) and for the incoming light (middle center). On the
bottom image the positions of the light sources are switched.

react dynamically to changes of the surrounding light envi-
ronment.

In Figure 6 we compare our algorithm against a standard
SSAO implementation using the same sampling method as
S3HO. The scene shows some rectangular boxes as they
would appear in a skyscraper scene. It is lit by a cloudy
blue skylight environment map with bright yellow sun light
coming from the right. The left image shows the scene illu-
minated using S3HO and the right one is using SSAO. The
occlusion shadows in the right image all have the same color
and equally distributed around the boxes. In the left S3HO
image on the other hand the occlusion shadows are more
oriented to the left (left closeup), because the light from the
bright sun is blocked and the shadows to the right are lit
up by the bright sun light that they seem to vanish (right
closeup). Because at the left shadows the sunlight is blocked
the blue skylight illuminated these shadows and they get
a blue tint. These shadows are also darker then the SSAO
shadows because in the S3HO image the bright sunlight is
not taken into account in the illumination evaluation. In the
SSAO image the sunlight is taken into account and then mul-
tiplied by the occlusion factor leading to brighter occlusion
shadows.

In the following we compare the results of our algorithm
with the recent work of Ritschel et al. [RGS09] (SSDO) and

c© The Eurographics Association 2012.

75

S. Herholz & T. Schairer / S3HO

Figure 6: Comparison between S3HO (left/red) and SSAO
(right/green). The closeups on the bottom visualize the dif-
ferences between both methods.

Klehm et al. [KRES11] (SSBN). To focus the comparison
on the basic concept of each algorithm, the same number
of samples and ray marching steps are used. Figure 7
depicts the results of the different algorithms compared
to a raytraced ground truth result (RTDO). The scene is
illuminated by a filtered version of the Grace Cathedral
HDR-lightprobe. All objects in the scene consist of a white
lambertian material. A detailed view of the differences
of the algorithms is presented in Figure 8. Except for the
RTDO image two ray marching steps and 32 samples are
used for the screen space sampling process.

Because the lightprobe contains a number of strong light
sources in different colors the colors of the local occlusion
shadows in the RTDO image vary according to their ori-
entation. The occlusion shadows generated with S3HO and
SSDO have the same colors as the ones in the RTDO image.
Compared to S3HO the SSDO occlusion shadows contain
more noise. That is because the left over high frequencies
in the pre-filtered HDR-lightprobe are still to high to be ac-
curately sampled with 32 samples. A way to overcome this
problem would be to use a stronger filter on the lightprobe.
Finding the right filter size depends on the frequencies in
the lightprobe and the number of samples used. A too large
filter kernel would smooth the light probe too much and di-
rectional occlusion effects would get lost. While a too small
kernel would lead to leftover noise as seen in Figure 7. The
smoothing of the lightprobe is done implicitly by SSBN and
S3HO through the pre-convolution step and the SH projec-
tion of the lightprobe. Note that SSDO does not tend to so
strong noise if LDR-lightprobes are used.

In contrast the local occlusion shadows generated by SSBN
are as smooth as the occlusion shadows generated by S3HO.
Only the color of the occlusion shadows is not always the
same as in the S3HO or in the original RTDO image. The
reason for that is, that the bent normals and bent cones can
lead to false assumption of the incoming light. For example,
at a 90 degree corner (as seen in the 2nd row of Figure 8)
the generated bent normals of both surfaces will point in the
same direction. Because both surfaces have the same amount
of local occlusion the same size of a cone around the bent
normal will be used to gather the incoming light. The result
is that both surfaces are illuminated by the same color, even
if the actual lighting situation would contribute different col-
ored light from the original unoccluded normal direction of
the surfaces.
The fourth row in Figure 8 shows how the different algo-
rithms react to a decrease of the number of samples used for
the occlusion estimation. For the presented images 8 samples
and 2 ray marching steps where used. The noise generated
by the reduced number of samples is rather low in the S3HO
ans SSBN images. The occlusion shadows of these two al-
gorithms are still smooth and keep the same color. The noise
in the SSDO image on the other side increase more in the
SSDO image, while also the colors of the incoming light
suffers from the under-sampling of the HDR-lightprobe.

Table 4 shows the computational times needed by the dif-

Figure 8: Closeups on detailed views of the comparison
images from Figure 7: RTDO (red), S3HO (green), SSDO
(blue) and SSBN (purple). Row 1-3 uses 32 samples and
two ray marching steps. In the 4th row 8 samples and two
ray marching steps are used.

c© The Eurographics Association 2012.

76

S. Herholz & T. Schairer / S3HO

Figure 7: Comparison between different directional occlusion algorithms: RTDO (red), S3HO (green), SSDO (blue) and SSBN
(purple). Detailed closeups are presented in Figure 8.

ferent algorithms compared to a reference SSAO implemen-
tation using two ray marching steps and three different num-
bers of samples.

#Samples SSAO S3HO SSDO SSBN
32 26.3 27.8 40.7 27.0
16 13.3 14.1 20.3 13.6
8 6.9 7.4 10.1 6.9

Table 1: The computational times in ms needed for the dif-
ferent algorithms to calculate local occlusion effects.

From the listed algorithms SSDO requires the most
computation time because for each unoccluded sampling
direction additional textures accesses are preformed to read
from the environment map. The computation time for SSBN
and S3HO is minimal higher than for SSAO. Because SSBN
only needs to calculate and store the mean unoccluded bent
normal it is slight faster then S3HO. This little overhead is
negligible if we take the increase of realism of the calculated
lighting achieved by these algorithms into account.

In Section 2.3, we described an extension of our S3HO al-
gorithm to integrate screen space global illumination for first
indirect lighting effects. Figure 9 shows the Crytek Sponza
scene rendered with S3HO and its global illumination ex-
tension. The top image depicts the textured scene with first
diffuse bounced indirect illumination. The center and bot-
tom images show the calculated untextured diffuse radiance
of the scene calculated by S3HO (center) and SSDO (bot-
tom). These images are extracted before the bilateral filter
is used to reduce the sampling noise. Closeups are used to
highlight this noise. Our extension generates similar first
bounce global illumination effects as SSDO, with less noise
than SSDO. The higher amount of noise in the SSDO image
(green closeup) is caused by the under sampling of the en-
vironment map during the direct illumination sampling. The

execution time for the extension of our S3HO algorithm in-
creased to 59ms since each sample needs two more GBuffer
texture accesses for the normal and diffuse color of each oc-
cluder sample. Also the storage space needed for the coef-
ficient vector increases by a factor of three, since a separate
vector for each RGB color channel is needed.

Figure 9: The Crytek Sponza scene lit with the indirect illu-
mination extension of S3HO: (top) the lit scene with texture
and the calculated untextured diffuse radiance, before the
use of the bilateral filter. The center image is the result of
S3HO and the bottom image of SSDO. The closeups high-
light the sampling noise of the different algorithms.

c© The Eurographics Association 2012.

77

S. Herholz & T. Schairer / S3HO

5. Limitations

In the following we want to discuss the limitations of S3HO.
Because the algorithm is based on screen space occlusion
sampling it shares the limitations of other SSAO based sam-
pling algorithms like SSDO and SSBN (e.g. objects outside
the view frustum or surfaces not visible in screen space are
not taken into account). Some of these limitation can be re-
solved by adding depth peeling or multi-view sampling as
described by Ritschel et al. [RGS09].
Because the SH coefficients are additive they can be in-
terpolated the same way as an AO factor. Therefore the
same methods to improve SSAO can also be used to im-
prove S3HO (e.g. the method described by Mattausch et
al. [MSW10] for better temporal coherence).
Another limitation of S3HO is caused by the use of only four
SH bands to represent the local directional occlusion and the
incoming light function. High frequency occlusion situations
can not be accurately represented and fine occlusion effects
can be missed or smoothed out through the low frequency
representation.

6. Conclusion

We presented a new algorithm for calculating and storing
the local directional occlusion of a dynamic scene in real-
time by using screen space information. The directional oc-
clusion information is stored efficiently by using SH coeffi-
cient vectors. In combination with a SH lighting algorithm
the rendered result contains colored and dynamic local oc-
clusion shadows, which plausibly react to changes in the en-
vironmental lighting situation. The computational overhead
needed to calculate the SH representation of the local occlu-
sion is minimal compared to other screen space occlusion al-
gorithms such as SSAO or SSBN, while the accuracy of the
approximated lighting increased significantly. We extended
our algorithm to integrate screen space indirect illumination
effects. Because the sampling of the directional occlusion
is separated from the lighting calculation it should be easy
to integrate our algorithm in existing rendering pipelines,
which are based on a SH lighting technique such as Irradi-
ance Volumes [Tat05], [GSHG98] or Light Propagation Vol-
umes [Kap09].
For future work it would be useful to store the SH coeffi-
cient vectors in a more compact way, so it would be possible
to use more SH bands for better approximation of the local
occlusion function.

7. Acknowledgment

We want to thank the anonymous reviewers for their valu-
able feedback. A special thank goes to Prof. Dr. Lensch for
proofreading this paper.

References
[Chr10] CHRISTENSEN P.: Point-based global illumination for

movie production. ACM SIGGRAPH (2010). 1

[Deb05] DEBEVEC P.: Image-based lighting. In ACM SIG-
GRAPH Courses (2005). 3

[GSHG98] GREGER G., SHIRLEY P., HUBBARD P. M., GREEN-
BERG D. P.: The irradiance volume. IEEE Comput. Graph. Appl.
18, 2 (Mar. 1998), 32–43. 1, 8

[HHE11] HALL C., HALL R., EDWARDS D.: Rendering in Cars
2. 2

[HL10] HOANG T.-D., LOW K.-L.: Multi-resolution screen-
space ambient occlusion. In ACM Symposium on Virtual Reality
Software and Technology (2010), pp. 101–102. 1

[Kaj86] KAJIYA J.: The rendering equation. ACM SIGGRAPH
Computer Graphics 20, 4 (1986), 143–150. 1

[Kap09] KAPLANYAN A.: Light Propagation Volumes in
CryEngine 3. In ACM SIGGRAPH Course (2009). 8

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. In Eu-
rographics Workshop on Rendering Techniques (2001), pp. 269–
276. 5

[KRES11] KLEHM O., RITSCHEL T., EISEMANN E., SEIDEL
H.: Bent Normals and Cones in Screen-space. In Vision, Model-
ing and Visualization (2011). 2, 6

[Lan02] LANDIS H.: Production-ready global illumination.
ACMM SIGGRAPH Course (2002). 2

[LB00] LANGER M., BÜLTHOFF H.: Depth discrimination from
shading under diffuse lighting. Perception 29, 6 (2000), 649–660.
1

[Mil94] MILLER G.: Efficient algorithms for local and global ac-
cessibility shading. In ACM SIGGRAPH (1994), pp. 319–326.
1

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In ACM
SIGGRAPH courses (2007), pp. 97–121. 1

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HEN-
NESSY P.: The alchemy screen-space ambient obscurance algo-
rithm. In ACM High Performance Graphics (2011), pp. 25–32.
1

[MSW10] MATTAUSCH O., SCHERZER D., WIMMER M.: High-
quality screen-space ambient occlusion using temporal coher-
ence, 2010. 8

[Oat05] OAT C.: Irradiance volumes for games. Presentation at
Game Developers Conference (2005). 2

[PFHA10] PANTALEONI J., FASCIONE L., HILL M., AILA T.:
Pantaray: fast ray-traced occlusion caching of massive scenes. In
ACM SIGGRAPH (2010), pp. 37:1–37:10. 1, 2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.: Approximating
dynamic global illumination in image space. In ACM Interactive
3D graphics and games (2009), pp. 75–82. 1, 2, 3, 4, 5, 8

[RH01] RAMAMOORTHI R., HANRAHAN P.: An Efficient Repre-
sentation for Irradiance Environment Maps. In ACM SIGGRAPH
(2001), pp. 497–500. 2, 4

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In ACM Interactive 3D
graphics and games (2007), pp. 73–80. 1

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In ACM SIGGRAPH (2002),
pp. 527–536. 2, 3

[Slo08] SLOAN P.: Stupid spherical harmonics (sh) tricks. In
Game Developers Conference (2008), pp. 320–321. 3, 4

[Tat05] TATARCHUK N.: Irradiance Volumes for Games. 8

[Tom98] TOMASI C.: Bilateral filtering for gray and color im-
ages. Computer Vision (1998). 5

c© The Eurographics Association 2012.

78

