An Efficient Trim Structure for Rendering Large B-Rep Models
Supplemental Material

Frédéric Claux1,2, David Vanderhaeghe1, Loïc Barthe1, Mathias Paulin1, Jean-Pierre Jessel1, David Croenne2

1IRIT - Université de Toulouse 2Global Vision Systems

1. Multiresolution access

To find a quadtree node covering less than a screen pixel (see the above Figure), we approximate the footprint of the pixel in parametric space with a parallelogram \(P \) defined by the two following vectors:

\[
q = \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} \right) \quad \text{and} \quad r = \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y} \right)
\]

We are searching for the largest side length \(s \) of an axis aligned square in parametric space that fits inside \(P \). Such a square can be defined with the following properties:

- its center \(C \) is at the intersection of the diagonals of \(P \)
- its half diagonal length is equal to the shortest length of segments that start from \(C \), in one of the four direction \((\pm 1, \pm 1)\), stopping at the intersection with \(P \)

Let \(C \) be the frame center, with coordinates \((0, 0)\). The four points \(P_0, P_1, P_2, P_3 \) of \(P \) have the following coordinates in this frame:

\[
\begin{align*}
P_0 &= -a - b \\
P_1 &= a - b \\
P_2 &= a + b \\
P_3 &= -a + b
\end{align*}
\]

with \(a = .5q \) and \(b = .5r \). We derive the intersection computation and after simplification we obtain that the side lengths of the cubes corresponding to the four intersecting segments are

\[
\begin{align*}
t_1 &= 2 \left(-a_s - b_s + a_s \frac{a_s + b_s - a_s - b_s}{a_s + b_s} \right) \\
t_2 &= 2 \left(-a_s - b_s + b_s \frac{a_s + b_s - a_s - b_s}{b_s + b_s} \right) \\
t_3 &= 2 \left(-a_s - b_x + a_s \frac{a_s + b_s + a_s + b_s}{a_s + a_s} \right) \\
t_4 &= 2 \left(-a_s - b_x + b_s \frac{a_s + b_s + a_s + b_s}{b_s + b_s} \right)
\end{align*}
\]

Hence, the length we are looking for is

\[s = \min(t_1, t_2, t_3, t_4) \]

And the corresponding quadtree level is

\[l = \lceil \log_2(1/l_c) \rceil \]