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Abstract
In this paper, we present an approach for realizing an augmented reality system for try-on of apparel. The core
component of our system is a quick human pose estimation algorithm based on a single camera view only. Due
to monocular input data, pose reconstruction may be ambiguous. We solve this problem by using a markered
suit, though not relying on any specific marker layout. To recover 3D joint angles of the person using the system
we use Relevance Vector Machine regression with image descriptors that include neighborhood configurations
of visible colored markers and image gradient orientations. This novel combination of image descriptors results
in a measurable improvement in reconstruction quality. We initialize and evaluate our algorithm with pose data
acquired using a motion capture system. As the final step, we simulate a cloth draped around a virtual character
adopting the estimated pose. Composing the original view and the rendered cloth creates the illusion of the user
wearing virtual garments.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion, H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems—Artificial,
augmented, and virtual realities

1. Introduction

Pose and motion reconstruction methods have a wide field of
application, predominantly in the film and gaming industry
where captured motions are used for animation of charac-
ters. Our motivation is to use pose reconstruction to enable a
user to try on virtual clothing. As a key component of such
a system, a fast and simple to use pose estimation method

is required. However, most pose reconstruction approaches
require a system with multiple views. This complicates the
setup significantly, since time synchronization and camera
calibration are required. Although new sensors such as Mi-
crosoft’s Kinect allow pose estimation using a single sensor,
such a sensor would still have to be coupled and calibrated
with a camera that delivers a high resolution color image to
be used as a basis for high-quality augmentation. To this end,
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we decided to focus on monocular pose reconstruction from
a single high definition camera image, thereby keeping the
system very flexible and allowing quick set up at different
locations without labour intensive preparations. The major
problem in our setting, caused by the restriction to monoc-
ular input, is the reconstruction of a correct 3D pose from
2D information from the single input video. We start by an-
alyzing the image data to detect features that are likely to
be very pose specific. Instead of only using silhouettes, we
also employ information about image gradient orientations
and marker configurations. This novel combination helps
to resolve pose ambiguities and results in a more accurate
pose estimation. In contrast to multi view marker-based ap-
proaches, we do not rely on direct marker identification and
reprojection, but only use information about neighborhood
configurations. In our approach, we propose to use Rele-
vance Vector Machine (RVM) regression, which allows, af-
ter a short training phase, to reconstruct 3D joint angles from
a computed pose descriptor. These reconstructed pose angles
are applied to the forward kinematic of a human body model
acting as collision body in a cloth simulation. Composing
the original image and the cloth rendering creates the illu-
sion of wearing virtual garments. The proposed steps of the
algorithm are chosen and designed to be simple, fast, and
to depend on very little user interaction, which makes them
suitable for an augmented reality application. Such a system
could be used as a virtual fitting room, or may speed up the
process of prototyping of apparel by enabling design cus-
tomization with instant visual feedback.

2. Related Work

The realization of a augmented reality clothing system such
as the proposed one requires components that combine ideas
from usually separated fields of research, such as pose and
surface reconstruction, image segmentation, and video aug-
mentation.

Regarding pose reconstruction from monocular images,
many different approaches have been developed. Since im-
portant data like depth cues is missing, most of the recon-
struction techniques use a human motion model. To recover
a human pose from a single view, several parameters, for
example body height, have to be either known a priori or
estimated from cues in the image. In general there are two
types of pose reconstruction methods that only rely on im-
age information and no special hardware (such as depth sen-
sors like Microsoft’s Kinect). Some try to recover the pos-
ture by computing joint angles for a given hierarchical body
model [AT04,MM02,LC85,BM98,BYS07], like in conven-
tional motion capture systems. Usually a database or trained
functional is used to map image features to a set of pose an-
gles, or a set of pose templates exists to find the best match-
ing pose to a given image. For example, Wang et al. used a
colored glove [WP09] to compare a captured 26-DOF hand
pose with a database containing 100,000 templates. An ap-

proach to recover a full human pose was presented by Agar-
wal and Triggs [AT04, AT06]. Using Relevance Vector Ma-
chine (RVM) regression [Tip00], they computed a functional
mapping silhouette information to a vector of pose angles.
Dalal and Triggs also presented a similar technique that re-
lies on image gradient information instead of silhouette fea-
tures [DT05] allowing detection of human shapes or specific
poses in given images.

Belongie et al. developed a technique to identify certain
shapes and objects using only their silhouette called Shape
Context [SB02]. Looking at a set of silhouette points, a log-
polar histogram is build regarding angle and distance be-
tween two silhouette points. An adaption of this technique
was used by Mori and Malik [MM02] to identify specific
human postures, since different poses correspond to differ-
ent silhouette shapes.

Full reconstruction of a detailed 3D surface using only a
single image is an even more complex problem than pose
reconstruction because of the higher dimensionality of the
output space. This search space can be reduced significantly
by using parametrized 3D body models, often generated
from large databases of human shapes. The SCAPE database
[ASK∗05] contains 71 different scans of poses of a person
and additionally several scans of different persons in a sin-
gle pose. It is used in many monocular reconstruction algo-
rithms [BSB∗07,BBHS07]. Guan et al. [GWBB09] require a
coarse manually fitted skeleton to initialize their reconstruc-
tion algorithm. They then use SCAPE to find the best fitting
body to the pose observed in the given input image by find-
ing body parameters minimizing an energy functional which
describes the pose fitting. Unfortunately, these parameters
are not directly related to separate body features like gen-
der, height, or weight. Hasler et al. [HSS∗09] removed this
problem by adding semantics to the human model allow-
ing to control shape deformations directly. Such approaches
still require a suitable initial pose to start the surface esti-
mation. For example, Sigal et al. [SBB07] use a Shape Con-
text driven pose reconstruction as a prior for optimizing body
shape parameters (using SCAPE) to find a best fitting pose
and body shape from a single image.

Most of these approaches require accurate silhouettes
of the observed body. Extracting these is a challenging
problem itself. Image segmentation has been of interest
from the beginning of computer vision [HS85] and vari-
ous approaches have been developed using contour infor-
mation, texture similarity [MBLS01], level-set-based meth-
ods [VC02], expectation maximization [CBGM02] and re-
cently more and more graph-based image representations
[FH04, RKB04, CCBK06]. Since one of our requirements
was a quick segmentation of a person’s silhouette, compu-
tationally complex techniques (e.g. texture-based) had to be
avoided. On the other hand, simple chroma keying or static
background subtraction was not an option, since for an aug-
mented reality system we expect dynamic environments. An
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approach based on graph cuts is well suited in this case, since
it is robust and capable of running in realtime on graphics
hardware [VN08].

The proposed system is meant to be a virtual try-on sys-
tem to test and virtually wear clothing not yet produced. Ex-
isting techniques replace textures of cloth worn by a per-
son in front of the camera. Scholz et al. [SSK∗05] used a
colored dot pattern to track distinct surface positions in 2D
allowing to blend in a new garment texture replacing the
pattern. Shading reconstruction allows to visually reintro-
duce the garment’s wrinkles and folds to the replaced tex-
ture. Hilsmann et al. [HE08,HE09] presented methods to re-
place features of a worn garment by tracking an arbitrary
shape. While Scholz’ system operates offline, the technique
proposed by Hilsmann et al. allows to blend in new textures
in real time, but only on a distinct patch on the cloth (e.g. a
logo on a shirt) instead of the whole piece of clothing.

Instead of modifying an extisting surface, our goal is to
simulate a completely new piece of cloth. We therefore re-
construct 3D data of an observed pose and do not operate in
2D when augmenting the input video. In the following sec-
tions we will describe the steps of our solution in detail.

3. Pose Reconstruction

The reconstruction of a human pose from a single image is
not trivial, since the missing depth information requires to
extract the 3D position and orientation of body parts from 2D
image data. Several constraints such as invariant bone length
or angular limits for joints can be used to reduce the search
space for the correct pose. The proposed pose estimation al-
gorithm consists of three major steps. First of all, necessary
features to describe an observed pose in a 2D image have
to be computed. We lay out the details for that in Section
3.1. From the extracted features, a distinct feature descriptor
can be computed that describes the image captured by the
camera in such a way that, ideally, the 3D pose can be in-
ferred directly from that feature descriptor even when other
variables such as lighting, subject, or 3D translation change.
Having computed the feature descriptor, the 3D pose can be
inferred from a set of sample poses and suitable interpola-
tion by a functional. We use RVM regression [Tip00] so this
functional has the form

y = Xf ·d(Xb,x) (1)

where x ∈ RM is the feature descriptor recovered from a
frame, Xb ∈ RM×S is a matrix of M-dimensional feature de-
scriptor support vectors and Xf ∈ RN×S a matrix mapping
support vector configurations to a N-dimensional pose vec-
tor. The functional d yields the distance of the measured fea-
ture descriptor to all precomputed support vectors. How to
train this mapping from example data is explained in Section
3.2. We describe a pose using a body model in the Biovision
BVH format.

3.1. Feature Detection and Processing

Using only monocular image data complicates reconstruc-
tion, since information of how different body parts are lay-
ered in the observed posture is not readily available. For ex-
ample, when only silhouette information is used (e.g. Agar-
wal and Triggs [AT04]) it is hard to distinguish if an arm is
in front of, or behind the torso. These ambiguities must be
resolved somehow to correctly reconstruct the pose. We ad-
dress this problem by using a suit printed with markers. In
contrast to other marker based approaches for motion cap-
ture, these markers do not have to be placed exact and do not
require calibration. Using a random pattern of three different
colors it is possible to distinguish several marker distrubu-
tions. These are different if occlusions of body parts occur
and allow for solving ambiguous cases. The used markers
are uniformly colored 4 × 4 cm squares and randomly dis-
tibuted on a regular grid with a 3 cm gap between mark-
ers. Three colors (cyan, purple, and red) are used as marker
colors, which are printed on a yellowish green background.
These four colors are chosen to have a hue distance of 90◦ in
HSV color space, making identification of different markers
robust against illumination changes.

3.1.1. Background Segmentation

To reduce the search space when looking for marker po-
sitions in an image, the silhouette of the person is ex-
tracted first. To quickly separate foreground and background
we apply an algorithm based on graph cuts which is opti-
mized to detect the suit colors in front of an arbitrary back-
ground. We adapted the technique proposed by Criminisi et
al. [CCBK06], which uses likelihood lookup tables regard-
ing color, motion and gradients. In their work a small adap-
tion and self-training sequence is applied to initialize like-
lihoods which are then used as weights in a graph cut op-
timization. Employing a short training we created a set of
likelihood lookup tables corresponding to the suit which are
then applied in the actual image segmentation process.

In the training phase of the algorithm, a small set of im-
ages and user-created masks is required. In our case a set
of 20 frames with corresponding masks was sufficient, from
which several lookup tables were trained and saved as the
pixel’s negative log likelihood for a certain condition. We
use the hue and saturation channel of the HSV colorspace to
learn the likelihood of a certain color to be either foreground
or background over a sequence of successive frames.

C(α,X) =−
N

∑
n

log(p(c(xn)|α)) (2)

Where c(x) is a pixel’s color and α ∈ {FG,BG} a label
denoting foreground or background. Then we evaluate the
3× 3 neighborhood N(x) of each pixel x for correlation of
hue, saturation and change in label. A transition probability
table is built for the transitions FG→ FG,FG→ BG,BG→
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Figure 1: Our segmentation algorithm separates a given im-
age into foreground and background. The foreground area is
used as a mask for feature detection.

FG,BG→BG being the labelling configuration of neighbor-
ing pixels and the difference regarding hue and saturation.

N(αx,αy,X) =−
N

∑
n

‖N(xn)‖

∑
i

log(p(d(xn,yn,i)|αn,αi) (3)

Where yn,i ∈ N(xn) is a neighboring pixel of pixel xn, and
d(x,y) = (dH(x,y),dS(x,y))

T is a vector of two pixel’s dis-
tance in hue and saturation. Another lookup table is created
from horizontal and vertical gradient magnitude, gh(x) resp.
gv(x), of each pixel x and it’s likelihood to be foreground or
background.

G(α,X) =−
N

∑
n

log(p( (gh(x),gv(x))T |αn)) (4)

A fourth table represents the correlation between gradient
magnitude g(x) and the change of labelling over time. This
is important to allow a label change in boundary regions and
preventing it in smooth contiguous areas.

M(αt ,αt−1,X) =−
N

∑
n

log(p(g(xN)|αt
n,α

t−1
n )) (5)

The last energy term is learned from temporal transitions of
labels and describes how likely it is that a pixel keeps a new
label after a label change. It is realized using a second-order
Markov chain requiring two previous frames and their seg-
mentation.

T (αt ,αt−1,αt−2) =−
N

∑
n

log(p(αt
n|αt−1

n ,αt−2
n )) (6)

These lookup tables define the energy to be minimized by
a two label graph cut algorithm using the labels of α ∈
{FG,BG}.

E(αt ,αt−1,αt−2,x,y) = σC ·C(αt ,x)

+σN ·N(αt ,x,y)+σG ·G(αt ,x)

+σM ·M(αt ,αt−1,x)+σT ·T (αt ,αt−1,αt−2)

(7)

When using a graph cut algorithm to minimize this en-

rmax

Figure 2: Depicted is a Shape Context histogram describing
the neighborhood configuration of a certain marker with re-
spect to orientation, distance, and color. Per frame these his-
tograms are built for every detected marker and compressed
into a single Feature Context Descriptor using vector quan-
tization.

ergy, the term evaluating the neighborhood configuration of
pixels N(αx,αy,X) is used to define the pairwise weights
between neighboring pixels which are now treated as graph
nodes. All other terms contribute to the weights of label
edges connecting pixels with each of the labels α. We weight
the energy terms using σC, σN , σG, and σM . Since all the
terms are based on lookup tables, the graph setup is very
fast and only a gradient image of the current frame has to
be computed additionally. All other data is used from previ-
ous frames or the current frame directly. Finally a fast graph
cut algorithm like Cuda Cuts [VN08] may be applied to sep-
arate foreground from background in real time. The back-
ground segmentation algorithm yields a binary map where
the detected person is foreground and everything else is
marked as background. Figure 1 shows an example of the ex-
tracted silhouette. In contrast to other silhouette-based pose
reconstruction algorithms such as [AT04,AT06], our method
is much more robust against “dirty”, erronous silhouettes,
since it is only used as a mask for a marker detector pre-
sented in the next section.

3.1.2. Feature Context Descriptor

To generate a descriptor based on marker information in the
observed image, a vector containing neighborhood informa-
tion of detected markers is constructed, similar to the Shape
Context descriptor proposed by Belongie et al. [SB02]. Hav-
ing a marker mi of color class ci ∈C = {cyan, purple,red}
all markers m′j within a specified neighborhood N(mi,R) of
radius R around marker mi are inserted into a histogram
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Hi regarding their log distance ri, j = log(‖m′j −mi‖), an-
gle to the horizontal axis in image space θi, j and color
class c j. See Figure 2 for a sample histogram. With 5 ra-
dial bins, 12 angular bins and three color bins, all histograms
Hi, i ∈ (1, . . . ,n) (n being the number of visible markers)
contain 5∗ 12∗ 3 = 180 values. Since the number of visible
markers varies from frame to frame, we cannot simply con-
catenate all the histograms - this would form a vector of dif-
ferent length for each frame which is incompatible with our
regression-based pose inference. We solve this problem by
vector quantizing the histograms of all visible markers into
a set Hre f of N reference points in the same space. These are
built from training data using the k-means algorithm. Marker
histograms then vote into their 5 nearest neighbors in Hre f .
Using this technique, for every frame a N-dimensional vec-
tor describes the pose corresponding to the observed marker
configuration. We use N = 200 reference points for the final
histogram, normalize it and call this vector HFC the Feature
Context Descriptor (FC Descriptor).

3.1.3. HOG Descriptor

Similar to the FC Descriptor we generate a histogram of
oriented gradients [DT05] to incorporate gradient informa-
tion into our pose reconstruction process. We only use the
region of the detected person, i.e. the axis aligned bounds
of the extracted silhouette, which is subdivided into m× n
blocks. For each block a histogram of gradient orientations
is built. The input image I is filtered using conventional So-
bel kernels in horizontal and vertical direction, Sh resp. Sv,
yielding gradient orientations for each pixel by computing
θx,y = arctan(Sv ∗ I/Sh ∗ I). Using 36 bins for angle orien-
tations Θ ∈ [−π..π] and soft binning, dominant angle orien-
tations can be detected for each block. (See Figure 3). We
again use vector quantization and soft voting into a set of
reference histograms computed using k-means to reduce the
dimensionality of the data. This way the M most significant
angle distibutions are extracted. We used M = 100 for quan-
tization, which seems to be enough to provide pleasing re-
sults. We refer to the normalized histogram HHOG as HOG
Descriptor throughout the rest of the paper.

3.1.4. Frame Descriptor

To finally describe an observed pose, we combine the previ-
ously mentioned feature descriptors. We compose our final
frame descriptor from the 200D FC Descriptor, the 100D
HOG Descriptor as well as the silhouette’s relative position
and size and get a 304D vector describing the pose seen in
an image. This vector is processed by a Relevance Vector
Machine to reconstruct pose angles as described in the fol-
lowing section.

3.2. Joint Angle Reconstruction

To obtain a training set of 3D pose data corresponding to
a sequence of frames and the frame descriptors computed

Figure 3: For every frame, a grid of 16× 16 histograms
of oriented gradients (HOG) is generated. The silhoutte’s
bounding box is subdivided into blocks used for computing
gradients. Thus the descriptor is pose specific but indepen-
dent of position and size of the person.

for each frame, we use a markerless motion capture sys-
tem by Organic Motion [Org]. Thus while capturing a video
test-sequence a corresponding sequence of pose angle data
was captured. The captured motion was exported using the
BVH format supported by many modelling and rigging tools
(i.e. MotionBuilder). We calibrate a HD video camera into
the coordinate system of the motion capture system using
checkerboard patterns, the OpenCV library and the SDK
provided by the Organic Motion system. This provides a
one-to-one mapping of 3D-pose data and feature descriptor
vectors, allowing computation of a functional which maps
the feature descriptor space to the pose angle space.

To reduce the size of data points used for regression, we
applied a k-means clustering on the feature descriptor data
of our training sequence. We tried four different sample sizes
S ∈ {512,768,1024,1500} and stored the S most significant
feature descriptors most similar to the S cluster centers as a
matrix Xb ∈ R304×S of basis vectors. To make reconstruc-
tion more robust, we split up every joint angle into sine and
cosine part, allowing smooth wrap around compared to the
0 = 2π gap when using angular values. These joint angles,
complemented by the 2D offset (with respect to the silhou-
ette) and depth of the body model, form a 123D vector de-
scribing the body pose which we aim to reconstruct from
our feature descriptor as described in the next section. We
tried to use quaternions to represent the joint angles, but
since quaternions would require spherical linear interpola-
tion to yield acceptable results, we could not use the de-
scribed RVM as it linearly weights exemplar poses to in-
terpolate a plausible result.

To reconstruct pose angles from a feature descriptor based
on 2D image information, we compute the euclidean dis-
tance d of this descriptor vector x to all reference vectors
Xb selected for RVM regression. We compute the euclidean
distance matrix D = d(Xb,x) ∈ R1×M containing distances
between all vectors in Xb ∈ RU×M and x ∈ RU×1, where Xb
contains M support vectors as colums, and x contains the U
dimensional descriptor vector to be converted into the target
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space of V dimensions. This is done by solving

y = Xf ·DT (8)

where Xf ∈RV×M is a matrix of kernel functions transform-
ing all M-d column vectors of D into V dimensional space. In
this case we compare our feature descriptor x ∈ R304×1 to a
set of basis vectors in Xb ∈R304×S, we get a distance matrix
D ∈ R1×S describing the observed pose with respect to the
training samples in Xb. Using a matrix of kernel functions
Xf ∈ R123×S we map x to to actual pose angles y ∈ R123.
This matrix has been precomputed using a standard RVM
regression as in [AT04] from the set of corresponding fea-
ture descriptors and pose angle vectors selected from our test
sequence using k-means clustering. The reconstructed vec-
tor y is composed of the relative 2D screen position of the
body model offset and the approximate depth followed by 6
values per joint being the sine and cosine parts of the three
Yaw-Pitch-Roll angles per body joint. Since our body model
uses 20 joints, we get a vector containing 123 values. This re-
construction process yields only interpolated values, so each
(sin(θ),cos(θ)) pair has to be rescaled to unit length. Also
the reconstructed vector does not contain the actual 3D offset
of the body model’s root joint. Using the extrinsic parame-
ters of the camera used for capturing the training sequence,
the body model is reprojected into 3D space from the re-
constructed 2D position and the estimated depth value. Like
the background segmentation in Section 3.1.1, the projection
matrix has to be computed only once. Since this projection
is highly linear and the RVM inference is, in contrast to the
joint angles, not able to reliably produce the correct body
position we automatically adjust this position in a postpro-
cessing step. Using a simple and fast color classification al-
gorithm [JR02], we estimate the positions of head, hands and
feet in 2D and rigidly move the body to reduce reprojection
error. This corrects the position of the body, but in the future
the 2D positions of hand and feet should be included into the
feature descriptor. The BVH body model can then be driven
to simulate the recovered pose by applying the reconstructed
angles to the forward kinematic of a virtual character, which
can act as a collision body in a cloth simulation.

4. Cloth Simulation and Image Compositing

The final step of the proposed system is the simulation of a
piece of garment draped over a pose data driven human body
model. Since the pose data has been estimated in 3D by our
system, we can use a physical cloth simulation to animate a
piece of cloth adopting this pose in a realistic way. A rigged
body model is driven by the pose data and used as colli-
sion body for a dynamic piece of cloth, such as a T-Shirt or
a dress. Using the extrinsics of the camera recovered from
our training sequence, we are able to render the animated
garment from the original camera viewpoint. The final ren-
dering is then composed into the original frame to create the
augmented video, Figure 6.

5. Results

In our setup we used a Canon XH A1 HD video camera pro-
viding images in the format of 1440×1080 px at a framerate
of 25 fps. We used this video data for all training sequences
as well as the reconstructed motion sequences. The training
of the image segmentation algorithm used only 20 frames,
for which reference masks had to be created manually. The
set of poses used for training our pose reconstruction algo-
rithm created by using a markerless motion capture system
consisted of 5666 frames. For each 3D pose an image cap-
tured by our camera was available. By computing our feature
descriptors for each of these frames, we could select several
sample sub-sets of this data using k-means, thereby select-
ing N reference poses. The RVM was trained using these
sample data sets in Matlab [AT04]. The RGB frames of our
camera capture were then fed into the trained system. The re-
construction results were pleasing and temporally consistent,
even though we did not employ any temporal tracking. After
the reconstruction of the 3D pose data we exported the pose
data as a BVH file. This can be imported by Autodesk Maya,
where we used the particle-based cloth simulation nCloth to
render a piece of garment according to the observed poses.
When rendering the animated cloth over the input image, the
illusion of the person standing in front of the camera wear-
ing a virtual piece of garment is created. Figure 6 shows a
final rendering of our system.
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Figure 4: Average angular error compared to ground truth
data for every joint of the body model in our main recon-
struction sequence. Reconstruction quality improves with in-
creasing number of sample poses used for training. Notice
that some angular errors, such as rotations around the roll
axis of a bone, do not affect the visual result.

We evaluate the reconstruction result of our system by us-
ing the motion capture data of the initial training as ground
truth data to the video frames of that training sequence.
The reconstruction quality is measured as the angular er-
ror of the reconstructed joints compared to ground truth
data. To evaluate the correlation of reconstruction qual-
ity and training sample set size, we tested sample sets of
N ∈ {512,768,1024,1500} poses. The more training sam-
ples were used, the more accurate the reconstructed pose was
(see Figure 4). However, this improvement was not signifi-
cant.
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Figure 5: Improvement of angular error compared to the
silhouette-based method from [AT04] applied to the exact
same sequence of our data set. Our marker-based method
improves the detection of important body joints as arms and
legs. Accuracy at the shoulder joints presumably suffers from
the low marker density used.

To evaluate how much our feature descriptor affects
the reconstructed pose quality, we compared the perfor-
mance of the parts of our feature descriptor separately to
the silhouette-feature-based method of Agarwal and Triggs
[AT04]. Using only the HOG descriptor we observe worse
reconstruction (angular error about 4 times as high). With the
marker-based FC descriptor alone no significant improve-
ment can be seen. However, the combination of FC and HOG
descriptors, as proposed by our method, yields an average
improvement of the angular error of about 9% compared to
the silhouette-based approach. Figure 5 shows the angular
accuracy improvement per joint compared to [AT04]. The
pose reconstruction accuracy of important body parts, such
as arms or legs, improves using our novel feature descriptor.
Body parts covered by only a few markers, like the shoul-
ders, do not improve in reconstruction accuracy.

To further evaluate the system, we used another test
sequence not used for any training. So feature descrip-
tor matches to actual support vectors during reconstruction
could not happen. The resulting pose estimation was again
smooth and reconstructed the observed poses as expected.
Therefore our system seems to be suitable to reconstruct 3D
poses from monocular views of a person wearing the mark-
ered suit.

6. Conclusion and Future Work

The presented system allows to quickly recover a 3D human
pose from single images. Using a short initial training, the
system is able to recover 3D pose data from image features.
To provide these features, we use a special suit printed with a
random marker pattern. Our algorithms are trained to detect
these markers using fast image processing and to recover a
pose from a feature descriptor built for each frame. The 3D
pose data is then used to simulate a virtual garment on a

Figure 6: Final results of our system. Using the recon-
structed pose data, a piece of cloth is simulated and com-
posed into the original image.

human body model adopting the pose of the person seen in
the processed image. Composing a rendering of the garment
with the original image data creates the illusion of wearing
virtual cloth. The algorithms used for recovering the pose
are designed to be simple and process data in parallel, which
makes them suitable for implementation on graphics hard-
ware allowing them to run at real time framerates. The ma-
jor bottleneck so far is the cloth simulation, which requires
to interpolate additional frames from the capture framerate
of 25 fps to achieve stable simulation results. This step is
also the most complex and computationally intense part of
the system, confining the runtime of the whole system.

One aspect of future work will be removing as much
user interaction as possible. A promising approach would
be to replace the segmentation training in Section 3.1.1 by
a motion-based background segmentation technique like the
one presented by Scharfenberger et al. [SCF09]. Segmenta-
tions supplied by this algorithm can then be used to initialize
and train the more robust graph cut algorithm already used
in our current setup. Even though this step is only necces-
sary once (when training the graph cut algorithm to a new
suit), automated training in each new environment should
improve the robustness and accuracy of the image segmen-
tation. A more important aim for the future is to speed up the
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cloth simulation, and thus enabling the whole system to run
at real time framerates. Existing physics simulation libraries
like Havok T M or nVidia PhysX T M made recent advances in
cloth simulation and are used in real time multimedia appli-
cations. Incorporating such a library into our system could
solve the performance bottleneck of the presented system.
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