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Abstract

In this paper, we thoroughly study a trilinear interpolation scheme previously proposed for the Body-Centered
Cubic (BCC) lattice. We think that, up to now, this technique has not received the attention that it deserves. By
a frequency-domain analysis we show that it can isotropically suppress those aliasing spectra that contribute
most to the postaliasing effect. Furthermore, we present an efficient GPU implementation, which requires only six
trilinear texture fetches per sample. Overall, we demonstrate that the trilinear interpolation on the BCC lattice is
competitive to the linear box-spline interpolation in terms of both efficiency and image quality. As a generalization
to higher-order reconstruction, we introduce DC-splines that are constructed by convolving a Discrete filter with
a Continuous filter, and easy to adapt to the Face-Centered Cubic (FCC) lattice as well.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.10 [Image Processing and Computer Vision]: Image Representation—
Volumetric

1. Introduction

Recently, several reconstruction schemes have been pro-
posed for the Body-Centered Cubic (BCC) [Ent07,
EVDVM08, Csé08, Csé10] and Face-Centered Cubic (FCC)
[QEE∗05, KEP08] lattices. Both lattices show advantageous
properties against the traditional Cartesian Cubic (CC) lat-
tice. The BCC lattice, which is optimal for sampling spheri-
cally band-limited signals, requires around 30% fewer sam-
ples per unit volume than a CC lattice to represent the
same amount of spatial information [TMG01, PM62]. For
the suboptimal FCC lattice this ratio is 27% [KEP08]. Al-
though the FCC lattice is less efficient for sampling volu-
metric signals than the BCC lattice, it is still used in spe-
cific applications, where an isotropic voxel neighborhood
plays an important role [QXF∗07, PQF∗09, AEM09]. On
the CC, BCC, and FCC lattices each voxel has 6, 8, and
12 nearest neighbors, respectively. Thus, the FCC lattice
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can represent the voxel neighborhood with the least direc-
tion dependence. This property is favorable in lattice-based
global illumination calculation [QXF∗07] or flow simula-
tion [PQF∗09, AEM09].

An interesting aspect of non-Cartesian regular sampling
is how to reconstruct the original continuous signal from the
discrete samples. Though the reconstruction can be imple-
mented by a simple convolution, the choice of the filter ker-
nel has a direct impact on both numerical accuracy and vi-
sual quality. Generally, an appropriate reconstruction filter
has to fulfill the following criteria:

1. The filter should be invariant for rotations around the
major axes by 90 degrees. Otherwise, the reconstruction
would strongly depend on the orientation of the filter.

2. The filter should preferably be interpolating or quasi-
interpolating of high order.

3. The smoothing effect should be minimal to preserve the
high-frequency details.

4. The postaliasing effect should be minimal to avoid an-
noying artifacts.

5. The filter should be efficient to evaluate.
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In this paper, we mainly focus on linear filters for two
reasons. First, in time-critical applications, like direct vol-
ume rendering, real-time frame rates are hard to guarantee if
computationally expensive higher-order filters are used for
resampling. Second, to avoid severe artifacts, we assume
that the data is relatively oversampled, which compensates
the higher postaliasing effect of a linear filter. This is a rea-
sonable compromise between image quality, storage require-
ments, and rendering speed.

For the BCC lattice, there are five known linear recon-
struction schemes, which are sheared trilinear interpola-
tion [TMMG02,Mat03], linear box-spline filtering [EDM04,
EVDVM08], BCC-spline filtering [Csé08], trilinear B-
spline filtering [CH06, Csé10], and BCC trilinear interpola-
tion [TMMG02,Mat03]. All these filters guarantee the same
polynomial approximation order of two, that is, they can per-
fectly reproduce linear polynomials.

The sheared trilinear interpolation [TMMG02, Mat03]
exploits that the BCC lattice can be interpreted as a sheared
CC lattice; thus, a simple trilinear interpolation can be per-
formed inside the parallelepiped-shaped cells. This scheme
is equivalent to the convolution of the BCC samples with an
anisotropic sheared trilinear filter. However, this filter does
not fulfill the first quality criterion; therefore, it leads to a
direction-dependent reconstruction.

The linear box spline [EDM04,EVDVM08] is directly tai-
lored to the geometry of the BCC lattice. Among the linear
filters it has the most compact support. In fact, the linear
box-spline filtering is equivalent to a linear interpolation in-
side the tetrahedral cells of the BCC lattice. Therefore, the
filter kernel covers only four BCC samples. The shape of
the filter is a rhombic dodecahedron, which has sharp peaks
at the vertices. That is the reason why the linear box spline
causes rivet-like artifacts on the reconstructed isosurfaces.

Similarly to the linear box spline, a linear BCC-spline
[Csé08] also represents a non-separable filter tailored to
the BCC lattice. The linear BCC-spline is constructed by
convolving the BCC nearest-neighbor kernel with itself.
The shape of the obtained filter inherits the shape of the
nearest-neighbor kernel, which is a truncated octahedron
(the Voronoi cell of the BCC lattice). Although the linear
BCC-spline takes the eight nearest voxels into account just
like the trilinear interpolation on the CC lattice, an efficient
analytic evaluation of the kernel itself is not known yet.
Therefore, previously a discrete approximation calculated in
the frequency domain has been applied. This solution, how-
ever, is not favorable in a GPU implementation, since the
filter kernel is represented by a 3D lookup table taking space
from the limited texture memory.

On the BCC lattice, a trilinear B-spline filtering [CH06,
Csé10] can be easily performed exploiting that the BCC lat-
tice consists of two interleaved CC lattices. A simple trilin-
ear interpolation is evaluated separately on these CC lattices,
and then the contributions are averaged in the given sample

position. This evaluation is equivalent to the convolution of
the BCC samples with a trilinear B-spline kernel. Unlike the
other linear filtering schemes, the BCC trilinear B-spline re-
construction is not an interpolation. It cannot be used even
for generalized interpolation on the BCC lattice, since a dis-
crete prefilter that would make it interpolating does not ex-
ist [CH06]. On the other hand, after an appropriate discrete
prefiltering, it can be applied for quasi-interpolation of or-
der two [Csé10]. Nevertheless, the trilinear B-spline is not a
Riesz basis on the BCC lattice [FEVDVM10]; therefore, dif-
ferent set of coefficients can represent the same function in
the shift-invariant function space generated by the trilinear
B-spline. This might be problematic in specific applications,
where a unique solution is searched for during an optimiza-
tion process like an iterative tomographic reconstruction.

Note that the trilinear interpolation [TMMG02, Mat03]
proposed for the BCC lattice is not the same as the non-
interpolating BCC trilinear B-spline reconstruction [CH06,
Csé10]. This technique is theoretically equivalent to the dis-
crete upsampling of the BCC-sampled volume on a higher-
resolution CC lattice, where the standard trilinear interpola-
tion is used for resampling. In practice, however, the missing
CC samples are calculated on the fly and not in a preprocess-
ing. So far, the BCC trilinear interpolation has not been suf-
ficiently evaluated (e.g., its impulse and frequency responses
have not been derived for a theoretical analysis and its prac-
tical GPU implementation has not been considered either)
and compared to the other linear filtering schemes. There-
fore, in our opinion, it has not received the attention that it
deserves.

The contributions of this paper are the following:

• We thoroughly analyze the smoothing and postaliasing ef-
fects of the BCC trilinear interpolation by analytically de-
riving its frequency response. We demonstrate that this
reconstruction scheme shows almost the same advanta-
geous properties as the linear box-spline interpolation,
moreover, its postaliasing effect is even lower and more
isotropic.

• We propose an efficient GPU acceleration that re-
quires only six trilinear texture fetches per sample.
Our implementation is slightly faster than a recently
published GPU-based linear box-spline reconstruction
[FEVDVM10].

• We show that the impulse response of the trilinear inter-
polation on the BCC lattice is, in fact, a convolution of
a discrete filter and a continuous filter. This scheme can
be generalized to the FCC lattice as well. The discrete
filter is used to reconstruct the missing CC samples and
a simple trilinear interpolation is applied on the higher-
resolution CC representation. We call the obtained Dis-
crete/Continuous filters as DC-splines. Similarly to the B-
splines and box splines, higher-order DC splines can be
obtained by convolving the linear DC-splines with them-
selves.
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2. Trilinear Interpolation on the BCC Lattice

The BCC lattice can be obtained from a CC lattice such that
all CC lattice points are removed where the discrete coor-
dinates i, j, and k are neither all even nor all odd numbers.
The BCC trilinear interpolation reproduces these “missing
CC samples” by interpolating between the available BCC
samples. The BCC lattice can also be interpreted as two in-
terleaved CC lattices. Figure 1 shows two cubic cells of these
interleaved CC lattices that intersect each other in a smaller
cubic cell depicted in green. The green cubic cell has only
two corners that are BCC lattice points, the others (the green
dots) need to be interpolated from two BCC samples along
either red or blue edges. Afterwards, a simple trilinear inter-
polation is performed inside the green cell.

1 ½

Figure 1: Trilinear interpolation on the BCC lattice: The
BCC lattice points are located on the interleaved red and
blue CC lattices. The green samples are interpolated from
two BCC samples of the same color. Inside the green cubic
cell a standard trilinear interpolation is applied.

The green samples are, in fact, reconstructed using a dis-
crete filter on the BCC lattice. This filter is shown in Fig-
ure 2. The resultant impulse response χ1

bcc of the BCC trilin-
ear interpolation is obtained by convolving this discrete filter
with a scaled trilinear kernel β1(2xxx):

χ1
bcc(xxx) = β1(2xxx)+

1
2

6

∑
k=1

β1(2(xxx− vvvk)), (1)

where

[vvv1,vvv2,vvv3,vvv4,vvv5,vvv6] =
1
2




1 -1 0 0 0 0
0 0 1 -1 0 0
0 0 0 0 1 -1


 .

Note that χ1
bcc is isotropic, that is, it satisfies the first qual-

ity criterion. Concerning the second criterion, it is easy to
see that χ1

bcc is interpolating and also quasi-interpolating of
order two on the BCC lattice, moreover, it satisfies the Riesz
conditions [Uns00]. In this sense, the BCC trilinear interpo-
lation is equivalent to the linear box-spline reconstruction,
which provides the same polynomial approximation order.

The third and fourth criteria will be studied in Section 3.1,
while the fifth criterion will be evaluated in Section 2.1.

1

1

11

1
BCC FCC

1

1/6/2

Figure 2: The discrete components of the trilinear filters for
the BCC and FCC lattices. These discrete filters are respon-
sible for producing the missing CC samples in an upsampled
CC representation.

2.1. GPU Implementation

To efficiently implement the trilinear interpolation on the
BCC lattice, we store the BCC-sampled volume in an in-
terleaved manner such that a 3D texture map contains two
data values per texel. The first and second data values repre-
sent the blue and red CC lattice points, respectively (see Fig-
ure 1). The key idea is to exploit the hardware-accelerated
trilinear texture fetching for calculating the missing CC sam-
ples. Figure 3 illustrates our GPU implementation. Assume
that the given sample to be interpolated is located inside the
black square defined by corners q0,0, q1,0, q0,1, and q1,1.
After having the density values at these corner points de-
termined, a simple bilinear interpolation needs to be ap-
plied. For the sake of clarity, we introduce a linear inter-
polation operator L(a,b, t) = (1 − t)a + tb. Our algorithm
performs the following calculation for the corner points q:

operation implementation
f̃ (ppp1,0,0) = L( f (ppp0,0,0), f (ppp2,0,0),1/2) trilinear fetch
f̃ (ppp1,1,0) = L( f (ppp1,1,−1), f (ppp1,1,1),1/2) trilinear fetch
f̃ (qqq1,0) = L( f̃ (ppp1,0,0), f̃ (ppp1,1,0),2t) lerp instruction
f̃ (ppp0,0,1) = L( f (ppp0,0,0), f (ppp0,0,2),1/2) trilinear fetch
f̃ (ppp0,1,1) = L( f (ppp−1,1,1), f (ppp1,1,1),1/2) trilinear fetch
f̃ (qqq0,1) = L( f̃ (ppp0,0,1), f̃ (ppp0,1,1),2t) lerp instruction
f̃ (qqq0,0) = L( f (ppp0,0,0), f (ppp0,2,0),t) trilinear fetch
f̃ (qqq1,1) = L( f (ppp1,−1,1), f (ppp1,1,1),t + 1/2) trilinear fetch

Note that the intermediate samples at q0,0 q1,1 can be
calculated by a single trilinear texture fetch instead of two;
therefore, the total number of the trilinear texture fetches is
six. The bilinear interpolation between the corner points q
is implemented using lerp instructions. Although the linear
box-spline interpolation requires only four nearest-neighbor
texture fetches, its indexing overhead is much higher. Fur-
thermore, due to the hardware-accelerated trilinear interpo-
lation, the cost of a trilinear texture fetch is approximately
the same as that of a nearest-neighbor texture fetch [SH05].
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Figure 3: Optimized trilinear interpolation on the BCC lat-
tice. The missing CC samples (green dots) are calculated by
a GPU-accelerated trilinear sampling on either the red or
the blue CC lattice.

data set engine brain
resolution 128× 128× 83× 2 128× 128× 55× 2
linear box spline 5.33 fps 3.28 fps
BCC trilinear 5.73 fps 3.37 fps

Table 1: Frame rates of GPU-accelerated texture-based iso-
surface rendering of BCC-sampled volume data using linear
box-spline interpolation and BCC trilinear interpolation.

To compare the BCC trilinear interpolation to the linear box-
spline interpolation in terms of efficiency, we implemented
a texture-based isosurface-rendering application. The frame
rates are shown in Table 1. Despite that the BCC trilinear in-
terpolation is theoretically more expensive, its practical GPU
implementation is still slightly faster than a linear box-spline
filtering optimized for the GPU [FEVDVM10]. In the fol-
lowing, we will investigate whether the BCC trilinear inter-
polation is also competitive in terms of image quality.

3. Comparison to the Linear Box Spline

The BCC trilinear kernel χ1
bcc is mostly comparable to the

linear box spline as both of them are interpolating, form
a Riesz basis on the BCC lattice, and provide approxi-
mately the same efficiency in a GPU implementation. Con-
cerning the image quality, it is worthwhile to analyze their
frequency-domain characteristics and evaluate their perfor-
mance on volumetric test data.

3.1. Frequency-Domain Analysis

Since χ1
bcc is constructed as a convolution of a discrete filter

and a continuous filter, its Fourier transform χ̂1
bcc is easy to

2�

2�

2�

-2�

-2�

Figure 4: The pass band corresponding to BCC sampling is
the Voronoi cell of the dual FCC lattice, which is a rhombic
dodecahedron. The red dots depict the twelve first nearest
neighbors, whereas the blue dots depict the six second near-
est neighbors.

derive by multiplying the Fourier transforms of these two
components:

χ̂1
bcc(ωωω)=

[
1+ cos

(ωx

2

)
+ cos

(ωy

2

)
+ cos

(ωz

2

)]
β̂1

(ωωω
2

)
,

(2)
where ωωω = [ωx,ωy,ωz]T .

According to the well-known Strang-Fix conditions
[SF71], the approximation power of a filter is N if its fre-
quency response guarantees zero-crossings of at least order
N at the points of the dual lattice except the origin. Due to
the chessboard property, the dual FCC lattice points can be
defined as ωωω = 2π[u,v,w]T , where u + v + w is even. Note
that χ̂1

bcc(ωωω) has zero-crossings of at least order two at these
points; therefore, the approximation power of χ1

bcc is indeed
equivalent to that of the linear box spline. Since χ1

bcc is in-
terpolating, it fully exploits its approximation power even
without prefiltering [CBU05, CVDV07]. Thus, the polyno-
mial approximation order of the BCC trilinear interpolation
is two, that is, it can perfectly reproduce linear polynomials.

If the frequency response of a filter is significantly non-
zero at the dual lattice points, which represent the “DC”
components of the aliasing spectra, a sample-frequency rip-
ple might occur [ML94]. This is not the case for χ̂1

bcc as it
satisfies the Strang-Fix conditions. However, to avoid even
a near-sample-frequency ripple [ML94], the frequency re-
sponse should preferably be closed to zero even in the
vicinity of the dual lattice points except the origin. Note
that χ̂1

bcc fulfills also this requirement as it guarantees zero-
crossings of at least order two at these points of the fre-
quency domain. Furthermore, based on the theory developed
in [EM06], χ̂1

bcc isotropically suppresses the nearest aliasing
spectra that contribute most to the postaliasing effect, since
the order of its zero-crossings (the number of its vanishing
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moments [EVDVM08]) is two for both the nearest and the
second nearest FCC lattice points. As shown in Figure 4, the
nearest FCC lattice points (the red dots) are located along
the diagonal directions at [±2π,±2π,0], [±2π,0,±2π], and
[0,±2π,±2π], whereas the second nearest FCC lattice points
(the blue dots) are located along the major axes at [±4π,0,0],
[0,±4π,0], and [0,0,±4π]. The antialiasing effect of the lin-
ear box spline [EVDVM08] is not so isotropic as that of the
BCC trilinear interpolation, since its frequency response has
vanishing moments of two and four at the nearest and the
second nearest FCC lattice points [CD10]. Consequently, the
linear box spline suppresses the postaliasing effect stronger
along the major axis than along the diagonal directions.
This is confirmed by Figure 5 as well, which shows cross-
sectional slices of the frequency responses.

(a) (b)

Figure 5: Frequency responses of the linear box spline (a)
and the BCC trilinear interpolation (b). The images repre-
sent the central slice (ωz = 0) of the frequency response in
the domain [−4π,4π]2, where the green rhombus depicts the
border of the pass band and the red dots depict the points of
the dual FCC lattice.

In order to analyze the smoothing and postaliasing effects,
we visualized the frequency responses also in 3D by using
direct volume rendering as it has been proposed in [CD10].
Figure 6 shows the frequency responses separately in the
pass band and in the stop band. Note that the linear box-
spline interpolation performs better in the pass band, while
the BCC trilinear interpolation is better in the stop band,
as its aliasing frequencies are mainly concentrated inside
a sphere of a smaller radius. Thus, the BCC trilinear inter-
polation introduces less high-frequency postaliasing, but its
smoothing effect is slightly higher.

3.2. Empirical Analysis

To visually compare the BCC trilinear interpolation to
the linear box-spline interpolation, we rendered synthetic
and measured test data. Figure 7 shows the isosurfaces of
the Marschner-Lobb signal reconstructed from 64 × 64 ×
64× 2 BCC samples. These results are consistent with our
frequency-domain analysis. The linear box spline introduces
oscillation especially along the diagonal directions, where

Linear box spline. BCC trilinear.

Frequency responses in the pass band.

Frequency responses in the stop band.

Figure 6: Frequency responses of the linear box-spline in-
terpolation and the BCC trilinear interpolation. The bound-
ary of the pass band, which is a rhombic dodecahedron, is
cut by a half plane to show the frequency responses inside.

the postaliasing effect is suppressed less than along the ma-
jor axes. In contrast, the BCC trilinear interpolation sup-
presses the nearest aliasing spectra more isotropically; there-
fore, it can better reconstruct the circular shape of the rings.
Between the angular gradient errors, however, there is no
significant difference.

We also rendered real-world measured data sets down-
sampled to BCC lattices (see Figure 8). Although the
BCC trilinear interpolation reduces the postaliasing artifacts
slightly better, the nature of the artifacts is rather similar as
in case of a linear box-spline filtering. This is not surprising
as the impulse response of the BCC trilinear interpolation
approximates the rhombic dodecahedral shape of the linear
box spline.

4. DC-Splines

Similarly to the B-spline, BCC-spline, and box-spline fami-
lies of filters, the impulse response χ1

bcc of the BCC trilinear
interpolation can also be used for generating higher-order
filters by consecutively convolving χ1

bcc with itself. As χ1
bcc

can be factorized to a discrete filter and a continuous filter,
the obtained higher-order filters can also be factorized in this
way due to the associative property of the convolution oper-
ator. Therefore, we call the filter family generated by χ1

bcc as
DC-splines (DC is the abbreviation of Discrete/Continuous).
A BCC DC-spline of odd order n is defined by a recursive
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Linear box spline. BCC trilinear.

Figure 7: Reconstruction of the Marschner-Lobb signal
form 64×64×64×2 BCC samples using linear box-spline
interpolation and BCC trilinear interpolation. In the error
images angular gradient error of 30 degrees is mapped to
black, whereas angular error of zero degree is mapped to
white.

formula:

χn
bcc = χn−2

bcc ∗χ1
bcc. (3)

From an approximation theory point of view, the cubic
DC-spline χ3

bcc is equivalent to the quintic box spline as it
ensures the same approximation power. Both filters are non-
interpolating; therefore, a discrete prefiltering is necessary
to use them for interpolation. More concretely, applying the
principle of generalized interpolation [BTU99, CD08], the
coefficients of the shifted kernels are determined such that
the interpolation condition is satisfied. Additionally, the pre-
filtering fully exploits the approximation power of the recon-
struction filters, so the prefiltered cubic DC-spline and quin-
tic box-spline reconstructions lead to quasi-interpolation
[CBU05, CVDV07, CD08, Csé10] of order four, that is, they
can perfectly reproduce polynomials of at most third degree.

Figure 9 shows the comparison of the cubic DC-spline to
the quintic box spline. Note that, without prefiltering, both
filters blur the high-frequency details. Although the cubic
DC-spline can reproduce the rings more isotropically, its
smoothing effect is slightly stronger. However, in case of
prefiltering, the results are rather similar.

In Figure 10, the frequency responses are compared. The
prefiltering significantly improves the pass-band behavior of
both filters. The quintic box spline can better approximate
the ideal low-pass filtering inside the pass band, but the cu-

Linear box spline. BCC trilinear.

Figure 8: Visualization of BCC-sampled measured data sets
using the linear box-spline interpolation and the BCC trilin-
ear interpolation.

bic DC-spline guarantees a more isotropic suppression of
the aliasing frequencies around the nearest and the second
nearest FCC lattice points. The quintic box spline clearly
suppresses the aliasing frequencies stronger along the major
axis than along the diagonal directions.

5. Generalization to the FCC Lattice

The DC-splines can be easily adapted to the FCC lattice as
well. The discrete component of the FCC linear DC-spline
shown in Figure 2 is responsible for reproducing the miss-
ing CC samples. The resultant impulse response of the FCC
linear DC-spline is

χ1
fcc(xxx) = β1(2xxx)+

1
6

6

∑
k=1

β1(2(xxx− vvvk)). (4)

The higher-order DC-splines for the FCC lattice are gener-
ated similarly as for the BCC lattice.

6. Conclusion and Future Work

In this paper, we have demonstrated that the BCC trilinear
interpolation is competitive to the linear box-spline inter-
polation from all the important practical and theoretical as-
pects. We proposed an efficient GPU implementation that is
slightly faster than that of the linear box-spline interpola-
tion. According to our thorough frequency-domain analysis,
the BCC trilinear interpolation performs better in the stop
band, but worse in the pass band. As a generalization to
higher-order reconstruction, we introduced DC-splines for
both BCC and FCC lattices. Overall, compared to the box
splines, the DC-splines represent a simpler and more robust
reconstruction scheme with comparable capabilities.
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Quintic box spline. Cubic DC-spline. Prefiltered quintic box spline. Prefiltered cubic DC-spline.

Figure 9: Reconstruction of the Marschner-Lobb signal form 32× 32× 32× 2 BCC samples using the quintic box spline and
the cubic DC-spline. In case of prefiltering the reconstruction is interpolating. In the error images angular gradient error of 30
degrees is mapped to black, whereas angular error of zero degree is mapped to white.

In our future work, we plan to efficiently implement the
cubic DC-spline reconstruction on the GPU similarly as it
has been proposed for the quintic box-spline reconstruction.
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Figure 10: Frequency responses of the quintic box spline and the cubic DC-spline with and without prefiltering for generalized
interpolation.
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