
Vision, Modeling, and Visualization (2010)

Image-Error-Based Level of Detail for Landscape

Visualization

M. Clasen1 and S. Prohaska1

1Zuse Institute Berlin, Germany

Abstract

We present a quasi-continuous level of detail method that is based on an image error metric to minimize the visual

error. The method is designed for objects of high geometric complexity such as trees. By successive simplifications,

it constructs a level of detail hierarchy of unconnected primitives (ellipsoids, lines) to approximate the input

models at increasingly coarser levels. The hierarchy is constructed automatically without manual intervention.

When rendering roughly 100k model instances at a low visual error compared to rendering the full resolution

model, our method is two times faster than billboard clouds.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

- Display algorithms I.3.6 [Computer Graphics]: Methodology and Techniques - Graphics data structures and data

types

1. Introduction

Landscape visualization requires rendering a large number

of 3d objects such as plants.These are often modeled at high

resolution, while coarser representations would suffice for

objects covering only a small portion of the screen. Level

of Detail (LoD) methods are a way to create such coarser

representations and reduce rendering times.

Landscape planners often model their scenes in geo-

graphic information systems (GIS), where only an icono-

graphic representation is used for plants if they are displayed

at all. Based on this data, the visualization tool is used to

display the landscape in 3D, where an interactive view en-

ables the landscape planner to specify camera paths or sin-

gle views. These are used to create images or videos. The

main requirement is the absence of LoD artifacts while min-

imizing rendering times to enable a quick iterative work-

flow. Landscape planners usually obtain their plant models

from existing collections, such as the Greenworks shop (see

http://www.xfrog.com/). These models come at a quite

high level of detail which imposes a significant load on in-

teractive systems. Fully automated LoD systems solve this

with minimal time and knowledge requirements for the user.

To evaluate our method, we chose a scene based on the typi-

cal usage scenario of our application, where landscape plan-

ners use as many plant instances as possible while balancing

Figure 1: Original model and three levels of detail. Top:

High resolution to show the LoD primitives; bottom: magni-

fication of image at target resolution to show that the LoD

primitives are hardly noticeable.

on the edge of interactivity. It does not have to be photore-

alistic, it is sufficient if the LoD is indistinguishable from

the source mesh when rendered using OpenGL. When they

have to choose between 50 fps with few instances and 5 fps

with many instances, they usually accept the lower framer-

ate. The same rules applies to memory usage, where up to a

few hundred different models are used per scene.

In this paper, we present a novel LoD method that ad-

dresses the following goals: First, it should allow rendering

images that closely match images rendered using the full

resolution model without imposing restrictions on the input

model. Some applications of landscape visualization, such

as visibility analysis, require the opacity and coverage to

c© The Eurographics Association 2010.

DOI: 10.2312/PE/VMV/VMV10/267-274

http://www.xfrog.com/
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV10/267-274


M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

match those of arbitrary full resolution models. Second, im-

age quality at coarse LoD should degrade gracefully and pro-

vide a good visual cue of the original model. This can be use-

ful to increase interactivity, for example during navigation,

at the cost of image quality. Third, the LoD method should

automatically handle a wide range of situations. It should al-

low a user of landscape visualization to render models with-

out explicitly modeling or controlling the level of details.

It should also avoid expensive level or image-based morph-

ings during rendering, because they typically require careful

modeling (see Fig. 7 in [SW08]). Fourth, the LoD method

should efficiently use graphics hardware. It should, for ex-

ample, minimize the number of 3D API state changes during

rendering to reduce the fixed overhead per model instance.

Our LoD method (Fig. 1) relies on three main contribu-

tions. First, we show that an image-based error metric is

feasible for both model simplification and LoD selection,

even without the connectivity information used in [Lin00]

for pre-simplification and local image updates. Second, we

show how to accelerate the method by a local error esti-

mate which reduces the number of necessary image compar-

isons. Third, we show how to leverage unconnected primi-

tive types (ellipsoids, lines) to approximate plant models. In

contrast to spheres, ellipsoids can closely match the shape

of a tree crown, reducing the required number of primitives

for a given image quality. We thoroughly evaluate how to

choose the parameters of the algorithm.

After discussing related work in section 2, we describe

the LoD construction in section 3. In section 4, we describe

how the LoD model is rendered and how to use the image

error metric to select an appropriate level of detail. Results

are presented in section 5 and discussed in section 6, before

we conclude in section 7.

2. Related Work

3D landscape visualization has been a topic for a long time in

3D graphics. The introduction of GPUs on the desktop and

the appearance of advanced plant modeling systems, such

as [LD98], in the late nineties, accelerated the development

of many rendering strategies and LoD schemes for plants.

This includes the usage of plant scenes to evaluate generic

approaches such as [SD01]. Boudon et al. [BMG06] pro-

vide an excellent overview over the different data structures

used for plant rendering. They classify representations into

detailed (for near-field), global (for large scenes) and mul-

tiscale (LoD transition between detailed and global). Mul-

tiscale approaches are subdivided into structural and spatial

variants, where structural methods group by physical con-

nectivity and spatial methods by distance. Our method uses

both: Leaves are treated as independent, whereas branches

are simplified based on their connectivity. This hybrid ap-

proach is inspired by [DCSD02] and [WP95]. Quadrics sur-

faces for natural scenes were introduced by [Gar84]. In terms

of [MTF03], our method is vegetation specific and focussed

on real-time rendering.

The LoD scheme most commonly used for single plant

models in interactive rendering is the billboard cloud ap-

proach. [FUM05], [BCF∗05], and [LEST06] generate bill-

board clouds from geometric models. They use 1–5 MB tex-

ture memory per model. Behrendt et al. [BCF∗05] propose

a layered surface texture approach for lower levels of detail.

They repeat the textures using Wang-tiling to circumvent the

texture memory limit. Therefore, this approach is unsuitable

for explicit scenes in which the user has control over the po-

sition of each instance. At an even higher memory cost (38

MB for a single model at 2563), the volumetric billboard

method by [DN09] provides alias-free rendering of any kind

of 3D data, including plants and non-manifold buildings.

Point rendering approaches have similar memory require-

ments as billboard clouds. Gilet et al. [GMN05] mention

26 MB for a 300k point model, resulting in approximately

100 bytes per primitive. This roughly equals the memory

requirements of billboard clouds, where 100 byte can rep-

resent a 5× 5 pixel sized rgba leaf. Gilet et al. [GMN05],

like [DCSD02], also leverage the advantage of point repre-

sentations by merging multiple plants in regular grid cells.

Like [GMN05], we base our point renderer on the continu-

ous level of detail method by Dachsbacher et al. [DVS03].

They upload a whole point hierarchy as a “sequential point

tree” (SPT) to the GPU. The main advantage is that a single

draw call can render any LoD, and the GPU decides which

points to render.

Cook et al. [CHPR07] describe a stochastic approach,

similar to [DCSD02], to simplify large sets of similar look-

ing aggregate items such as snow, swarms of insects, or uni-

form plants. Their approach works fine in this domain, and

we use a similar area preservation method. But we strive for

a more widely applicable technique that degrades gracefully

in performance while ensuring that a chosen image quality

is met when applied to unwieldy data.

While most LoD methods, including [GMN05] and

[DVS03], use local properties to derive the image error

and select the LoD, we base our error metric on the ac-

tual image quality. [Lin00] uses a similar approach to sim-

plify meshes, but his approach, in contrast to ours, relies

on mesh connectivity to accelerate the error metric updates.

Qu et al. [QYN∗06] simplify point clouds according to the

expected impact to the applied texture, not measuring the

actual image errors. Drettakis et al. [DBD∗07] choose the

LoD based on the resulting image on-the-fly, which provides

more flexibility at the cost of performance compared to pro-

ducing a LoD hierarchy in a preprocessing step.

3. Simplification

To create the quasi-continuous LoD structure, we first con-

vert the source model primitives to the LoD primitives. This

c© The Eurographics Association 2010.

268



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

is a preprocessing step, only required once for each model.

Since this step is primitive type dependent, we introduce it

together with the respective primitive (see below). Given the

resulting highest LoD, we successively merge two primitives

until only a single primitive is left (Alg. 1). The simplifi-

cation hierarchy is stored in a tree similar to [DVS03]. To

choose the next two primitives to be merged, we first ran-

domly gather Nnew ·Nlocal mergeable primitive pairs, called

candidates. From these we select the Nnew with the lowest

local error estimate. We measure the image error resulting

from the application of this merge step (relative to the source

model), and insert candidate into a candidate heap based

on [BK02]. Then we choose the candidate with the lowest

measured error from the heap. If the measurement is from

an earlier simplification step, we measure it again, since the

surrounding changes can affect the image error. Updating

only the top of the heap can result in a suboptimal choice,

but this is negligible compared to the cost of updating the

full heap. If the best candidate is found, the two primitives

are merged and the candidate is removed from the heap. In

a last step, we limit the heap to the best Ncache candidates to

avoid storing bad and outdated choices while retaining those

that might be better than those gathered in the next iteration.

We don’t use a pre-simplification step as proposed in [Lin00]

due to the negative effect on the accuracy of lower levels of

detail in this hierarchical scheme.

Algorithm 1: Successive merging

repeat

gather Nnew ·Nlocal new merge candidates;

select Nnew with lowest local error estimate;

foreach new candidate do

measure the resulting error e;

add to candidate heap;

end

repeat

select candidate with the lowest error;

if candidate error is outdated then

measure error e again;

add to candidate heap;

else

apply candidate;

end

until candidate is applied;

prune heap to Ncache candidates;

until no candidates are left;

3.1. Line

We use lines to approximate plant branches. The branch

structure is either given by the modelling system as in

[DL97] or can be reconstructed from the source model. We

interpret the branches as linear segments with 3D coordi-

nates, radius and surface materials for both start and end

e h i

a b c da b

c da b

1) combine 3) straighten2) crop 4) straighten

a b

c
d

e

f

c
d

e

f

g

e

h

e

i

a b c d e c d e f e f g

f g e h

c da b

f glo
d

 n
o

d
e
s

b
ra

n
c
h

 n
o

d
e
s

Figure 2: The source line skeleton is given as a hierarchy of

branch nodes which represents the geometric connectivity.

Two adjacent nodes can be replaced by a parent LoD node,

until only a single branch node is left. This is the root of the

LoD hierarchy.

points. We also retain the branch connectivity. Based on

this information, we can define merge steps and successively

convert the geometric branch hierarchy to a LoD hierarchy

(Fig. 2).

Two consecutive branches can only be straightened if the

second branch has no other siblings to avoid losing visual

connectivity. The resulting line is build from the start point

of the first line and the end point of the second line. Two

sibling branches can be combined if both don’t have any fol-

lowing branches. Here all properties of the lines are interpo-

lated, weighted with the size of the combines lines. A single

branch with no following branches can be cropped. We esti-

mate the local error of these operations based on their basic

properties : Straightening and combining have the least vi-

sual impact if the angle between the branches is small, while

cropping depends on the size of the cropped branch.

3.2. Ellipsoid

We approximate the non-branch elements of plants with el-

lipsoids. Ellipsoids enable a good approximation of both flat

structures (leaves) and voluminous structures (fruits). For

coarse LoD, ellipsoids can approximate whole treetops quite

accurately. To import the elements, we sample the textured

triangles of the source model that belong to the respective

element by uniformly distributed points (Fig. 3). For each

point, we store the 3D position and material properties. If

the alpha value of the texture is below 0.5, the point is dis-

carded. In a second step, we run a principal component anal-

ysis (PCA) on the point positions and interpret the eigenvec-

tors as coordinate frame for the ellipsoid. The radii ri along

the coordinate axes is given by the square root of the eigen-

values. In contrast to the lines, there is no connectivity be-

tween ellipsoids.

To find a pair of mergeable ellipsoids, we build a Delau-

nay tetrahedralization based on the ellipsoid centers (Fig. 4).

c© The Eurographics Association 2010.

269



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

1) mesh 2) points 3) ellipsoid

randomized

pca
sampling

Figure 3: We import ellipsoids by point-sampling the source

triangles of a sub-object (leaf, fruit) and fitting the samples

by a PCA.

merge

Figure 4: We organize the source ellipsoids in a Delaunay

tetrahedralization. Two adjacent ellipsoids can be replaced

by a parent LoD node, until only a single node is left. The

spatial neighborhood is not an algorithmic constraint, but a

good estimate for the resulting image error.

Adjacent ellipsoids can either be merged to an average el-

lipsoid, or one of them can be discarded while enlarging

the other one. For the enlarge operation, we first determine

the ellipsoid with the larger surface area aL > aS based on

Knud Thomsen’s formula. To compensate the reduced vi-

sual surface due to ellipsoid intersection, we approximate it

by the surface aI of intersection of their axis-aligned bound-

ing boxes (abbL,abbS) and scale the radii accordingly:

ri,new = ri

√

aL +aS

aL

abbL +abbS −aI

abbL +abbS

To average two ellipsoids, we align their coordinate

frames to minimize the rotation between them (Fig. 5).

Then we interpolate the properties of both ellipsoids, us-

ing SLERP for the orientation and linear interpolation for

all other values, with the interpolation weight

t =
aS

aS +aL
.

We also enlarge the resulting ellipsoid as before. We estimate

the error of an ellipsoid merge step by the approximated am-

bient occlusion ao as in [LBD07], the distance d between the

center points and the difference s between the surface areas

aS · s = aL: e = (1−ao) ·d · s (Fig. 6).

∠ad
∠ae
∠af

match (a,b,c) with

permutations of (d,e,f)

to minimize angles

a

b

c

d

e
f

⇒

Figure 5: To merge two ellipsoids, first we pair their axes

to minimize the rotation between the orientations. Then we

interpolate orientation and extent.

distance

ambient occlusion

area difference S

× S =

Figure 6: Higher ambient occlusion, lower distance, and

lower area difference result in a lower error estimate for el-

lipsoids.

3.3. Calibration

Because the primitive import introduces approximation er-

rors, we scale all primitives of the same type by a constant

factor. This factor is determined automatically by compar-

ing the coverage of the imported scaled primitives with the

source model and selecting the factor with the lowest image

error (Fig. 7).

3.4. Image-based Error Metric

To measure the image error caused by a simplification step,

we render multiple views from both the source model and

source mesh imported primitives difference

Figure 7: Since the primitive import is not exact, we com-

pare the coverage of the primitives to the source mesh to

adjust the primitive size accordingly.

c© The Eurographics Association 2010.

270



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

the simplification as proposed in [Lin00]. We include the al-

pha channel to avoid artifacts due to the choice of a back-

ground color. The images are then compared using a GPU

implementation of the Multiscale Structural Similarity Index

(MS-SSIM) by [WSB03].

4. Rendering

For rendering, the LoD tree is transformed to a sequential

generalized primitive tree (from coarse to fine) and stored

on the GPU as a whole. For each instance a prefix of

the tree is processed using the vertex shader to determine

which primitives don’t match the error criteria and should

be omitted. Transformation and rendering follow directly

from [DVS03], with the only differences being rmin replaced

by our node error e, and r replaced by an error threshold emax

(see below). For incremental updates during the simplifica-

tion step, we omit the sorting step and add or replace only

the changed nodes (parent and two children) for each merge

candidate.

The sequential tree can be prepared in a preprocessing

step, so the run-time work is limited to uploading and render-

ing it on the GPU. We use the ellipsoid renderer presented

by [SWBG06], which raycasts an ellipsoid in the fragment

shader. Our line renderer is derived from [MSE∗06]. Com-

pared to the OpenGL built-in point and line primitives, GPU

raycasting results in correct shading. Image space screen-

door blending as in [MGvW98] hides the difference between

the highest LoD and the original mesh without depth sorting

of the individual primitives.

4.1. LoD Selection

size error

s0

s1

e0

e1

s2 e2

look-up interpolate

transform

Figure 8: To estimate the maximal allowed error of an in-

stance, we transform its bounding box to screen space and

look up the size in the error table.

To select the LoD at run-time, we prepare a look-up ta-

ble in the preprocessing step. First we determine the max-

imal tolerated image error by computing the error of the

highest LoD for an image resolution where the smallest fea-

tures cover only a few pixels. Since decreasing the resolu-

tion hides smaller errors, a lower LoD is sufficient. For each

2−i; i > 0 scale of the initially chosen resolution, we de-

termine the lowest LoD that still meets the error threshold.

Figure 9: Three views from the scene that we used to evalu-

ate the LoD methods (≈ 90,000 instances of 24 models).

At run-time, we compute the screen-space resolution of the

bounding box of an instance and use this size to interpolate

the necessary LoD from the table (Fig. 8). If the target reso-

lution is higher than defined in the look-up table, we switch

to the source model for high-quality close-ups.

5. Results

Based on the requirements of landscape planning (see In-

troduction), we designed a scene which is navigatable at

slightly reduced quality and renders at about 1 fps at full

quality, matching the frame rates of Fig. 8 in [SD01]. An

area of of ≈ 3km2 is covered with ≈ 90,000 instances of

10 plants (various Xfrog-modelled Abies, Acer, Taxus, and

Tilia) (Fig. 9). The plant models’ complexity varied between

999 and 27,390 lines and ellipsoids. The usage of only

10 models has no effects on performance since the model

switching overhead for > 100 instances per model is negli-

gible.

We defined a camera path through this scene including

overviews and close-ups. Along this path (see supplemen-

tary material), we rendered frames at 1280× 720 using the

source model, our LoD, billboard clouds (BBC) with the

implementation from [Coc08], and sequential point trees

(SPT). Note that even though Fig. 8 in [DVS03] shows plant

models, SPT was originally designed for 2-manifold point-

based surfaces. All three implementations use a hybrid ap-

proach and render the source model primitives where neces-

sary and are, therefore, able to meet any image quality limit.

5.1. Performance

Following our goal of exact visual results, we set all methods

to a hardly noticeable difference for the full quality compari-

son. We measured the difference using the HDR-VDP imple-

mentation of [MDMS05] and calibrated each LoD method to

produce approximately the same image error over the cam-

era path. Then we measured the time to render the models

without terrain and deferred shading on a Intel Core 2 Duo at

c© The Eurographics Association 2010.

271



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

2062ms

1485ms

731ms

0 500 1000 1500 2000 2500

spt

bbc

new

Figure 10: Average time to render the camera view of the

objects in the scene depicted in Fig. 9 at 1280× 720: Our

new method, Billboard Clouds (bbc) and Sequential Point

Trees (spt).

Figure 11: Interactive view at reduced LoD. Inset compares

reduced LoD (top) with standard LoD (bottom).

2.13 Ghz using a Radeon HD4850 under OpenGL (Fig. 10).

Rendering one frame with our proposed LoD took 731ms

on average, which was faster than BBC by a factor of two

(1485ms) and SPT by almost three (2062ms) (source mesh

without LoD: 11s). Rendering the plants at a reduced level of

detail (Fig. 11) took 194ms and matches our target of 5 fps.

As shown in the inset, the small Taxus models were rendered

as single ellipsoids.

5.2. Memory Usage

Our implementation uses 140 bytes per ellipsoid and 48

bytes per line.With the native 1:2 branching in the LoD hier-

archy, we have 2n LoD primitives for a model with n prim-

itives on the finest level. Skipping every other level leads to

1:4 branching as in [DVS03], reducing the number to 4
3 n.

However, we observed no effect on the rendering perfor-

mance.

5.3. Precomputation Performance

The precomputation parameters affect both the precomputa-

tion and the run-time performance. To find a good compro-

mise between these, we measured both for an Acer model

with 4240 primitives, varying each parameter separately

and choosing the other parameters such that they do not

hide the effect of the varied parameter. Increasing Nnew

0s

2500s

5000s

7500s

10000s

50ms

55ms

60ms

65ms

70ms

1 2 5 10 20 50

run-time

ms/frame

precomp.

s/model
Nnew =

Figure 12: Increasing Nnew proportionally increased the

precomputation time, while the run-time performance im-

proved only marginally for Nnew > 2.

250s

500s

750s

1000s

20ms

40ms

60ms

80ms

1 2 5 10 20 50

run-time

ms/frame

precomp.

s/model
Ncache =

Figure 13: Increasing Ncache increased the precomputation

time, with no run-time benefit for Ncache > 5.

(at Nlocal = 1, Ncache = 1, view size v = 256, number of

views #v = 8) results in proportionally higher precomputa-

tion times (Fig. 12). However, we observed only small ef-

fects on run-time performance for Nnew > 2. The cost of an

increased Ncache (at Nlocal = 1, Nnew = 2 to fill the cache,

v = 256, #v = 8) is smaller, since not all cached candidates

have to be evaluated in every step (Fig. 13). We observed

a higher run-time performance up to Ncache = 5. The pre-

computation cost of local error estimates is relatively small

(Fig. 14). We observed no effect on run-time performance

for Nlocal > 2 (at Nnew = 1, Ncache = 1, v = 256, #v = 8).

The view size for the image comparison has the largest ef-

fect on run-time performance (Fig. 15). We measured a con-

stant performance increment up to 2562 pixels (at Nnew = 5,

Ncache = 5, Nlocal = 5, #v = 8). Our SSIM implementation

is limited to this value due to high GPU memory usage (in

addition to the buffers required for rendering, 5122 stand-

alone) . Increasing the view size had no effect on the pre-

computation times. We further analyzed the effect of the

view size and found that the run-time performance is con-

nected to the size of the smallest primitives. When they fall

below pixel resolution, the image error metric cannot evalu-

ate them properly, resulting in sub-optimal LoD. The num-

ber of views affects the view-independence and, therefore,

run-time performance. We observed improvements up to 4

views (at Nnew = 5, Ncache = 5, Nlocal = 5, v= 256) (Fig. 16).

There was no effect on precomputation cost. Given these re-

sults, we chose Nnew = 2, Nlocal = 2, Ncache = 5, a view size

of 2562 and 4 views and measured the total precomputation

times (Tab. 1).

Root mean square is fast and simple, but not robust

in terms of perceived visual quality. When comparing the

c© The Eurographics Association 2010.

272



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

160s

180s

200s

220s

240s

50ms

55ms

60ms

65ms

70ms

1 2 5 10 20 50

run-time

ms/frame

precomp.

s/model
Nlocal =

Figure 14: Increasing the number of local estimates has only

a small effect on the precomputation times. There is no run-

time benefit for Nlocal > 2.

700s

800s

900s

1000s

1100s

35ms

40ms

45ms

50ms

16 32 64 128 256

run-time

ms/frame

precomp.

s/model
view size = 

Figure 15: Increasing the image error view size improves

the run-time performance with no overhead during precom-

putation.

HDR-VDP implementation of [MDMS05] to MS-SSIM by

[WSB03], we found the latter to be robust enough while per-

forming better. With 232 comparisons per second at 5122 on

a Geforce 8800GT, it is even faster than [SS07].

6. Discussion

Our results show that the proposed method performs well

compared to both the billboard cloud method and to the

sequential point tree. The precomputation costs are higher.

But this step is fully automated and only required once per

model, so our method is suitable for landscape visualization

with static models. It is not suitable for dynamic models and

cannot exploit the connectivity information of 2-manifolds.

The widely used Speed-Tree library cannot be directly com-

pared to our approach. Speed-Tree uses optimized level of

details created by human modelers and, thus, cannot be read-

ily applied to third party models that are only available as

high-resolution models. Also, in most games, the high vi-

sual quality in the midground is counterbalanced by sparse

forests in the background, which landscape planners are un-

likely to accept.

The limited view size due to the SSIM memory usage

could be circumvented by a tiled SSIM implementation. Al-

ternatively, an optimized usage of temporary result buffers

and an increase in available GPU memory might alleviate

this issue at lower cost.

It is advisable to use incremental updates for the model

during simplification. An unsorted SPT prevents prefix ren-

dering, but the overhead of the additional rendered prim-

itives is negligible compared to the update of the whole

model. Our method does not require a separate contrast

700s

800s

900s

1000s

1100s

40ms

45ms

50ms

55ms

1 2 4 8 16

run-time

ms/frame

precomp.

s/model
#views = 

Figure 16: Computing more than four image error views

shows no benefit on run-time (no effect on precomp. times).

primitives 1k 2.8k 5.3k 11k 27k

sorted 78 s 271 s 644 s 2268 s 10317 s

unsorted 45 s 111 s 245 s 496 s 1686 s

Table 1: Precomputation times by number of primitives for

the standard sorted SPT and our unsorted implementation

preservation as [CHPR07]. We support both averaging and

discard steps, and the image error metric automatically guar-

antees that the constrast error introduced by discard steps is

compensated by averaging steps. Due to the faithful approx-

imation of the source leaves by the ellipsoids, there is no

inherent contrast error between source mesh and lod. How-

ever, aliasing can emphasize differences between textured

triangles and raycasted primitives (see bonus material).

Using volumetric primitives such as ellipsoids enables a

LoD hierarchy where even the coarsest level with a single

primitive is useful, if the simplification scheme respects the

overall shape of the model. We ensure this using a multi-

scale error metric. This allows building a next hierarchy on

top using similar methods.

7. Conclusion

We presented a LoD method based an image-error metric

driven simplification of unconnected primitives. It has sev-

eral advantages compared to previous methods. It works on

non-manifold input data.The image quality is guaranteed

to match a specified limit. The appearance scales well to

lower LoD, up to the coarsest level where a single ellipsoids

represents the general shape of a tree. By leveraging the

quasi-continuous SPT data structure, we can render many

instances at different LoD with minimal CPU overhead. Us-

ing advanced primitives such as 3D lines and ellipsoids, less

primitives are required for a given image quality when com-

pared with simple splats. The net result is a method which

outperforms existing fully automated solutions when high

image quality is required.

8. Acknowledgements

We would like to thank Lenn’e3D GmbH for the plant mod-

els, Timm Dapper for the plant skeleton extractor and Liviu

Coconu for the billboard cloud implementation.

c© The Eurographics Association 2010.

273



M. Clasen & S. Prohaska / Image-Error-Based LoD for Landscape Visualization

References

[BCF∗05] BEHRENDT S., COLDITZ C., FRANZKE O.,

KOPF J., DEUSSEN O.: Realistic real-time rendering of

landscapes using billboard clouds. Comp. Graph. Forum

24, 3 (2005), 507–516. 2

[BK02] BISCHOFF S., KOBBELT L.: Ellipsoid decompo-

sition of 3d-models. In 3D Data Processing Visualization

and Transmission (2002), pp. 480– 488. 3

[BMG06] BOUDON F., MEYER A., GODIN C.: Survey on

Computer Representations of Trees for Realistic and Effi-

cient Rendering. Tech. Rep. RR-LIRIS-2006-003, LIRIS

Lab Lyon, 2006. 2

[CHPR07] COOK R. L., HALSTEAD J., PLANCK M.,

RYU D.: Stochastic simplification of aggregate detail.

ACM Trans. Graph. 26, 3 (2007), 79. 2, 7

[Coc08] COCONU L.: Enhanced Visualization of Land-

scapes and Environmental Data with Three-Dimensional

Sketches. PhD thesis, Univ. of Konstanz, July 2008. 5

[DBD∗07] DRETTAKIS G., BONNEEL N., DACHS-

BACHER C., LEFEBVRE S., SCHWARZ M., VIAUD-

DELMON I.: An interactive perceptual rendering pipeline

using contrast and spatial masking. In Proc. Eurographics

Symp. Rendering (2007). 2

[DCSD02] DEUSSEN O., COLDITZ C., STAMMINGER

M., DRETTAKIS G.: Interactive visualization of complex

plant ecosystems. In IEEE Visualization (2002). 2

[DL97] DEUSSEN O., LINTERMANN B.: A modelling

method and user interface for creating plants. In In Pro-

ceedings of Graphics Interface 97 (1997), Morgan Kauf-

mann Publishers, pp. 189–197. 3

[DN09] DECAUDIN P., NEYRET F.: Volumetric bill-

boards. Comp. Graph. Forum 28 (2009). 2

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-

MINGER M.: Sequential point trees. ACM Trans. Graph.

22, 3 (2003), 657–662. 2, 3, 5, 6

[FUM05] FUHRMANN A. L., UMLAUF E., MANTLER

S.: Extreme model simplification for forest rendering. In

EG Workshop on Natural Phenomena (2005). 2

[Gar84] GARDNER G. Y.: Simulation of natural scenes

using textured quadric surfaces. In Siggraph Comput.

Graph. 18, 3 (1984), pp. 11–20. 2

[GMN05] GILET G., MEYER A., NEYRET F.: Point-

based rendering of trees. In EG Workshop on Natural

Phenomena (2005). 2

[LBD07] LUFT T., BALZER M., DEUSSEN O.: Expres-

sive illumination of foliage based on implicit surfaces. In

EG Workshop on Natural Phenomena (2007). 4

[LD98] LINTERMANN B., DEUSSEN O.: A modelling

method and user interface for creating plants. Comp.

Graph. Forum 17, 1 (1998), 73–82. 2

[LEST06] LACEWELL J. D., EDWARDS D., SHIRLEY P.,

THOMPSON W. B.: Stochastic billboard clouds for inter-

active foliage rendering. Journal of Graph. Tools 11, 1

(2006), 1–12. 2

[Lin00] LINDSTROM P.: Model simplification using image

and geometry-based metrics. PhD thesis, Atlanta, GA,

USA, 2000. Adviser-Turk„ Greg. 2, 3, 5

[MDMS05] MANTIUK R., DALY S., MYSZKOWSKI K.,

SEIDEL H.-P.: Predicting visible differences in high

dynamic range images - model and its calibration. In

IS&T/SPIE’s 17th Annual Symp. Electronic Imaging

(2005), vol. 5666, pp. 204–214. 5, 7

[MGvW98] MULDER J. D., GROEN F. C. A., VAN WIJK

J. J.: Pixel masks for screen-door transparency. In Proc.

of VIS ’98 (1998), IEEE CS Press, pp. 351–358. 5

[MSE∗06] MERHOF D., SONNTAG M., ENDERS F.,

NIMSKY C., HASTREITER P., GREINER G.: Hybrid vi-

sualization for white matter tracts using triangle strips and

point sprites. IEEE TVCG 12, 5 (2006), 1181–1188. 5

[MTF03] MANTLER S., TAYLOR R. F., FUHRMANN

A. L.: The state of the art in realtime rendering of vegeta-

tion. VRVis Center for Virtual Reality and Visualization,

July 2003. 2

[QYN∗06] QU L., YUAN X., NGUYEN M. X., MEYER

G. W., CHEN B., WINDSHEIMER J.: Perceptually guided

rendering of textured point-based models. In Eurograph-

ics Symposium on Point-Based Graphics (2006). 2

[SD01] STAMMINGER M., DRETTAKIS G.: Interactive

sampling and rendering for complex and procedural ge-

ometry. In Proceedings of the 12th Eurographics Work-

shop on Rendering Techniques (London, UK, 2001),

Springer-Verlag, pp. 151–162. 2, 5

[SS07] SCHWARZ M., STAMMINGER M.: Fast

perception-based color image difference estimation.

In ACM Siggraph Symposium on Interactive 3D Graphics

and Games Poster (2007). 7

[SW08] SCHERZER D., WIMMER M.: Frame sequential

interpolation for discrete level-of-detail rendering. Comp.

Graph. Forum (Proceedings EGSR 2008) 27, 4 (June

2008), 1175–1181. 2

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS

M.: Gpu-based ray casting of quadratic surfaces. In Proc.

of EG Symposium on Point-Based Graphics (2006). 5

[WP95] WEBER J., PENN J.: Creation and rendering of

realistic trees. In Proc. SIGGRAPH ’95 (New York, NY,

USA, 1995), ACM, pp. 119–128. 2

[WSB03] WANG Z., SIMONCELLI E. P., BOVIK A. C.:

Multi-scale structural similarity for image quality assess-

ment. In IEEE Asilomar Conference on Signals, Systems

and Computers (2003). 5, 7

c© The Eurographics Association 2010.

274


