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Abstract

Multi-image interpolation in space and time has recently received considerable attention. Typically, the interpo-

lated image is synthesized by adaptively blending several forward-warped images. Blending itself is a low-pass

filtering operation: the interpolated images are prone to blurring, even if correspondences are perfect. Further-

more, ghosting artifacts appear as soon as the underlying correspondence fields are imperfect. We address both

issues and propose a multi-image interpolation algorithm that avoids blending. Instead, we cast multi-image in-

terpolation as a labeling problem and decide for each pixel in the synthesized view from which input image to

sample. Combined with a symmetrical long-range optical flow formulation for correspondence field estimation,

our approach yields crisp interpolated images without ghosting artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation/Viewing algorithms; I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional Graphics and Real-

ism/Animation; I.3.m [COMPUTER GRAPHICS]: Miscellaneous/Image- and Video-based Rendering; I.4.8 [IM-

AGE PROCESSING AND COMPUTER VISION]: Scene Analysis/Time-varying imagery.

1. Introduction

The synthesis of in-between images from different view-

points and/or time instants is experiencing a renaissance.

Mahajan et al. recently proposed a high-quality interpola-

tion technique for two images that is based on finding an

optimal path for a pixel transitioning from one image to the

other [MHM∗09]. The strength of this approach is that the

path framework allows each pixel to transition to the other

image somewhere along the path, whenever a good corre-

spondence is found.Further on, each pixel in the interpolated

view is sampled from exactly one source image, thus avoid-

ing ghosting or blurring artifacts. A major drawback of this

approach is that the path idea can only be applied to two im-

ages; a direct extension to multi-image interpolation without

resorting to intermediate interpolated images is not feasible.

Stich et al. recently introduced a perception motivated

spatio-temporal image interpolation [SLAM08, SLW∗10].

His approach is based on adaptively blending four forward-

warped images. While this approach delivers high-quality

interpolation results, it can suffer from ghosting and blurring

artifacts as soon as the underlying correspondence fields are

imperfect.

In this paper, we combine the strengths of both approaches

and propose a direct multi-image interpolation that avoids

blending several images. Instead, in our approach we de-

cide for each pixel in an interpolated sequence from which

of the source images to sample best. Inspired by Maha-

jan et al. [MHM∗09], we also reconstruct the interpolated

image sequence using Poisson reconstruction after having

filled spatio-temporal holes using an extended image in-

painting technique. Combined with an extended long-range

correspondence estimation with occlusion reasoning, our ap-

proach yields high-quality image interpolation results with-

out ghosting.

Our contributions are thus

1. the formulation of multi-image interpolation as a labeling

problem,

2. and the presentation of a powerful long-range correspon-

dence estimation technique.

The remainder of the paper is structured as follows: we
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discuss related work in Sect. 2 before we introduce our cor-

respondence estimation technique in Sect. 3. We then de-

scribe our multi-image interpolation algorithm in Sect. 4 and

evaluate its results on several scenes in Sect.5. We conclude

with a brief discussion, Sect. 6

2. Related work

Correspondence estimation. Dense correspondence esti-

mation for pairs of images is a well-researched field in

computer vision. Since an in-depth discussion of all ap-

proaches is out of the scope of this paper, we refer the

reader to [BRS∗07] for a recent survey. Most of these meth-

ods are based on a differential approximation of the image

brightness constancy assumption and are hence only valid

for small motions. Larger motions, which are common in

image interpolation, are usually estimated by employing a

multi-resolution framework. However, object motion which

is larger than the object itself cannot be estimated since the

object will vanish in the image pyramid before the displace-

ment is small enough to be estimated. To account for this,

Brox et al. [BBM09] recently incorporated descriptor match-

ing in a variational framework to guide optical flow estima-

tion for larger motions. As descriptors, they propose to use

region descriptors of a hierarchical segmentation of the im-

age, similar to the SIFT descriptor [Low04]. Their approach

combines the power of descriptor matching with the regular-

ization properties of a variational approach.

A different approach has been taken by Steinbruecker et

al. [SPC09,STD09]. Starting at a standard variational formu-

lation and making use of techniques known from quadratic

relaxation [ZPB07], they arrive at a formulation with a point-

wise data term and a convex smoothness term which are cou-

pled via an additional flow field. For both data and smooth-

ness term, a globally optimal solution can be found. The so-

lution for the data term can simply be computed by a com-

plete search, alleviating the need for coarse-to-fine warping

strategies. One further appealing property of this approach is

that any point-wise error measure can be integrated into the

data term.

Occlusion handling is an important aspect of optical flow

computation since no sensible correspondences can be found

for occluded regions. Only few algorithms handle occlu-

sion directly. Alvarez et al. [ADPS07] enforce symmetrical

flow fields in a variational framework. They do not explicitly

handle flow in occluded regions, but only impose a higher

penalty on them. In contrast to this, Ince et al. [IK08] si-

multaneously estimate optical flow and occluded regions in

a variational framework. Optical flow in occluded regions

is inpainted from neighboring visible regions using image-

driven anisotropic diffusion.

Image interpolation. Image interpolation also has many

antecedents. A generally applicable, feature-based method

for interpolating between two different images is presented

by Beier and Neely [BN92]. Chen and Williams show

how general image interpolation can be used for view in-

terpolation [CW93]. For improved rendering performance,

McMillan and Bishop propose a planar-to-planar, forward

mapped image warping algorithm [MB95]. Mark et al.

adapt the method to achieve high frame rates for post-

rendering [MMB97], while Zhang et al. apply feature-based

morphing to light fields [ZWGS02]. Lee et al. extended the

feature-based method presented by Beier and Neely [BN92]

to more than two images [LWS98]. Stich et al. [SLAM08,

SLW∗08, SLW∗10] recently proposed an algorithm for per-

ceptually plausible image interpolation in space as well as

time. This approach is the basis for the Virtual Video Cam-

era System by Lipski et al. [LLB∗10], suitably extended to

more than two images. Recently, Mahajan et al. presented

a path-based interpolation for image pairs that operates

in the gradient domain and prevents ghosting/blurring and

many occlusion artifacts visible in morphing-based meth-

ods [MHM∗09]. Unfortunately, the path idea does not easily

generalize to more than two input images without resorting

to intermediate interpolations.

In our approach, we combine the idea of transitioning in-

stead of blending of Mahajan et al. with the image interpo-

lation of Stich et al. Instead of estimating paths, we resort

to robust long-range symmetric correspondence estimation

based on SIFT features. Exploiting symmetry in the cor-

respondence estimation, occlusion can be easily detected.

Inspired by the image fusion approach proposed by Agar-

wala [ADA∗04], we transition from one image source to an-

other by formulating the transition as a labeling problem and

optimizing it via graph-cuts.

3. Correspondence Estimation

Our correspondence estimation algorithm is based on the ap-

proach presented by Steinbruecker et al. [SPC09]. This ap-

proach separates the data-term, i.e. the brightness constancy

assumption I1− I2(x+w1,2)≈ 0, and the smoothness-term,

i.e.∇w1,2 ≈~0, that are the basis for the estimation of the cor-

respondence map w1,2. It hence allows for the integration of

arbitrary data-terms, especially data-terms that are not dif-

ferentiable. Steinbruecker et al. already show how to inte-

grate patch-based data-terms into this framework [STD09].

The key idea of this approach is based on the work of Zach

et al. [ZPB07] where instead of direct minimization of the

total-variation L1 formulation

min
w1,2

∫
Ω

α|I1− I2(x+w1,2)|+ |∇w1,2| dx, (1)

an auxiliary variable w̃1,2 is introduced and the problem

min
w1,2,w̃1,2

∫
Ω

α|I1−I2(x+w1,2)|+
2

θ
‖w1,2−w̃1,2‖

2
2+ |∇w̃1,2| dx

(2)

is considered. For small θ the solution of the original prob-

lem and the auxiliary problem are the same, but the latter
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problem permits an elegant and fast solution: Equation (2) is

solved iteratively for w̃1,2 keeping w1,2 fixed, and for w1,2

keeping w̃1,2 fixed, see [ZPB07] for details. Depending only

on w1,2 and no longer on ∇w1,2 the latter problem can be

solved point-wise by considering

Ẽ(x) = α|I1− I2(x+w1,2)|+
2

θ
‖w1,2− w̃1,2‖

2
2. (3)

Since Eq. (3) can be solved point-wise, essentially any non-

linear data-term can be used and optimized globally by an

exhaustive search.

3.1. SIFT data term

We exploit this desirable property and additionally integrate

the SIFT descriptor [Low04] into the data term as proposed

by [LYT∗08]. Our data term now reads

Ẽ(x) = α
(

|I1− I2(x+w1,2)|+‖S1−S2(x+w1,2)‖2
)

+
2

θ
‖w1,2− w̃1,2‖

2
2, (4)

with S1 and S2 denoting the dense SIFT image for I1 and I2,

respectively. By incorporating the SIFT descriptor into the

data term, we gain increased robustness against illumination

changes, incorporating a small neighborhood into the data

term.

3.2. Edge data term

Following the work of Stich et al. [SLW∗10], maintaining

edge correspondences is important for high-quality image

interpolation. We thus further integrate the edge-matching

approach into Eq. (4), yielding

Ẽ(x) = α
(

|I1− I2(x+w1,2)|+‖S1−S2(x+w1,2)‖2
)

+ β f (E1)‖E1−w1,2‖2

+
2

θ
‖w1,2− w̃1,2‖

2
2, (5)

where E1 is a sparse correspondence prior derived from

matched edge pixels and f (x) = 1 iff E1 has a valid entry

and f (x) = 0 otherwise.

3.3. Symmetry data term

Symmetry is another important aspect for high-quality im-

age interpolation. The input images are warped towards each

other and the pixel values are blended; mismatching pixel

values will lead to visible artifacts. Enforcing a symmetry

constraint already in the computation of the flow fields is

thus the basis for high-quality interpolation without cross-

fading artifacts. We hence further add a symmetry term to

Eq. (5), resulting in

Ẽ(x) = α
(

|I1− I2(x+w1,2)|+‖S1−S2(x+w1,2)‖2
)

+ β f (E1)‖E1−w1,2‖2

+ γ(1−g(‖w1,2+w2,1(x+w1,2)‖2))

+
2

θ
‖w1,2− w̃1,2‖

2
2, (6)

where g(x) = 1/(1+ kx2), k = 0.25, is a weighting func-

tion used by Ince et al. [IK08] and originally proposed

by [PM90]. This weighting function penalizes small flow

deviations and leaves large deviations untouched, allowing

other data terms to take control when no symmetry can be

established. Regions where sensible correspondences can’t

be established are potentially occluded.

Eq. (6) is optimized by a full search in an n× n window

making use of the compute power of recent GPUs. n denotes

the maximal flow length in pixels in x- and y-direction. The

optimization is started with θ = 2 · n and is run for 10 itera-

tions with θ decreasing linearly to 0.01. After each iteration,
the result is median filtered in a 5× 5 neighborhood and 10

smoothing iterations are applied. A good starting point for

the remaining parameters is given by α = 8.0, β = 4.0 and

γ = 1.0

3.4. Occlusion detection

Since we enforce symmetric flow in the optimization, we

can now use the geometric mismatch of forward flow w1,2

and backward flow w2,1 to detect occluded regions by con-

sidering m(w1,2,w2,1) = ‖w1,2+w2,1(x+w1,2)‖
2
2. Thresh-

olding the geometric mismatch m gives a binary occlusion

map O, regions where flow values are not symmetric and

hence unreliable. We repair the flow values in those regions

by transferring the idea of geodesic matting [BS09] to mo-

tion inpainting. To this end, we make the assumption that

the occluded region belongs either to foreground or back-

ground and its affiliation can be determined by color. As a

first step, we identify all occluded blobs {bi}1...N in the bi-

nary occlusion map O; large blobs are split perpendicular

to their major axis. The splitting threshold is usually set to

100 pixels. For every blob bi, we then examine a five pixel

wide boundary around the blob and determine two bound-

ary clusters Fi and Bi by clustering unoccluded flow values

using k-means, Fig. 2. For each cluster, we estimate a color

probability density function (PDF) in Lab space. In order to

identify the splitting boundary in bi, we then compute the

weighted geodesic distance d(x) for foreground and back-

ground PDF for each pixel x ∈ Ωbi accordingly, see [BS09]

for details. To inpaint flow values into blob bi, we simply

copy the median flow vector from the assigned border class.

3.5. User interaction

Despite the expressiveness of the SIFT descriptor, there are

cases where the automatic correspondence estimation does

not produce correct results. To still guarantee high quality

interpolation results, we resort to user interaction in difficult

cases. User correspondences ŵ1,2 are specified in an interac-

tive tool using brushes and are readily integrated into Eq. 6,
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I1

I2

w1,2

w2,1

m(w1,2,w2,1)

m(w2,1,w1,2)

after inpainting ground truth

Figure 1: We first estimate correspondences by optimizing Eq. (6). We then detect occluded regions, compute color statistics

along the boundary of the occluded regions and inpaint the flow values based on color similarity. The last column shows a color

coding of the ground truth flow fields for visual comparison.

bi

Fi

Bi

Figure 2: Flow repair: For each occluded blob, we deter-

mine two boundary classes Fi (green) and Bi (blue) by clus-

tering the flow values along the boundary of the occluded

blob bi (red). For each boundary class, color statistics are

computed in Lab space and each pixel of the occluded blob

is inpainted with flow values from the most similar boundary.

resulting in

Ẽ(x) = α
(

|I1− I2(x+w1,2)|+‖S1−S2(x+w1,2)‖2
)

+ β f (E1)‖E1−w1,2‖2

+ γ(1−g(‖w1,2+w2,1(x+w1,2)‖2))

+ δ f (ŵ1,2)‖ŵ1,2−w1,2‖2

+
2

θ
‖w1,2− w̃1,2‖

2
2.

4. Multi-image interpolation

Stich et al. [SLAM08] proposed a GPU-based image inter-

polation algorithm that is founded on mesh-based forward

warping and adaptive blending of images. In this approach,

occlusion and disocclusion are handled by depth heuristics

and a connectedness measure, respectively. This algorithm

naturally extends to more than two images; the virtual view

Iv can be synthesized as

Iv =
n

∑
i=1

µiĨi,

with

Ĩi

(

x+ ∑
j=1,...,n, j 6=i

µ jwi j(x)

)

= Ii(x) (7)

and µi denoting a barycentric weighting scheme in n−1 di-

mensional space, see [LLB∗10] for a detailed explanation

of the construction of the space and the derivation of the

weights µi. While this approach produces good results if

the correspondence fields wi j match up exactly, the blend-

ing actually produces a low-pass filtered image for impre-

cise correspondence fields. Further, the adaptive blending

weights derived from the connectedness measure often result

in streaking artifacts in disoccluded regions, cf. Fig. 4(a).

Our proposed approach also relies on forward warped im-

ages, i.e. we also warp each input image to the desired po-

sition in by applying Eq. (7). In contrast to Stich et al., our

approach cuts the underlying warping mesh open in disoc-

cluded regions by measuring the triangle stretch. Instead of

blending the forward warped images to get the interpolated

image, we formulate the interpolation as a labeling problem

which is explained in the following subsection.

4.1. Graph-cut based interpolation

Inspired by the interactive digital photomontage by Agar-

wala et al. [ADA∗04], we now show how we avoid blending

several images at each pixel. Our approach is based on solv-

ing an optimization problem that decides for each pixel in

the virtual view Iv from which of the n source images best

to take the color information. To this end, we formulate the

view synthesis as a labeling problem in a 3D MRF frame-

work incorporating temporal coherence. Note that from now

on we consider the entire interpolated sequence and perform

all computations on this spatio-temporal volume. The goal is
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Sect. 4 Sect. 4.1 Sect. 4.2 Sect. 4.3

Figure 3: Schematic overview of the proposed interpolation. First, the input images are forward-warped to each target posi-

tion of the interpolated sequence. The interpolated sequence is then constructed as the solution of a spatio-temporal labeling

problem. Holes in the interpolated sequence are inpainted and the result is finally reconstructed in the gradient domain.

to assign to each pixel p ∈ Iv a label L(p) indicating which

of the source images ĨL(i) the pixel should be taken from. In

particular, we optimize the following energy:

E(L) = ∑
p∈Iv

ED(p,L(p))+λ ∑
p,q∈N

ES(p,q,L(p),L(q)),

(8)

where ED measures the quality of the current labeling, ES

controls the smoothness of the labeling and p,q are neigh-

boring pixels in a 6-connected† neighborhoodN ⊂ {Iv}.

Our data cost function

ED(p,L(p)) = 4.0 ·Pdis(∆p) · e
1−µL(p) ,

favors pixel that receive a low disocclusion penalty Pdis(∆p).
We compute the disocclusion penalty based on the area of

the associated triangle ∆p in the underlying warp mesh as

Pdis(∆p) =

{

0 if ∆p ≤ 0.5

e1.25(∆p−0.5)2 −1 else.

We further assume that images with a high barycentric

weight µL(p) only have a low distortion.

The smoothness term

ES(p,q,L(p),L(q)) = X ·Y

is composed of

X =
(

‖ĨL(p)(p)− ĨL(q)(p)‖2+‖ĨL(p)(q)− ĨL(q)(q)‖2

)

and

Y = 2.0− (∇p,qĨL(p) +∇p,qĨL(q)),

see Bhat et al. [BZS∗07]. It prefers cuts through regions

of homogeneous colors or along prominent edge structures.

When considered from a perception point of view, this is

desirable since (1) cuts in homogeneous regions will most

likely go unnoticed and (2) cuts along prominent edges will

keep structural information intact.

† Our neighborhood consists of 4 spatial and 2 temporal neighbors.

We find a labeling that is the approximate global mini-

mum of Eq. (8) using the alpha-expansion algorithm pro-

posed by Boykov et al. [BVZ01]. For our test scenes, we set

λ = 4.

4.2. Spatio-temporal inpainting

The forward warping approach with mesh cutting discussed

in Sect. 4 introduces holes in each source image where pixels

are disoccluded. Eventually, some of those areas are invisi-

ble in all source images, such that our algorithm does not

find a sensible labeling for those areas and hence no color

value, cf. Fig. 4(b). Those areas have to be filled with per-

ceptually plausible color values in a temporally consistent

manner. To this end, we adapt the inpainting method pre-

sented by Telea [Tel04] to three dimensions and inpaint the

spatio-temporal holes in the interpolated sequence. In our

implementation, we favor inpainting along the temporal di-

rection, over inpainting along the spatial dimensions by giv-

ing the temporal dimension a higher weight. This is justified

as follows: invisible regions potentially occur at occlusion

edges; inpainting along the spatial dimensions would lead

to diffusing wrong color information over those occlusion

boundaries. When inpainting along the temporal dimension,

we exploit that the invisible region becomes visible at some

point earlier or later in the sequence and we are hence able

to diffuse color information in a perceptually plausible way,

Fig. 4(c). We apply a temporal weighting factor of 0.9 and a
spatial weighting factor of 0.1 in all our test scenes.

4.3. Label-based view synthesis

The labeling found by our optimization completely defines

how to construct the virtual view Iv: one simply samples

each interpolated pixel from the appropriate source image.

We follow the approach of Mahajan et al. [MHM∗09] and

sample the image in the gradient domain. The interpolated

image is then reconstructed by solving the 3D Poisson equa-

tion, i.e. we solve

∇2
Iv =∇·G,

where G(x) = (Gx,Gy,Gt) denote the gradients of the vir-

tual view in the x and y direction and along the path through
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the spatio-temporal volume. The Laplacian operator is com-

puted as ∇2Iv =
∂Iv
∂x2

+ ∂Iv
∂y2

+ ∂Iv
∂t2

and the divergence of the

gradient field is computed as ∇ ·G = ( ∂Gx

∂x
+

∂Gy

∂y
+ ∂Gt

∂t
).

We take the first and last frame of the interpolation path as

well as the one-pixel boundary of each intermediate frame

as boundary conditions for the Poisson reconstruction.

5. Results and Evaluation

To evaluate the correctness of the proposed multi-image in-

terpolation approach, we use a synthetic scene with ground-

truth flow fields. We compare the proposed approach to

the multi-image interpolation method proposed by Stich et

al. [SLAM08], Fig. 4. Each image is interpolated from four

input images. The blending-based interpolation technique

suffers from streaking artifacts in disoccluded and totally

invisible regions, despite the use of ground-truth correspon-

dence fields. Our approach clearly produces less artifacts and

is visually more pleasing. We next evaluate our interpolation

approach on a high-speed camera sequence from the Mid-

dlebury optical flow benchmark. This scene features fast mo-

tion of small objects and represents a difficult test case for

common optical flow approaches. We evaluate our interpo-

lation algorithm on flow fields computed using the original

algorithm of Steinbruecker et al., i.e., computed by solving

Eq. (3), and on flow fields computed using our proposed

extension including SIFT, edge and symmetry data terms,

cf. Eq. (6). Without our proposed extension, the interpola-

tion suffers from artifacts such as a distorted ball and visi-

ble seams running over the girl’s skirt. Compared to the ap-

proach of Mahajan et al., we obtain visually comparable re-

sults with our full approach, Fig. 5. In addition to Mahajan et

al., our approach naturally extends to more than two images

without resorting to intermediate interpolations, thus avoid-

ing additional image resampling that potentially leads to loss

in quality. We next compare our full approach to the multi-

scale approach recently proposed by Stich et al. [SLW∗10],

Fig. 6. Again, our approach produces sharper images without

ghosting artifacts. For all scenes, we refer the reader to the

accompanying video for better assessment of image quality.

5.1. Limitations

The inpainting approach used to fill occluded regions with

sensible flow information relies on the assumption that the

scene consists of two layers and that the occluded region is

in direct adjacency to the region it actually belongs to. We

further make the assumption that the layers can be clearly

distinguished by their color statistics. If one of those as-

sumptions is violated, as is the case for parts of the roof in

the windmill sequence, Fig. 7, wrong flow information will

be filled in. Incorporating high-level scene segmentation into

the inpainting step might be an interesting direction for fu-

ture work.

Currently, the spatio-temporal inpainting approach is lim-

ited to regions with only little texture. In highly textured

regions, our inpainting will not be able to fill in matching

details. In the future, we plan to examine texture synthesis

algorithms for this task.

A further drawback of our interpolation approach is that

it is not real-time capable. Most computation time is spent

in solving the labeling problem. For a resolution of 960×
540 pixels, the interpolation of a single frame takes between

10 and 20 seconds, depending on the quality of the initial

labeling.

6. Conclusion

We have presented an algorithm for ghosting-free multi-

image interpolation. Our approach is based on a novel for-

mulation of image interpolation as a labeling problem. Com-

bined with a symmetric long-range correspondence estima-

tion technique based on SIFT features and edge matching,

our interpolation technique yields high-quality results supe-

rior to state of the art.

Future work will focus on finding better ways to repair

correspondence fields in occluded regions. One possible ap-

proach would be to integrate a high-level scene segmentation

into this process.
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(a) Blending-based interpolation (b) Graph-cut-based interpolation without in-

painting

(c) Result of our complete algorithm

Figure 4:We evaluate the correctness of our algorithm on a synthetic scene with ground-truth correspondence fields. Each im-

age is interpolated from four input images. Our approach is superior to the blending-based approach, especially in disoccluded

regions. In those regions, the blending-based approach suffers from annoying streaks, despite the use of ground truth flow fields.

(a) Result of Mahajan et al. [MHM∗09] (b) Our result without symmetry and SIFT for

correspondence estimation

(c) Our result with symmetry and SIFT for cor-

respondence estimation.

Figure 5: Results on the backyard sequence from the Middlebury benchmark, interpolated from two images. Left: result of

the Moving Gradients approach by Mahajan et al. [MHM∗09], middle: our proposed interpolation without inclusion of SIFT

and symmetry in the correspondence estimation, and right: our full approach. The full approach yields comparable results to

Mahajan et al. Note that the left image has been extracted from video; the low quality might be due to low resolution.

(a) Result of Stich et al. [SLW∗10] without user correction. (b) Result of our complete algorithm.

Figure 6: Results on the Heidelberg stereo sequence, interpolated from three images. Left: result of the approach of Stich et

al. [SLW∗10] using their edge-based correspondence estimation. No user corrections have been applied. The image suffers

from ghosting noticeable around the windows, and appears blurry overall. Right: our algorithm yields crisp images without

ghosting.
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(a) Source image overlaid with detected oc-

cluded regions.

(b) Repaired flow field. Repair fails in the

marked region.

(c) Difference to ground truth flow field.

Figure 7: Flow repair fails if new entities are discovered or color statistics are not distinctive enough. In this case, the roof of

the windmill is a new entity which violates all of our assumptions.
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