Sketch-based breaking waves

Guijuan Zhang 1, Gaojin Wen 1, Dengming Zhu 2, Dianjie Lu 1 and Shengzhong Feng 1

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2 Institute of Computing Technology, Chinese Academy of Sciences

Abstract
We present a sketching method for animating breaking waves in this paper. Our approach allows an animator to control physically-based wave breaking effects by drawing the outline of the wave shape intuitively. To do this, we provide a feature-based keyframe design model. We can sketch the wave shape roughly and describe the wave shape as a unified volume representation. Moreover, we propose an efficient keyframe matching model to transport current fluid state to the target state with minimum energy. The solution to the keyframe matching model is used to compute the external force field for the Navier-Stokes equations. Our method is straightforward to implement and convenient to produce interesting wave breaking behaviors. The experimental results show that our method is easy and intuitive to use.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Breaking waves are most common natural phenomena in our daily life. They appear frequently in many disaster films, such as “2012”, “The day after tomorrow” and so on. In such applications, special effects about wave breaking often require both high degree of realism and freedom of liquid control. Although the physically-based fluid animation model can provide nice results, it suffers from the high non-linearity of the motion equation. Therefore, generating controllable wave breaking effects is still one of the most challenging problems in the field of physically-based fluid animation.

It is expected that animators could describe desirable wave behavior freely by sketching out the outline of breaking waves. Then, the fluid will move in accordance with the sketched outlines. However, it is difficult to do this for two reasons. First, the wave breaking results are overly dependent on the keyframes. The keyframe designing involves a very tedious process since the amorphous phenomena tend to undergoes intangible motion. Second, the dynamics of breaking waves should be considered when computing the fluid velocity to capture full 3D wave behaviors. Therefore, developing a method that overcomes the above difficulties and provides an easy-to-use interface is of great importance for wave animation.

We propose a sketching method for animating breaking waves in this paper. The method allows users to control wave breaking intuitively via outlining wave shapes freely in keyframes. Therefore, our method could reduce the labor of animators significantly. The framework of our method includes two novel parts (see Figure 1): the feature-based model for keyframe designing and the energy minimizing model for keyframe matching. We will give the details in the following sections.

2. Related Work

Early work in the field of ocean simulation tends to adopt the knowledge of oceanographic phenomenology and model the ocean surface using parametric function [FR86, GS00, MWM87, HNC02, JBS03]. A comprehensive survey can be found in [DCGG11]. Such parametric representation is unable to describe the important features of breaking waves (i.e., overturning of the wave surface). Thus, animating wave breaking effects is virtually impossible for the semi-empirical methods.

Another group of methods use 2D shallow water equations to model breaking waves [TMFS07]. In contrast to the parametric methods, the shallow water equations can obtain a velocity field that improves realism of wave motion.

In order to simulate breaking waves with full 3D fluid be-
haviors, models of physically-based fluid animation should be considered. Examples include particle level set method [EMF02] and its improved techniques [KCC∗06], two-way coupled SPH (Smoothed Particle Hydrodynamics) and PLS (Particle Level Set) method [LTKF08], surface tension model [HK05, TWGT10], explicit method [WTGT10, BBB10] and so on.

Building on the physically-based fluid models, the forward control methods [FM97, FF01, REN∗04] as well as the inverse control methods [MTPS04, SY05, TKPR06, ZZQW11] are introduced to control the liquid motion. The forward control methods require a “try-and-error” process. Although the inverse methods solve the above problem, they are difficult to produce wave breaking effects since the keyframes designing is rather tedious in wave animation.

Recently, Darles et al. [DCG10] propose a wave breaking model based on particles. To animate breaking waves under grid-based Eulerian approach, Mihalef et al. [MMS04] present a slice method. The method constructs the initial wave shape and velocity field based on a library of breaking waves. Therefore, animators are enabled to animate breaking waves by controlling the shape and the timing of breaking. Losasso et al. [LTKF08] extend the slice method to a two-way coupled SPH and PLS model.

3. Feature-based Keyframe Design Model

3.1. Wave Modeling Operators

The wave modeling operators are entirely inspired by the concepts in solid modeling [RR99]. Formally, set \(S = \text{sweep}(L_1, L_p) \), where \(L_1 \) (a close spline curve) is the 2D silhouette of wave shape and \(L_p \) is the path for sweeping. The wave shape \(S \) is the result of the sweeping operation \(\text{sweep} \). The \(\text{sweep} \) operator here converts the input into 3D wave shapes automatically. Figure 2 gives an example.

3.2. The Unified Volume Representation

The rough sketching task only provides approximate wave shapes. To counteract the inaccuracy, we introduce a unified volume representation here. Let \(K = \{ k_1, k_2, \cdots, k_l \} \) be \(l \) keyframes used in the animation. \(k_i = (S_i, u_i) \) denotes the \(i \)th keyframe. In \(k_i, S_i \) represents the wave shape and \(u_i \) denotes the velocity field. Let \(C_i = \{ c_{i1}, c_{i2}, \cdots, c_{in} \} \) be the volume representation of \(k_i \). Each element \(c_j \) in \(C_i \) is a cluster that contains several fluid cells. The cluster can be represented as a sphere with four attributes: position \(x(c_j) \), control radius \(r(c_j) \), velocity \(u(c_j) \) and volume \(v(c_j) \). These attributes contain basic shape and velocity information defined in the keyframes. Obviously, the more clusters are used, the more accurate representation can be achieved.

In order to describe the keyframes into the unified volume representation, we approximate wave shapes with hierarchical spheres according to Bradshow’s sphere tree method [BO02]. Each sphere has attributes of position \(x(c_j) \), control radius \(r(c_j) \), velocity \(u(c_j) \) and volume \(v(c_j) \). We compute the velocity for the sphere according to the linear wave theory [MMS04].

4. Energy-minimizing Model for Keyframe Matching

In order to transform the current state to the target, we need a way to determine the fluid velocity field \(u \). We present an energy-minimizing model to find the matching solution among the source clusters and the target clusters. The solution will be used to compute the velocity field \(u \) that satisfies the minimum energy condition.
Note that d_{ij} consumption of a cluster c_i to its target. The potential energy reflects the work done in transporting current velocity field to that of the target. Potential energy is measured by the work done in converting current volume between a source cluster c_i and a target cluster c_j.

4.1. Keyframe matching model

We formulate the keyframe matching problem as an energy-minimizing model. The objective function is defined as the energy consumption of the whole deformation process. We consider two forms of energy here: the kinetic energy and the potential energy. The kinetic energy is measured by the work done in converting current velocity field to that of the target. The potential energy reflects the work done in transporting current shape to its target.

Formally, let $C_i = \{c_{i1}, \cdots, c_{im}\}$ be the current state and $C_t = \{c_{t1}, c_{t1}, \cdots, c_{tn}\}$ be the target state. $D = [d_{ij}]$ is the Euclidean distance matrix among the clusters in C_i and C_t. We solve for a flow matrix $F = [f_{ij}]$ that minimize the total energy. As shown in Figure 3, the value of f_{ij} equals to the volume transported between c_i and c_j. Thus, the energy consumption of a cluster c_i takes the form

$$E(c_i) = \sum_{j=1}^{n} f_{ij} s_{ij}, \quad (1)$$

where

$$s_{ij} = d_{ij} + \frac{1}{2} (|u(c_i)|^2 - |u(c_j)|^2).$$

Note that d_{ij} is the Euclidean distance between the positions of c_i and c_j, u is the velocity. The first term on the right-hand side denotes the potential energy and the second term is the kinetic energy.

Performing the summation of $E(\cdot)$ over all source clusters yields the objective function of our keyframe matching model

$$\arg\min_F \text{Work}(C_i, F, C_t) = \sum_{i=1}^{m} E(c_i).$$

Equation (2) shows the definition of $\text{Work}(C_i, F, C_t)$ with a set of constraints.

$$\text{Work}(C_i, F, C_t) = \sum_{i=1}^{m} \sum_{j=1}^{n} s_{ij} f_{ij}$$

subject to

$$f_{ij} \geq 0 \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$$

$$\sum_{j=1}^{n} f_{ij} < \nu(c_i) \quad 1 \leq i \leq m$$

$$\sum_{i=1}^{m} f_{ij} < \nu(c_j) \quad 1 \leq j \leq n$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min\left(\sum_{i=1}^{m} \nu(c_i), \sum_{j=1}^{n} \nu(c_j)\right).$$

The first constraint means that the volume transported between two clusters c_i and c_j is no less than 0. The next two constraints mean that the shipping volume is no more than the cluster’s volume itself. The fourth constraint ensures that the total shipping volume from the source clusters to the target clusters is no more than the total volume of both states.

4.2. Keyframe Matching Solution

Actually, the keyframe matching model (2) can be regarded as a well-known transportation problem [HL05]. The optimal solution of (2) determines the minimum amount of energy required in the transportation process. Since a source cluster may transport fluid volume to any target cluster, the traditional transportation problem returns a flow matrix that records a many-to-many relationship among the source clusters and the target clusters. See an example in Figure 3. We wish to get a one-to-one or many-to-one relationship in the flow matrix because it will be used to derive the force direction for fluid motion. As a result, one source cluster has no more than one destination. To achieve this, we present a tailored method for solving the keyframe matching model as shown in Figure 4.

In our method, the keyframe matching model can be solved in two steps. The first step solves (2) according to the transportation algorithm while the second step performs cluster separation over the source clusters. Details about the transportation algorithm can be found in [HL05]. In the
5. Controlled Fluid Motion

We use the modified flow matrix \(F \) to construct the external force field. The external force is added to the Navier-Stokes equations so as to yield the final fluid velocity field for wave motion.

5.1. The External Force Field

To transport the current fluid shape to its target while compensating for the velocity difference, we consider the shape feedback force and the velocity feedback force here. The shape feedback force acting on a cluster center \(x(c_i') \) is

\[
f_{s}(x(c_i')) = w_s(x(c_i') - x(c_i)),
\]

where \(w_s \) is the weight of the shape feedback force, \(c_i' \) is the matching cluster of \(c_i \). The velocity feedback force acting on \(x(c_i') \) is defined as

\[
f_{v}(x(c_i')) = w_v(u(c_i') - u(c_i)),
\]

where \(w_v \) is the weight of the velocity feedback force, and \(u \) is the velocity. Thus, the external force acting on \(x(c_i') \) is

\[
f(x(c_i')) = f_s(x(c_i')) + f_v(x(c_i')). \tag{3}
\]

Next, we compute the external force exerted on a water cell \(x_c \)

\[
f(x_c) = \sum_{i} W(|x(c_i') - x_c|, \alpha r(c_i')) f(x(c_i')), \tag{4}
\]

where \(\alpha \) adjusts the control radius of the kernel function. We choose the values between 1.0 and 2.0 for \(\alpha \) in our examples. \(W \) is the normalized spline kernel [TKPR06] with support \(h \)

\[
W(d, h) = \begin{cases} \frac{315}{128}\pi h^3 \left(1 - \frac{6}{5} \left(\frac{d}{h} \right) + \frac{1}{3} \left(\frac{d}{h} \right)^3 \right) & \text{if } d < h \\ 0 & \text{if } d \geq h. \end{cases}
\]

Equation (4) defines the external force field for wave controlling.

5.2. Algorithm for Breaking Waves

We use the two-way coupled physically-based fluid animation method [LTFK08] to compute wave motion in our approach. In the two-way coupled fluid animation method, the water surface is defined as the zero iso-counter of a signed distance function and it moves under the level set equation

\[
\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = 0,
\]

where \(\phi \) is the signed distance function with \(|\nabla \phi| = 1 \). \(u \) is the fluid velocity. Also, the fluid details are represented as particles and modeled by the SPH method. The particles are advected in the fluid velocity field

\[
\frac{dx_p}{dt} = u_p,
\]

where \(u_p \) is the fluid velocity interpolated at the particle location \(x_p \). In the two-way coupled fluid animation method, the velocity field at dense fluid regions can be obtained by solving the following Navier-Stokes equations

\[
\nabla \cdot u = 0,
\]

\[
u \nabla^2 u + \frac{1}{\rho} \nabla p + f = 0, \tag{5}
\]

where \(\nu \) is the kinetic viscosity, \(\rho \) is the density, \(p \) is the pressure, and \(f \) is the external force field. Moreover, the velocity at diffuse fluid volumes can be computed by solving the SPH model. Note that the pressure term is obtained by rasterizing the particle values onto the background MAC grid and solving.

\[
\begin{aligned}
\text{Algorithm 1: Algorithm for animating breaking waves} \\
\text{Input: The initial condition, } K, & \text{ and control parameters.} \\
\text{Output: A sequence of controlled breaking waves.} \\
\text{begin} \\
\text{match} \leftarrow \text{true}; \\
\text{while animating do} \\
\text{if match then} \\
\text{C_t} \leftarrow \text{FetchKeyframe}(K); \\
\text{if } C_t \text{ is NULL then} \\
\text{u} \leftarrow \text{FluidSolver}(); \\
\text{continue; } \\
\text{end} \\
\text{match} \leftarrow \text{false}; \\
\text{C_t} \leftarrow \text{VolRep(CurrentState)}; \\
\text{F} \leftarrow \text{SolveMP(C_t, C_s)}; \\
\text{end} \\
\text{f} \leftarrow \text{GenExternalForce(F)}; \\
\text{u} \leftarrow \text{FluidSolver}(f); \\
\text{x(C_t)} \leftarrow \text{UpdateClusterPos}(); \\
\text{avgdis} \leftarrow \text{AvgDistance(x(C_t), x(C_t))}; \\
\text{if avgdis < d then} \\
\text{match} \leftarrow \text{true; } \\
\text{end} \\
\text{end} \\
\text{end}
\end{aligned}
\]

© The Eurographics Association 2011.
ing the poisson equation coupled with (5). Further details are discussed in the literature [LTTF08, EMF02].

Algorithm 1 gives our wave animation method. In this algorithm, FluidSover() solves fluid velocity field using the two-way coupled SPH and PLS model. VolRep() returns the unified volume representation, SolveMP() solves the energy-minimizing keyframe matching model and GenExternalForce() computes the external force field. After obtaining the final fluid velocity field, we update the positions of the source clusters in UpdateClusterPos() with the Newton’s second law. We compute the average distance from current cluster centers to the target ones. The current state is matched to the target when the average distance is below a threshold.

6. Results

We will give some examples of breaking waves in this section. All the results are gathered on a PC with 2.6 GHz Intel Core 2 Duo CPU and 2GB memory. And the 3D water is rendered using Povray library which is available from http://www.povray.org/. In the following examples, we use \(w_d = 0.02, w_v = 0.1 \) to compute the external force field.

Figure 5 shows an example of a breaking wave. We sketched the wave shape in our keyframe. The four images show the wave motion at different time steps. In this example, the grid size is set to \(240 \times 64 \times 96 \). As for the initial condition, we use a randomly generated height field to represent the free surface. The wave control model in this paper makes the surface grow away from their original locations and finally forms the wave breaking effects.

Figure 6 shows the motion of another breaking wave. In this example, the path for sweeping operation is a curve. Since the feature-based keyframe design model supports rough sketching, users could design the desired wave shape freely. The grid size in this example also equals to \(240 \times 80 \times 96 \). In the above examples, we generate wave breaking results via abandoning the external control forces directly in the Navier-Stokes equations. The results show that our approach is easy and intuitive to use while producing desired wave motion.

7. Conclusion and Future Work

We have presented a sketching method for breaking wave animation in this paper. Our method allows users to control wave breaking freely by sketching out the outline of the wave shapes. The rough sketching method benefits from our keyframe design model and keyframe matching model significantly. The keyframe design model facilities the keyframe designing efforts while the keyframe matching model relaxes the dependence of wave animation on the provided keyframes.

Since the control parameters about the external force field are related to motion data, it is difficult for us to design a group of optimal parameters for all kinds of breaking waves. Thus, animators are required to adjust the parameters for a given set of examples. We would like to improve this situation in our future work.

Acknowledgements

This work is supported by the National High-Tech Research and Development Plan of China (863 program) under Grant No.2009AA01A129-2, the Science and Technology Project of Guangdong Province under the grant No.2010A090100028, National Natural Science Foundation of P.R. China under the Grant No.60903116, and Knowledge Innovation Project of the Chinese Academy of Sciences No.KGCX2-YW-131, the Science and Technology
References

