
Eurographics Workshop on Natural Phenomena (2007)
D. Ebert, S. Mérillou (Editors)

Multi-layered indirect texturing for tree rendering

Ismael García1, Gustavo Patow1, László Szirmay-Kalos2 & Mateu Sbert1

1University of Girona, Spain
2Budapest University of Technology, Hungary

Abstract

This paper presents a technique to render in real time complex trees using billboard clouds as an impostor sim-
plification for the original polygonal tree, combined with a new texture-based representation for the foliage. The
technique provides several new contributions with respect to previous approaches. The new algorithm allows pro-
gressive level of detail both at the geometric and at the shader levels. It also preserves the parallax effects of
the original polygonal model keeping leaf positions, orientations, and preserving the overlapping of the leaves as
seen from any view point. In addition, the texture-based representation provides high-definition close views with-
out introducing high memory requeriments. We adapted a realistic lighting model with soft shadows and a global
illumination precomputation, allowing to render highly complex scenes with thousands of trees in real time.

Categories and Subject Descriptors (according to ACM CCS): http://www.acm.org/class/1998/ I.3.3 [Computer
Graphics]: Image generation, I.3.7 [Computer Graphics]: 3D Graphics and Realism

1. Introduction

In computer graphics, one of the current most challenging
problems is the generation and interactive rendering of vast
natural scenes, involving hundreds of thousands of trees and
other vegetal species. This is specially true in forest scenes,
whose complexity is impossible to model in detail with-
out efficient level-of-detail (LoD) algorithms and data struc-
tures. The original polygonal foliage models provide the nat-
ural parallax effect, but cannot be used in real-time visual-
izations of natural scenes with thousands of trees. On the
other hand, most of the previous image-based foliage repre-
sentations fail either to keep the parallax effect, provide low
resolution detail, or fall back to wrong foliage alignment.

We propose a new texture foliage-based representation
that provides high-definition from close views and progres-
sive level-of-detail transitions with respect to the observer
distance, keeping the appearance of the original complex
geometry model and allowing realtime rendering of scenes
with thousands of trees. In this sense, it outperforms exist-
ing techniques in the quality of close-views, with a much
lower memory footprint. It also allows a progressive LoD
technique that gracefully converges to the standard billboard
cloud method for far-views, thus optimizing rendering ef-

ficiency. In addition, a lighting model including shadows,
and ambient occlusion is incorporated to allow realistic, real-
time visualization of large foliage sets.

The paper is organized as follows. In Section 2 we dis-
cuss previous work on interactive tree rendering. In Section
3 we present our foliage rendering approach. We describe
the billboard cloud generation framework in Section 4 and
we present in detail the visualization algorithm in Section
5. We give some implementation details in 6, demonstrate
the results obtained using our techniques in Section 7 and
discuss future work directions in Section 8.

2. Previous work

The problem of rendering complex natural scenes has al-
ready received a lot of attention. There are two gen-
eral approaches for interactive realistic rendering for trees:
geometry-based (see [HG97] and [RCB∗02]) and image-
based techniques. Our work is included in the second group.

Image-based methods represent a trade-off between con-
sistency and physical precision in favor of more photore-
alistic visuals. Billboard rendering is analogous to using
cardboard cutouts: the billboard plane is always turned to-

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

(a) The polygonal leaves are replaced by a billboard cloud.

(b) Each group of leaves is replaced by a billboard.

Figure 1: Replacing large groups of leaves by semi-
transparent quadrilaterals with a texture map.

wards the camera. Although this simple trick solves the
parallax problem, the tree always looks the same no mat-
ter from where we look at it. Shade et al. [SGHS98] and
Chang et al. [CBL99] used layered depth images (LDI) to
render complex natural objects from pre-computed pixel-
based representations with depth, with different levels of de-
tail, but resulted in a low image quality for closeups. Max
et al. [Max96, MDK99] modelled and rendered trees hier-
archically from pre-computed images with Z-buffers, but
the rendering times were not suited for interactive applica-
tions due to extensive texture transfer operations. Meyer and
Neyret [MN98] converted complex natural objects into mip-
mapped volumetric textures, which were then raytraced. On
the other hand, in [RMMD04, LRMDM06] they estimated
opacity in a volume, and then generated and displayed view-
dependent textures attached to cells of that volume.

One of the most advanced methods actually implemented
in commercial entertainment software [SPE05] is the ba-
sic free-form textured tree model, where the images are im-
posed on the approximated geometry. To represent tree mod-
els using billboards, the "billboard clouds" approach can be
used [DDSD03], which represents a geometry by a set of
arbitrarily oriented billboards. In our work we also use bill-
board clouds, but we generate the billboard set based on the
work presented in [BCF∗05] and [GSSK05], better suited
for trees. We use a clustering algorithm on the basis of the
leaf faces and vertices that enables us to find better billboard
approximations. Then, leaves textures are used to add visual

detail. In [GSSK05] it is also proposed an indirect texture
approach, but it can only use one leaf image per cell, which
leads to a regular-looking pattern that fails to preserve the
original leaves positions and orientations and cannot pre-
serve the original overlapping, resulting in sparser-looking
trees, as seen in Figure 2. In [FUM05] they generated trees
using super-sampling in an off-screen buffer, and then they
applied downsampling with respect to a user-defined texture-
size, trying to preserve the small details of the leaves. A
drawback of this method is not being effective enough for
close views.

Figure 2: Comparison and close up of the polygonal tree
and billboards with simple indirect texturing [GSSK05].

The techniques presented in this paper are related to the
one presented in [Gla05], that placed small images at irregu-
lar intervals to help reducing the pattern artifacts of the free-
form textured models, but did not handle the overlapping of
the small images in a general case.

3. Overview

The presented method is based on replacing large groups
of leaves by semi-transparent quadrilaterals defined as bill-

Figure 3: Indirect texturing uses values in the texels of the
indirect texture to fetch the corresponding leaf color image.

c© The Eurographics Association 2007.

56



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

Figure 4: Overlapped leaves must be encoded with a layered
indirect texture to be properly rendered.

boards (see Figure 1). Each billboard has a texture generated
with an orthogonal projection of the polygonal faces of the
leaves. In order to keep the leaves details, we use a procedu-
ral technique that replaces polygonal leaves by leaf patterns,
called "indirect texturing" [OL98], which allows per-pixel
computed values from one texture to be used as texture co-
ordinates for an additional texture fetch. The leaves positions
are used to place each leaf on the billboard surface, and an
orientation index is used to fetch a leaf image from a color
texture (called the Leaves Texture), as shown in Figure 3.

To properly handle the overlapping leaves within the same
billboard, multiple texture maps would be needed, and the
indirect texture should be encoded as a layered one, as shown
in Figure 4. To improve storage and look-up efficiency, one
indirect texture can be used to address lists of overlapping
leaves, encoded in a second texture. Each entry in the lists
contains a leaf position and an orientation index to address a
leaf color image, as shown in Figure 5.

Figure 5: Indirect texturing with overlapped leaf fragments
lists reduce texture requeriments.

The proposed method takes information from each group
of leaves, generated by the billboard simplification algorithm
and prepares a set of textures that are effective at different
scales of simulation, from close views of individual branches
and leaves, to bird’s-eye flights, providing a viewing qual-
ity very close to the original complex polygonal model, as
shown in Section 7.

4. Billboard cloud algorithm

As observed in Section 2, there are many automatic geom-
etry simplification methods, but applying them to trees only
provides acceptable results with the polygonal meshes that
represent the trunk and the branches. Those methods do not
work properly for the foliage. On the other hand, the bill-
board clouds approaches such as [BCF∗05], can find nearly
optimal sets of billboards for effective simplification, replac-
ing sets of polygonal leaves by simple quadrilaterals.

4.1. Clustering

An algorithm like the one presented in [BCF∗05] and
[GSSK05] is used to group the leaves into clusters, where
each cluster is represented by one billboard. One interesting
property of the billboard cloud is that it completely bounds
the shape of the original model, as shown in Figure 1.

The number of clusters can be specified by the user to
control the number of billboards generated by the algorithm.
The number of needed billboards depends on the size and
complexity of the plant to be modelled. In general, the usage
from 60 to 260 billboards for trees, or even fewer for smaller
plants as bushes, is enough for visualization purposes.

4.2. Texture generation

Depending on the tree specie and age, a mature tree can have
between 30,000 and 200,000 leaves. This intrinsic complex-
ity leads to hundreds of leaves per billboard when a billboard
cloud of about 260 quadrilaterals is used. As an example, one
typical billboard plane, with 116 leaves, may have up to 10
overlapping leaves.

Our leaves are positioned with a continuous representa-
tion: each leaf has an associated vector that represents its
position in local billboard coordinates (see Figure 8). In or-
der to achieve an accurate overlapping, multiple layers must
be used, so we subdivide the original billboard into a regular
grid of cells, getting, for each grid cell, a set of cell-sized lay-
ers that may contain nothing (transparent) or a leaf fragment.
Then, we link those cell-sized layers into a list of overlap-
ping leaf fragments, as shown in Figure 6. We can consider
that this grid of cells acts as a sort of spatial hash that accel-
erates fetches into this multilayered texture, so it is called the
Hash Texture. The lists of leaf fragments are consecutively
stored in a second, separate texture, which we call the Lists
Texture (see Figure 8). Each list entry is a record that con-
tains a reference to the third texture (the Leaves Texture), the
leaf position vector, a scale factor, and any additional infor-
mation that needs to be stored at the leaf level (see Section
5.2).

One of the key points of the proposed method to preserve
accurate foliage placement, is the generation of the Hash and
Lists Textures. After the clustering process, we send each
leaf as a point sprite to an off-screen buffer, encoding the leaf

c© The Eurographics Association 2007.

57



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

position and orientation and storing this information in the
Lists Texture. To create the cell-sized layers, we use a depth-
peeling technique [Eve99] that sorts the leaf fragments in
front-to-back order, as shown in Figure 6.

Figure 6: Each leaf is processed as a point sprite. The point
sprite can appear in more than one grid cell of the Hash
Texture. The point sprites are processed with depth peeling
to build an overlapping leaf fragments list for each grid cell.

The size of the point sprite that holds the leaf infor-
mation is defined with respect to its container billboard.
This size is defined as the ratio between the 2D bounding
box of the projection of the original leaf, and the size of
the billboard (computed as billboardpixels = HashTexwidth ∗
HashTexheight ). In order to get the exact size of the point
sprite in pixels, this size is multiplied by the total number of
texels in the Hash Texture, following the expression:

lea fpixels =
area(lea fquad) ·billboardpixels

area(billboardquad)

leading to lea fwidth = lea fheight =
√

lea fpixels

The last preprocessing step builds the Hash Texture,
where each texel addresses one entry in the Lists Texture, or
transparent when the cell does not hold any leaf fragments. It
is important to mention that the billboard polygons not only
have uv texture coordinates associated with them, but also
encode the Hash Texture resolution, for later use.

5. Visualization algorithm

When the graphics hardware draws a billboard, a single pass
fragment shader is called with the corresponding uv texture
coordinates. These coordinates are used to fetch the respec-
tive cell in the Hash Texture. As mentioned earlier, this cell

can be either transparent, so the shader also will return a
transparent fragment, or it can contain a reference to a list
in the Lists Texture. Then, in an iterative process, each entry
in the list is fetched until an opaque leaf fragment is found,
or there are no more leaf fragments to evaluate. In the lat-
ter case, a transparent color is sent as output. This process is
illustrated in Figure 7.

Figure 7: Multi-layer indirect texturing evaluation in the
single pass fragment shader.

When evaluating each entry in the list, the reference to a
leaf image into the Leaves Texture and the 2D vector giving
the exact position of the leaf are retrieved. The position is
subtracted from the uv coordinates the shader received to ob-
tain a vector we call the Local Position vector. On the other
hand, the leaf reference into the Leaves Texture is used as a
vector pointing to the upper left corner of the corresponding
image of the leaf. This vector is added to the Local Position
vector to retrieve a texel from the Leaves Texture which ei-
ther contains an opaque pixel with a color from the leaf, or
transparent, indicating we indexed outside the leaf and we
should continue with the next entry, as shown in Figure 8. If
we add size information in the leaf entries, the Local Posi-
tion vector is scaled accordingly.

Another important factor to take into account is that leaves
overlap with a different order depending on the viewing di-
rection. To incorporate this feature, the Hash Texture also
stores the size of the list it is indexing, so we can access
the list by both ends, just by looking at the direction of the
billboard normal with respect to the viewer’s direction. This
also offers the advantage of allowing to index two Leaves
Textures, one with the front sides of the leaves and the other
with the back sides. These two textures can be unified in
a single texture, and thus, a single indexing framework, to
avoid further conditional branches.

c© The Eurographics Association 2007.

58



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

Figure 8: Information stored at an entry in the list of leaves
for a hash cell.

5.1. Level-of-detail with indirect texturing layers

Although this method was designed for close or medium
range views, it works well if mip-mapping is used for the
Leaves Texture, as it would produce the right effect at
large distances. However, the shader computations described
above would be executed no matter the viewing distance, re-
sulting in an unnecessary overhead that impacts on the fill-
rate without representing a significative improvement in the
visualization quality. To alleviate this problem, we introduce
a progressive Level of Detail technique at the shader level.

Figure 9: As distance increases, the shader-LoD technique
evaluates less list entries, and the missing ones are substi-
tuted by a low-resolution texture.

Basically, this technique consists of reducing the num-
ber of evaluated list entries when the distance from the ob-
server increases (see Figure 9). But evaluating less list en-
tries means evaluating less leaf fragments, which will gen-
erate holes in the tree that get bigger as the viewing dis-
tance increases. This is solved by introducing a regular low-
resolution texture that represents the missing leaves, gener-
ated in a pre-processing pass from the layered texture. So, as
distance increases, less elements are evaluated and the miss-
ing ones are replaced by a single texture fetch into the low-
resolution texture. Finally, when the viewing distance is high

Figure 10: Comparison between the polygonal tree on the
left and the multi-layer technique on the right, preserving
accurate alignment of the leaves. The middle column shows
the progressive shader LoD. The small holes are due to slight
changes in the leaves alignment.

enough, no list entries are used any more and only the low-
resolution texture is evaluated. Our experiments show that
the fact that the leaves that are evaluated from a list entry are
also present at the low-resolution texture does not produce
any noticeable artifact. A comparison can be found in Fig-
ure 10. Finally, when the tree is at a very large distance, the
technique would show only the low-resolution texture, with-
out fetching any list. So, more evaluations can be avoided by
a switch in the shader context to a shader that only evaluates
the low-resolution texture without further computations.

Fortunately, modern GPUs incorporate primitives
(ddx,ddy) that help computing the number of needed
evaluations. We have used the formula described by [LB06]
(using the Hash Texture size stored in the billboard, as
described in Section 4.2). Once we know the relationship
between the Hash texel and its projection onto the screen,
a number of needed entries to evaluate from the list is
computed. This number is a factor times the length of the
diagonal of the projected Hash texel. This expression is also
used to choose the mip-map level of the Leaves Texture.

5.2. Photorealistic lighting

The shading model used for the trees can be split into two
techniques. On the one hand, trunk and branches simplified
models are rendered with bump mapping, ambient occlusion
and shadow mapping. On the other, the foliage lighting is ob-

c© The Eurographics Association 2007.

59



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

tained as the combination of the proposed multi-layer tech-
nique with ambient occlusion and shadow mapping.

Billboard clouds approximately preserve the original ge-
ometry, thus they can also replace the original tree when
shadows or global illumination effects are computed. We
also store a normal map together with the RGB map in
the leaf texture, to allow for accurate real-time relighting.
If needed, a correction for the billboard plane normal could
also be stored in the entries of the Lists Texture, and used in
conjunction with the local normal retrieved from the normal
map to obtain a final normal to compute the shading.

To compute shadows, i.e., the visibility from point and
directional lights (like the sun), we use Light Space Per-
spective Shadow Maps [WSP04]. To generate the shadow
map, we adapted its usage in combination with the multi-
layer method: for close-up views, where shadows need to
be highly detailed, we use a full evaluation of the layers as
described before. But, as soon as the observer gets farther
enough, as described above, we switch to the low-resolution
evaluation shader which provides good results at a fraction
of the evaluation cost.

In order to complete the lighting model, we incorporate a
pre-computed ambient occlusion [GFS07] term to take into
account global illumination effects, computed for the orig-
inal polygonal tree. We encode the ambient occlusion term
as one new field in each entry in the Lists Texture. Because
of the limitations of current graphics hardware for packing
into single precision RGBA channels, we decided in our im-
plementation to store the ambient term in a separate texture,
indexed the same way as the Lists Texture.

To be compatible with our high-resolution representation
of leaves into the Leaves Texture, we extrapolate the ambient
term computed for the polygonal leaves to the four vertices
of the 2D leaf bounding box. This is computed by setting a
simple over-determined system of linear equations that re-
late the ambient term values at each projection of a polyg-
onal vertex onto the billboard plane, with the corners that
define the 2D bounding box of the projected leaf. See Figure
11. This system can be solved with any numerical method,
or it can be approximated by taking only the four vertices of
the original leaf that include the maximum value, the min-
imum value, and two extra values of the ambient term, and
by solving only a system of 4 equations with 4 unknowns.

In the visualization, this ambient term is linearly interpo-
lated in the fragment shader to provide the final ambient oc-
clusion factor for the fragment on screen. One optimization
would be, when the ambient term is stored in a separate tex-
ture, to use two consecutive rows to store the information for
a single list, so ambient values would be interpolated by the
GPU when queried. For this to provide good results, the Lo-
cal Position vector mentioned in Section 5, should be used
in combination with the texture coordinates used retrieved
from the Hash Texture. For the low-resolution texture, we

Figure 11: Ambient term generation for the multi-layer
leaves representation is encoded as a new field of the List
Texture at the leaf level. The small squares represent the ac-
tual ambient occlusion values at the corresponding vertices.

use an ambient occlusion term encoded in the alpha channel
of the low-resolution leaves texture.

6. Implementation Details

The method presented so far requires one Hash Texture for
each billboard, and in normal cases, there could be 256 and
more billboards, largely exceeding current hardware capa-
bility of indexing textures at once. To handle this, several
context switches would be needed, severely impinging on
the overall performance. To solve this problem, all Hash Tex-
tures are condensed in a single large Hash Texture Atlas. In
the same way, the different lists of the Lists Textures for each
billboard are stored together in a single Lists Texture Atlas.
In our experiments, the largest textures needed to store the
Hash Textures and Lists Textures is about 10242 texels.

In addition to the shader level-of-detail technique de-
scribed in Section 5.1, we used different billboard clouds
for the foliage with a decreasing number of billboards, and
switched among them as the distance to the observer in-
creased. We stored three different billboard clouds that were
stored in a single Vertex Buffer Object and indexed as nec-
essary. The simplest billboard cloud is used in conjunction
only with the low-resolution texture as described above, and
the changes in billboard levels are ensured to be consistent
with the corresponding shader LoD at the time of the switch.
With respect to the tree trunk and branches, we used a pro-
gressive geometry-based Level-of-Detail technique, as de-
scribed in [Hop96].

7. Results

The proposed technique has been implemented in
OpenGL/Cg integrated into the Ogre3D engine, and
run on a NV8800GTS graphics card. Figures for the usage
of different tree species can be found in Table 1. The whole
tree pre-processing stage takes between 2 to 5 minutes for
all the examples presented here. All scenes were rendered at

c© The Eurographics Association 2007.

60



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

Tree Species Leaves Polys/ Billboards3 Memory3

leave
Chestnut1 11291 10 278 3486762

Oak2 23660 2 194 3119734
Cork1 20144 4 121 1462870

Horse Chestnut1 9366 18 202 3376653
Shrub2 2388 2 198 1349091
Maple1 3662 2 175 1381600
Alder1 1049 2 228 1332837

Table 1: Figures for different species showing the number
of leaves, polygons per leaf, billboards and memory usage
(in bytes) with our method. Labels mean: 1Generated by
Xfrog [Xfr06], 2Generated by Forester, 3Using texture com-
pression DTX1-5, which provides a 1:6 compression ratio.

Trees Polygonal Billboard
1 180 80

50 47 46
100 15 39

1000 5 28
10000 n/a 20

Table 2: FPS for varying numbers of trees, for the original
tree and the new method. Distances range from very close
views to very far trees (covering only about 322 pixels).

1280x1024 pixels, resulting in the frame rates of the system
for varying number of trees presented in Table 2.

In Figure 12 we can see the results when compared to
the original polygonal tree. As we can see in the figure,
with only 278 billboard planes with a Hash Texture of
1024× 1024 cells and up to 10 layers, the final results look
very similar to the original. Figure 13 show complex scenes
with tens of thousands of trees under very different lighting
conditions and viewing distances.

8. Conclusions and future work

We have presented a method that allows interactive visu-
alization of large forests, with tens of thousands of trees
at interactive frame rates, even with realistic lighting ef-
fects like shadows and an ambient occlusion term. The new
method consists of an indirect texturing technique, in com-
bination with a texture used as a hash for fast indexing and
retrieval, and a layered representation of the overlapping leaf
fragments. Previous methods require extremely large texture
memory space to preserve small details in the leaves, while
the presented method preserves them with a low memory
footprint and a few extra texture accesses. As an example,
a chestnut would require about 246MB of texture space to
achieve the same visual quality as our method, which only
needs 3.7MB. For comparison, the original polygonal model
for the leaves needs 23Mb.

Level-of-detail techniques have specifically been devel-

oped, not only at the geometric level (reducing the number
of billboards and simplifying the geometry of the trunk and
branches), but also at the shader level, drastically reducing
the computational costs associated with rendering trees far
from the observer. It is important to note that detail in the
leaves is preserved even at very short distances, something
that was not done before with billboard clouds. These re-
sults hold even for trees without dense foliage, making our
technique highly suitable for instancing.

It must be mentioned that this algorithm is resolution de-
pendant: depending on the screen-size of the trees and the
screen resolution, different frame rates would be obtained.
Nevertheless, as mentioned in Section 7, we are able to
present about ten thousand trees in a complex scene in reso-
lutions of 1280×1024 with an acceptable frame rate.

One line of promising immediate research is to change
the progressive level-of-detail technique described in section
5.1 to a continuous LoD technique. This technique would
perform an interpolation between shader levels, resulting in
a smoother switch between LoD levels. Another interesting
line is to extend the presented technique to include small
branches, which would reduce the complexity of the geom-
etry of the trunk, which then would be more easily handled
with more traditional techniques. Finally, the incorporation
of branch movements seems an interesting challenge to be
modelled with the presented algorithm, as the Hash Texture
would be slow to regenerate.

9. Acknowledgments

This work has been supported by GameTools FP6 (IST-
2-004363) project, TIN2004-07451-C03-01 and TIN2004-
07672-C03-01 projects from the Spanish Government, and
by the Spanish-Hungarian Fund (E-26/04).

References

[BCF∗05] BEHRENDT S., COLDITZ C., FRANZKE O., KOPF J.,
DEUSSEN O.: Realistic real-time rendering of landscapes using
billboard clouds. Computer Graphics Forum 24, 3 (2005), 507–
516.

[CBL99] CHANG C.-F., BISHOP G., LASTRA A.: LDI tree: A hi-
erarchical representation for image-based rendering. ACM Com-
puter Graphics, Annual Conference Series (1999), 291–298.

[DDSD03] DÉCORET X., DURAND F., SILLION F. X., DORSEY

J.: Billboard clouds for extreme model simplification. ACM
Trans. Graph. 22, 3 (2003), 689–696.

[Eve99] EVERITT C.: Interactive order-independent trans-
parency, 1999. White paper, NVIDIA Corporation.

[FUM05] FUHRMANN A. L., UMLAUF E., MANTLER S.: Ex-
treme model simplification for forest rendering. In Eurographics
Workshop on Natural Phenomena (2005).

[GFS07] GONZÁLEZ F., FEIXAS M., SBERT M.: An
information-theoretic ambient occlusion. In International Sym-
posium on Computational Aesthetics (2007).

c© The Eurographics Association 2007.

61



García, Sbert, Szirmay-Kalos & Patow / Multi-layered indirect texturing for tree rendering

Figure 12: Comparison between the polygonal tree and the multi-layer technique. From left to right: Original polygonal tree
fully lit, the wire frame billboards, billboards with diffuse lighting, direct lighting, shadows and, finally, the full illumination
model including the ambient occlusion term.

Figure 13: A complex sample scene under different lighting conditions. Left column shows the scene with the classic method
[BCF∗05, FUM05] using the same memory footprint as the images on the right, using the new method.

[Gla05] GLANVILLE R. S.: Texture bombing. In GPU Gems 1,
Fernando R., (Ed.). Addison-Wesley, Oct. 2005, pp. 323–338.

[GSSK05] GARCÍA I., SBERT M., SZIRMAY-KALOS L.: Leaf
cluster impostors for tree rendering with parallax. In In Proceed-
ings of EG Short Presentations 2005 (2005), pp. 69–72.

[HG97] HECKBERT P. S., GARLAND M.: Survey of polygo-
nal surface simplification algorithms. In ACM SIGGRAPH 1997
Course Notes (1997).

[Hop96] HOPPE H.: Progressive meshes. ACM Computer Graph-
ics 30, Annual Conference Series (1996), 99–108.

[LB06] LOVISCACH J., BREMEN H.: Game Programming Gems
6. Charles River Media, Inc., 2006, ch. Rendering Road Signs
Sharply.

[LRMDM06] LINZ C., RECHE-MARTINEZ A., DRETTAKIS G.,
MAGNOR M.: Effective multi-resolution rendering and texture
compression for captured volumetric trees. In Game-On 2006
(2006), pp. 16–21.

[Max96] MAX N.: Hierarchical rendering of trees from precom-
puted multi-layer z-buffers. In Eurographics workshop on Ren-
dering techniques ’96 (1996), pp. 165–174.

[MDK99] MAX N., DEUSSEN O., KEATING B.: Hierarchi-
cal image-based rendering using texture mapping hardware. In
Rendering Techniques (Eurographics Symposium on Rendering)
(1999), pp. 57–62.

[MN98] MEYER A., NEYRET F.: Interactive volumetric textures.
In Rendering Techniques (Eurographics Workshop on Rendering)
(1998), Drettakis G., Max N., (Eds.), Springer Wein, pp. 157–
168.

[OL98] OLANO M., LASTRA A.: A shading language on graph-
ics hardware: the pixelflow shading system. ACM Computer
Graphics 32, Annual Conference Series (1998), 159–168.

[RCB∗02] REMOLAR I., CHOVER M., BELMONTE O., RI-
BELLES J., REBOLLO C.: Geometric simplification of foliage.
In Eurographics’02 Short Presentations (2002), pp. 397–404.

[RMMD04] RECHE-MARTINEZ A., MARTIN I., DRETTAKIS

G.: Volumetric reconstruction and interactive rendering of trees
from photographs. ACM Trans. Graph. 23, 3 (2004), 720–727.

[SGHS98] SHADE J. W., GORTLER S. J., HE L.-W., SZELISKI

R.: Layered depth images. ACM Computer Graphics 32, Annual
Conference Series (1998), 231–242.

[SPE05] Speedtree, interactive data visualization inc., 2005.
http://www.idvinc.com/speedtree.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.:
Light space perspective shadow maps. In Rendering Techniques
2004 (Eurographics Symposium on Rendering 2004) (2004),
pp. 143–151.

[Xfr06] Greenworks: Organic software, 2006. http://www.
greenworks.de/.

c© The Eurographics Association 2007.

62

http://www.idvinc.com/speedtree
http://www.greenworks.de/
http://www.greenworks.de/



