
Eurographics Workshop on Natural Phenomena (2005)
E. Galin, P. Poulin (Editors)

Interactive physically based Fluid and Erosion Simulation

B. Neidhold,1† M. Wacker2 and O. Deussen3

1Lehrstuhl für Computergraphik und Visualisierung, TU Dresden, Germany
2Computergraphik, HTW Dresden, Germany

3Lehrstuhl für Computergrafik und Medieninformatik, Universität Konstanz, Germany

Abstract
Realistically eroded terrain is a base of almost every outdoor visualization for simulators or computer games. In
order to achieve convincing results physically based erosion algorithms are necessary. We present a new method
that combines a non-expensive fluid simulation with an erosion algorithm. Both parts are running at interactive
rates so the artist is able to influence the erosion process in real-time by changing simulation parameters or
applying additional water to the scene. In this way, we support realism as well as design aspects during the
terrain creation process. To simplify the three dimensional fluid simulation we use a newtonian physics approach
that works on a two dimensional grid storing acceleration, velocity and mass. The method provides all features
that are important for simulation of erosion e.g. moving, non-moving water (rivers, lakes) and evaporation. This
allows us to support effects like dissolving, transportation and sedimentation of material in the erosion process.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based model-
ing

1. Introduction

Erosion techniques for terrain generation have been ad-
dressed in computer graphics for more than 15 years. Most
of the introduced algorithms are using a physically based
approach for simulating the erosion process itself as well
as for the underlying dynamic processes e.g. water trans-
portation or wind. On the other hand some algorithms gen-
erate the eroded terrain from scratch. They use modifica-
tions of the midpoint displacement approach introduced by
Mandelbrot [MH82] or perlin noise. One of the first fractal
based algorithms for hydraulic erosion was introduced by
Kelley et al. [KMN88]. This generates fractal terrain around
a previously generated river network. Prusinkiewicz [PH93]
proposed a fractal algorithm to generate hydraulic eroded
mountains that do not need pregenerated input data. Instead,
inspired by midpoint displacement, he included the genera-
tion of rivers into the fractal algorithm. A completely pro-
cedural approach for manipulating solid objects with tools
(e.g. erosion tool) was introduced by [CDM∗02].

The first physically based approach to generate realistic

† benjamin.neidhold@inf.tu-dresden.de

terrains was described by Musgrave et al. [MKM89]. This
paper describes two algorithms - thermal weathering and
hydraulic erosion. The first algorithm simulates the tearing
down process and distribution of sediment caused by ther-
mal shocks. Some parts of the material are simply displaced
around the actual point if the local inclination is greater
than a specified material constant. The other technique is
based on some characteristics of water in the erosion pro-
cess. Soil can be dissolved, transported and deposited. Now
in the simulation, depending on the local inclination and
water amount, some underlying material is dissolved into
the water. After some movement caused by a simple water
transportation algorithm the material is deposited at another
location. Each part of the simulation can be influenced by
some material parameters. This method has been extended
by Roudier et al. [RPP93] to use different materials. Chiba
et al. [CMF98] introduced the first algorithm for hydraulic
erosion based on velocity fields. This includes the simula-
tion of a water, elevation, collision energy and velocity field.
The water flow is simulated by applying forces caused by
the local gradient. While moving, the water flows over the
ground surface and dissolves some amount of material. De-
positing of sediment terminates when the amount of dis-

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

solved material reaches a certain threshold. A technique that
tries to mix hydraulic and thermal erosion was published
by Nagashima [Nag98]. It needs a pregenerated river net-
work that is created with a two dimensional fractal func-
tion. Then, the river banks are eroded by some physically
inspired rules. In 1997, Benes et al. [BMS97] published
an hierarchical thermal erosion algorithm that simply dis-
tributes some amount of material to its eight neighbors of
a simulation grid. They optimized the distribution step by
downscaling the simulation grid before one erosion step and
upscaling the grid afterward to speed up the simulation. In
2002, Benes et al. [BF02] presented an extension of his for-
mer paper to simulate hydraulic erosion by also distributing
material to its eight neighbors. They added two additional
layers for the amount of water and the dissolved soil. As an
extension to all prior algorithms they introduced an evapo-
ration step to simulate drying pools of water. A special fea-
ture of his implementation is the separation of the simulation
steps for erosion, transportation, evaporation and deposition.
So, the frequency of the independent steps can be changed
to speed up the simulation, of course losing some physical
exactness.

All presented techniques for the underlying water simula-
tion have one or more of the following disadvantages: They
cannot handle hollows in a way that they are filled with lakes,
the water begins to oscillate because of numerical instabil-
ity and huge time steps, or the simulation does not run in
real-time.

In this paper, we introduce a new method for fluid simu-
lation that runs in real-time. We describe how to solve a 3D
water simulation in a special 2D fluid solver that can handle
moving water and lakes (still water) natively. On the basis of
the water simulation a special data structure incorporating
several layers enables us to implement fluvial erosion pro-
cesses efficiently using a set of discrete grids. The efficiency
of the process in combination with a set of tools enables
the user to create eroded terrain interactively for moderately
complex terrains.

2. System setup

Before we go into detail for our algorithms, we describe
some basic data structures in this section. A two dimen-
sional regular height field is the simplest and most com-
monly used data structure for terrain visualization and en-
vironmental simulations (e.g. erosion). This is also used by
2D/3D fluid simulations [KM90] [OH95] [FM97]. The low
memory usage and a fast ray test for ray-tracing are the ad-
vantages of this representation in which each grid cell stores
the height value of the underlying terrain. However, not all
terrain types can be converted into a height field data struc-
ture (e.g. terrain with caves).

A voxel grid is a three dimensional data structure where
each grid cell stores an id of the local material type (e.g. air,

water, sand or granite), so that the terrain data and the fluid
data can be stored together in one grid. On the one hand, a
voxel grid allows the representation of caves, but on the other
hand, it requires much more storage space [CMT04] [Sta03].
Therefore, voxel-based erosion simulations are not suitable
for running in real-time, yet.

Benes et al. [BF01] introduces a layered data structure as
a trade-off between a height field and a voxel grid. For each
position (x,y) a static array of attributes (material-id, layer-
width) is stored. The approach is shown to be a good choice
whenever only a few different layers lie on top of each other.
This data structure can also be used for fluid simulation. An-
other approach for three dimensional fluid simulations is us-
ing particle systems which turn out to be very efficient data
structures for storing the state of a fluid [MCG03]. A par-
ticle system for fluid simulation and a height field for the
terrain is also a very efficient combination of two different
approaches [HW04]. Sets of (irregular) triangles are a fast
representation for terrain and fluid in real-time rendering for
graphical information systems GIS (e.g. with OpenGL). But
they are not suitable for erosion simulation in combination
with a fluid because the re-tessellation that is necessary after
an erosion step can be quite expensive.

In our implementation, we are inspired by the layered data
structure of [BF01]. We use five layers onto our two dimen-
sional height field H to store all relevant data for the fluid
and the erosion simulation (see table 1). Each layer is rep-
resented as a two dimensional grid. For our fluid simulation
we use the actual fluid amount F , velocity~v and acceleration
~a in each discrete grid cell. The two vectors are stored in 3D
because we need to obtain the correct velocity amount used
by the erosion algorithm. Our erosion model uses the dis-
solved material layer S which stores the amount of sediment
in each cell.

acceleration (3D) ~a
velocity (3D) ~v
fluid amount F
dissolved material amount S
terrain level H

Table 1: Data grids used by our simulation.

The actual simulation is performed by applying finite dif-
ferences algorithms on these layers. The layers can interact,
e.g. dissolved material can elevate the terrain at a certain po-
sition. In the next section, our basic water model is presented
before erosion models are introduced.

3. Water simulation

In a water simulation, we want to describe the amount of
water at a given place at a given time. A large amount of
research has been done over the past 50 years to solve this
problem with approximations of the full 3D Navier-Stokes

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

equations that describe realistic animation of fluids. A semi-
Lagrangian approximation for smoke-like fluids called "sta-
ble fluids" was introduced by Stam [Sta99]. Because of the
fact that we do not need all of the 3D-features like multi-
ple water layers, vertical vortices or waves these equations
are simplified and then discretized to a two dimensional ver-
sion. The result compared with real Navier-Stokes solvers
is less physically correct but much faster and fits very good
into the requirements of our erosion algorithm. The base for
our approach is a system of first order differential equations

~̇v = ~a−KA ·~v =
~F
m
−KA ·~v (1)

~̇x = ~v (2)

that describes the movement of material depending on ve-
locity~v and acceleration ~a. Note that in a simulation specif-
ically for fluids material stands for the amount of water at a
discrete grid cell. For complex erosion simulations we define
a multidimensional material vector which stores for exam-
ple the amount of water and dissolved sediment. Especially
for erosion simulation the underlying terrain can be very
rough and influences (damps) the movement of the fluid.
The additional term KA ·~v gives us the option to control the
sliding friction between the fluid and the terrain with the pa-
rameter KA ∈ [0..1]. With the value KA = 0.3 used by our
simulation we emulate a very rough underlying terrain that
damps the velocity of the fluid about 30 percent in one time
unit. For time-discretization of the differential equations we
use the explicit Euler method.

~vt+∆t = ~vt +~at ·∆t−KA ·~vt ·∆t (3)

~xt+∆t = ~xt +~vt+∆t ·∆t (4)

When the actual acceleration is obtained from all internal
and external forces (see section 3.1), the new velocity after
the time step ∆t ~vt+∆t can be computed at each discrete grid
cell. The new destination of the transported material ~xt+∆t
may not be a discrete grid cell. In order to solve this we
distribute the material vector with a bilinear interpolation to
the nearest four neighbors.

To this end, we must define how to handle velocities and
the material vectors from different locations that are trans-
ported to the same discrete grid cell. The components of the
material vectors are simply summed up, e.g. the fluid amount
at the destination point Fdest and the transported fluid Fadd
is added to the new fluid amount Fnew. The corresponding
velocity vectors have to be mixed. The velocity at the des-
tination point ~vdest and the velocity of the added material
~vadd are weighted with the factor k to the new velocity~vnew
(see formula 6). This weighting factor results as the ratio of
the water amount at the destination point Fdest and the new
summed up water amount Fnew.

Fnew = Fdest +Fadd (5)

~vnew = k ·~vdest +(1− k) ·~vadd (6)

k =
Fdest
Fnew

(7)

Every fluid simulation has to include diffusion in the sim-
ulation model emulating the interaction of neighboring fluid
particles. Without diffusion, the approaches based on differ-
ential equations would be instable or oscillating. To this end
we insert after every water simulation step we insert a diffu-
sion step that smooths the velocity field and all components
of the material vectors. Smoothing is done by distributing
the value of the actual grid cell to the four direct neighbors.
This method is described in detail by Stam [Sta99].

3.1. Calculation of the acceleration

In common Newtonian Physic Systems the acceleration di-
rection in a landscape at the position (x,y) is the direction
of the biggest tilt angle α of the underlying terrain height
field I(x,y) calculated by the gradient ∇I(x,y). Therefore,
the acceleration force can be obtained from that angle α.

|~a| = sinα ·g g ≈ 9.81
m
s2 (8)

∇I(x,y) =
(

∆I
∆x

,
∆I
∆y

)T

(9)

The discretization of the gradient at the position (x,y)
leads us to formula (9) where ∆I is the altitude difference of
two measuring points around the position (x,y) and ∆x,∆y
are distances between these measuring points. For a simple
approximation of the gradient it would be enough to take two
measuring points in each direction x and y. To increase the
precision and to better represent the contiguous characteris-
tics of the height field we calculate the directional deriva-
tives between the height I(x,y) and all of its eight neighbors
I1...I8 that are lower than I(x,y) Eq. 10. Please notice that in
this case ∆x and ∆y are 1. We drop the directional derivative
calculation of the higher grid cells because of the fact that
water flows only to downhill cells.

∇I1..8 =



(
∆I7
−∆I7

)
,

(
0

−∆I6

)
,

(
−∆I5
−∆I5

)
,(

∆I8
0

)
,

(
−∆I4

0

)
,(

∆I1
−∆I1

)
,

(
0

∆I2

)
,

(
−∆I3
∆I3

)


(10)

∆In = I(x,y)− In (11)

∇I(x,y) = avg(∇I1..8) (12)

To obtain a single gradient later used for calculation of
the acceleration vector we use the avg() function that calcu-
lates the average of all obtained directional derivatives from
lower grid cells. This method (comparable to a filter kernel

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

in image processing) is very suitable and fast when the fluid
at the actual cell has a high velocity and the local gradient
has little influence on the fluid. With low or zero velocity the
fluid would only be accelerated into the direction of the gra-
dient. For a more accurate but slower simulation, the fluid
is split up and accelerated with the directional derivatives of
all lower neighboring cells. This is equivalent to temporally
subsample the actual grid cell. For a compromise between
the fast and an accurate simulation we define a threshold ve-
locity. If the actual velocity of the water is lower than this
threshold, we do not use the average function to build a sin-
gle gradient but we split the fluid proportionally to the corre-
sponding difference ∆In and apply the respective directional
derivatives from lower cells. With this method the gradient is
accurately calculated also at problematic locations. A good
example is the bottom of a hollow. At that location a tradi-
tionally obtained gradient (acceleration) is not zero but our
implementation calculates zero (see figure 1).

Figure 1: Cross section through a hilly terrain. During the
simulation, water fills hollows and flows downwards.

Until now, we have not mentioned how the function I(x,y)
we use for gradient calculation is defined exactly. If only
defined as the actual level of the underlying terrain H(x,y)
all fluid would flow to one of the local minima in the grid
(hollows) and build pillars. This happens because in the in-
troduced physical model the fluid at adjacent cells does not
interact with each other yet. The adjacent cell interaction is
obtained by integrating the fluid amount F(x,y) in the def-
inition of the function I(x,y). If we define it as the sum of
terrain level H(x,y) and the fluid amount F(x,y) we get ex-
cellent lakes, but when water runs down a mountain very
fast, it is hindered by water in adjacent cells. A compro-
mise between these two extremes is to use an influence factor
KF ∈ [0..1] that describes how much of the water at a grid
point influences the gradient calculation.

I(x,y) = H(x,y)+KF ·F(x,y)

We achieved good results by using formula (13) that de-
creases the influence of the water amount at high velocities.

KF = max(0,1−0.05 · |~v|) (13)

At this point we only know the acceleration direction

~m =−∇I(x,y)

along the x and y axis that points in the opposite direction
of the gradient∇I(x,y). To obtain the complete three dimen-
sional direction ~M we also need the component along the z

z

n

m
α

g

M

a

m

α

Figure 2: Calculation of Acceleration

axis.

~n =
(

+
∆I
∆x

,+
∆I
∆y

,−1
)T

(14)

~n · ~M = 0 (15)

~M =

(
−∆I

∆x
,−∆I

∆y
,−∆I2

∆x2 −
∆I2

∆y2

)T

(16)

As shown in figure 2 vector ~M is the projection of ~m to
the plane sloped by the tilt angle of the underlying terrain.
With the plane normal ~n also obtained by the gradient we
can calculate the vector ~M by equation (16). For the desired
acceleration amount |~a| (equation (8)) we can now use a sim-
ple equation for sinα.

sinα =

∣∣∣~Mz

∣∣∣∣∣∣~M∣∣∣ (17)

~a =

∣∣∣~Mz

∣∣∣∣∣∣~M∣∣∣ ·g ·
~M∣∣∣~M∣∣∣ (18)

As you can see the complete three dimensional accelera-
tion vector ~a is the product of the acceleration amount and
the normalized acceleration direction vector ~M. This result
is used by the discretized differential equations in the fluid
simulation.

4. Hydraulic erosion function

If water flows over the given terrain, material such as soil and
stones is dislocated and transported to lower regions. To sim-
ulate this effect we have to define a hydraulic erosion func-
tion. This function is used whenever a part of a material vec-

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

low fluid amount high

(a) (b)

low velocity high low sediment high

(c) (d)

Figure 3: Hydraulic Erosion: a) original model; b) fluid simulation; c) color-coded velocity amount of the fluid; d) eroded
terrain after 300 simulation steps with color-coded amount of depositing.

tor is moved from one grid cell to another by the fluid sim-
ulation. As inputs for the function, there are the amount of
transported fluid ∆F and the amount of sediment dissolved
in this fluid ∆S. Without erosion these inputs would be sim-
ply added to the underlying terrain H respectively the actual
sediment amount S at the destination cell. If erosion takes
place, the transfer function is modified such that some sed-
iment can be deposited to or dissolved from the underlying
terrain at the destination cell.

Our erosion algorithm uses some material specific con-
stants which are influencing the whole process. We intro-
duce the sediment capacity constant KC which specifies how
much sediment of the underlying material can be dissolved
in one unit of water at a velocity of one. The deposition

constant KD ∈ [0..1] controls the rate at which soil is de-
posited at the target grid cell. The counterpart, the dissolv-
ing constant KS ∈ [0..1] controls the dissolving rate of the
underlying terrain into the fluid per simulation step (see ta-
ble 2). Please note that the comparatively big default value
of KC = 15 can be used to match the different magnitudes
of time steps for fluid simulation (normally measured in sec-
onds) and erosion simulation (measured in years).

sediment capacity constant KC 15
deposition constant KD 0.5
dissolving constant KS 0.3

Table 2: Material constants and their default values.

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

To decide whether to deposit or to dissolve some mate-
rial in the actual step we calculate the sediment capacity cs
of the fluid that specifies the maximum amount of sediment
that can be transported by the fluid ∆F . Because of the fact
that our fluid simulation also provides the actual velocity ~v,
our model enables us to compute cs in a more physically
accurate way compared to prior presented models. The fac-
tor ∆t is used to scale the equation correctly at time steps
unequal to one. The whole rule for sediment capacity then
reads

cs =
KC
∆t

·∆F · |~v| (19)

In the simulation step for depositing or dissolving, we
compare the sediment capacity cs to the actual amount of
dissolved sediment ∆S. As a decision formula, we imple-
mented the following.

If ∆S > cs deposit:

H = H +
KD

∆t
· (∆S− cs) (20)

S = S +∆S− KD

∆t
· (∆S− cs) (21)

If ∆S ≤ cs dissolve:

H = H +
KS
∆t

· (∆S− cs) (22)

S = S +∆S− KS
∆t

· (∆S− cs) (23)

In both cases we modify the transfer function for the
height H of the terrain ((20) resp. (22)) and the sediment S
dissolved in the fluid with an erosion term ((21) resp. (23)).
This term is additionally scaled with one of the two mate-
rial constants KD, resp. KS that are specific for erosion. They
are used since depositing and dissolving are continuous pro-
cesses and hence the erosion process affects a specified por-
tion of the difference ∆S− cs.

5. Water distribution

The most important influence factor for a hydraulic erosion
system is the distribution of water. Two major types of fluid-
generators exist: rainfall and water sources. Rainfall in na-
ture is strongly influenced by a complex system of wind and
air humidity, called adiabatics. To simplify this system, we
simulate rainfall by dropping some amount of rain to a grid-
cell R(x,y) at constant or random intervals (approximately 2
to 50 time steps). Eq. (24) emulates the precipitation on the
slope of a mountain. The constant KR scales the actual rain
amount. We achieved good results with KR = 0.001.

R(x,y) =
{ KR

∆t ·H(x,y)2, H(x,y) > 0
0, H(x,y)≤ 0

(24)

Besides the rain frequency and the rain amount, the distri-
bution of rain over the landscape realized with a noise pat-
tern also has a significant effect on the erosion result. Figure
4 shows a blue noise distribution of rain where the positions
are obtained from a Hammersley point set [WLH97]. For
performance reasons we pre-calculate a very dense point set
and control the runtime density of the rain points by sub-
sampling the point set.

Figure 4: Blue noise distribution of rainfall with color-
coded distribution values.

Figure 5: Erosion with seven fixed river sources with color-
coded amount of deposited sediment.

The rain distribution is influenced globally by some pa-
rameters. To improve the interactive terrain creation pro-
cess we additionally introduce the possibility to define water
sources in the simulation environment (see figure 5). At ev-
ery water source, some water is dropped with a Gaussian
distribution in regular intervals. The radius of the Gaussian

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

distribution can be controlled by the user. Using this method
it is possible to generate erosion patterns and valleys where
the user needs them. Additionally, the user can paint water
interactively into the simulation.

In the real world water disappears in many ways from
the surface. In our simulation, water can disappear in two
ways: either through reaching the border of the simulation
area or during an evaporation process. In nature, the evapo-
ration amount depends on the temperature and the amount of
water. We use an evaporation function proposed by [BF02]
(see Eq. (25)) which decreases the amount of water expo-
nentially over the time. Evaporation can be controlled with
the evaporation constant KE . For performance reasons, we
define a lower bound ε. When the fluid amount reaches this
value it is set to zero.

The simulation can further be speed up if grid cells with-
out fluid are not touched by the whole fluid and erosion
simulation. Please note that we assume the fluid tempera-
ture to be constant over the time in the evaporation pro-
cess. For a more correct physical evaporation we can as-
sume low temperatures on high terrain levels and high tem-
peratures on low terrain levels that cause a varying evapora-
tion. As an approximation we propose the additional terrain
level factor H(x,y) in the exponent of the evaporation func-
tion (−KE ·∆t ·H(x,y)) to simulate such a temperature based
evaporation.

F(x,y) =
{

0, F(x,y) < ε

F(x,y) · e−KE ·∆t , otherwise
(25)

6. Conclusions and Future Work

In this work we demonstrated two new methods concerning
erosion simulation. First, a new algorithm for water trans-
portation was introduced. It is able to simulate all features of
fluid dynamics that are important for erosion in a more ac-
curate (physically correct) way than prior algorithms without
loosing the capability to calculate the results interactively.

Second, interactive methods to influence the terrain shape
are introduced that allows the user to control all global sim-
ulation parameters of several independent simulation steps
such as rain fall, water sources, fluid transportation, mate-
rial dissolving, material depositing and evaporation. Addi-
tionally, the user is able to define local water sources. The
proposed erosion algorithms are mass conserving, so that no
material is lost at any simulation step.

All results (see figure 6) where implemented in C# and
tested on a 2.4 GHz Pentium IV PC. The Simulation frame
rate depends above all on the grid size of the terrain. With
256x256 grid cells the not yet optimized algorithm runs at
approximately 4 frames per second.

A weakness of the erosion systems is the disability to sim-
ulate erosion in caves and erosion fragments caused by ver-
tical vortices. In future work we plan to enhance our algo-
rithms to handle such phenomena. Also the research in the

field of texture generation, object placement (e.g. stones) and
object growing (e.g. plants) in the simulation environment
would be interesting. Both can be generated in a physically
based way with the results of the fluid simulation and the
erosion algorithm.

References

[BF01] BENES B., FORSBACH R.: Layered data represen-
tation for visual simulation of terrain erosion. In SCCG
’01: Proceedings of the 17th Spring conference on Com-
puter graphics (2001), IEEE Computer Society, p. 80.

[BF02] BENES B., FORSBACH R.: Visual simulation of
hydraulic erosion. In Journal of WSCG 2002 (2002),
vol. 10.

[BMS97] BENES B., MARAK I., SIMEK P.: Hierarchi-
cal erosion of synthetical terrains. In Spring Conference
on Computer Graphics, Bratislava: Comenius University
(Jan 1997), 93–100.

[CDM∗02] CUTLER B., DORSEY J., MCMILLAN L.,
MÜLLER M., JAGNOW R.: A procedural approach to au-
thoring solid models. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques (2002), ACM Press, pp. 302–311.

[CMF98] CHIBA N., MURAOKA K., FUJITA K.: An ero-
sion model based on velocity fields for the visual simu-
lation of mountain scenery. Journal of Visualization and
Computer Animation 9, 4 (1998), 185–194.

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid
fluid: animating the interplay between rigid bodies and
fluid. ACM Trans. Graph. 23, 3 (2004), 377–384.

[FM97] FOSTER N., METAXAS D.: Controlling fluid an-
imation. In CGI ’97: Proceedings of the 1997 Conference
on Computer Graphics International (1997), IEEE Com-
puter Society, p. 178.

[HW04] HOLMBERG N., WUENSCHE B. C.: Efficient
modeling and rendering of turbulent water over natural
terrain. In GRAPHITE ’04: Proceedings of the 2nd in-
ternational conference on Computer graphics and inter-
active techniques in Australasia and Southe East Asia
(2004), ACM Press, pp. 15–22.

[KM90] KASS M., MILLER G.: Rapid, stable fluid dy-
namics for computer graphics. In SIGGRAPH ’90: Pro-
ceedings of the 17th annual conference on Computer
graphics and interactive techniques (1990), ACM Press,
pp. 49–57.

[KMN88] KELLEY A. D., MALIN M. C., NIELSON

G. M.: Terrain simulation using a model of stream ero-
sion. In SIGGRAPH ’88: Proceedings of the 15th annual
conference on Computer graphics and interactive tech-
niques (1988), ACM Press, pp. 263–268.

[MCG03] MUELLER M., CHARYPAR D., GROSS M.:

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

Particle-based fluid simulation for interactive applica-
tions. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer anima-
tion (2003), Eurographics Association, pp. 154–159.

[MH82] MANDELBROT B. B., HUDSON R. L.: The Frac-
tal Geometry of Nature. W. H. Freeman and Company,
New York, 1982.

[MKM89] MUSGRAVE F. K., KOLB C. E., MACE R. S.:
The synthesis and rendering of eroded fractal terrains. In
SIGGRAPH ’89: Proceedings of the 16th annual confer-
ence on Computer graphics and interactive techniques
(1989), ACM Press, pp. 41–50.

[Nag98] NAGASHIMA K.: Computer generation of eroded
valley and mountain terrains. The Visual Computer 13, 9-
10 (Jan 1998), 456–464.

[OH95] O’BRIEN J. F., HODGINS J. K.: Dynamic sim-
ulation of splashing fluids. In CA ’95: Proceedings of
the Computer Animation (1995), IEEE Computer Society,
p. 198.

[PH93] PRUSINKIEWICZ P., HAMMEL M.: A fractal
model of mountains with rivers. Proceeding of Graphics
Interface (May 1993), 174–180.

[RPP93] ROUDIER P., PEROCHE B., PERRIN M.: Land-
scapes synthesis achieved through erosion and deposi-
tion process simulation. Computer Graphics Forum 12,
3 (1993), 375–383.

[Sta99] STAM J.: Stable fluids. SIGGRAPH ’99: Con-
ference Proceedings, Annual Conference Series (August
1999).

[Sta03] STAM J.: Real-time fluid dynamics for games.
Proceedings of the Game Developer Conference (March
2003).

[WLH97] WONG T., LUK W., HENG P.: Sampling with
hammersley and halton points. Journal of Graphics Tools
2, 2 (1997), 9–24.

c© The Eurographics Association 2005.

B. Neidhold, M. Wacker, O. Deussen / Fluid and Erosion Simulation

(a) (b)

(c) (d)

(e) (f)

Figure 6: Hydraulic Erosion: a) original artificial terrain; b) 300 steps eroded artificial terrain; c) original mountain chain;
d) 300 steps eroded mountain chain; e) synthetic inclined plane; f) 300 steps eroded inclined plane. The amount of deposited
sediment is color-coded in the eroded images.

c© The Eurographics Association 2005.

