EG UK Theory and Practice of Computer Graphics (2005)
L. Lever, M. McDerby (Editors)

skML a Markup Language for Distributed Collaborative
Visualization

D.A. Duce and M. Sagar

Department of Computing, Oxford Brookes University, UK

Abstract

This paper describes a reference model and a markup language for representing processing and dataflow in
distributed collaborative visualization applications. The language, skML, enables processing to be represented
at each of the three layers: conceptual, logical and physical defined in the reference model. skML is an XML
application. A particular feature of the approach is the use of RDF to associate annotations with skML elements,
for example to describe resource constraints. An interactive editor for skML and prototype tools to use skML
with IRIS Explorer and OpenDX are described. Extension to other visualization systems such as AVS and VIK is
discussed. The paper concludes by comparing skML to other languages and environments for scientific workflow.

Categories and Subject Descriptors (according to ACM CCS):

H.5.3 [Group and Organization Interfaces]: Collaborative computing 1.3.2 [Computer Graphics]: Dis-
tributed/network graphics 1.3.8 [Computer Graphics]: Applications

1. Introduction

Grid computing allows aggregated computing resources to
be harnessed for the solution of problems. Visualization has
a crucial role to play in this: the use of visualization in sci-
entific computing and problem solving is well-established;
the challenge is to enable visualization systems to integrate
seemlessly with other components in order to arrive at so-
lutions. The gViz project (funded by the UK e-Science pro-
gramme) revisited visualization systems in the light of devel-
opments in Grid computing. The overall achievements of the
project have been described in earlier papers [BDG*04a].
In this paper we develop one particular theme that has not
previously been reported in detail, the design of the skML
language and associated tools.

Distributed visualization allocates different processing to
different machines; improving performance is often a moti-
vation for this, though there are other motivations, for ex-
ample security of the primary data source. Collaborative vi-
sualization allocates different parts of the human processing
to different people, who might be separated geographically.
The motivation for this comes from the recognition of the
importance of team activity in many endeavours. The team
members may well be drawn from different disciplines and
bring different expertise to bear on a problem. The visualiza-

(© The Eurographics Association 2005.

tion tools that each uses may well differ, and hence the need
to address issues arising from heterogeneity of visualization
systems and other resources is fundamental. For a recent re-
view of this area see [BDG*04b].

There is growing interest in the Grid community in scien-
tific workflow languages (see section 8). From a rather dif-
ferent starting point, notably the description of processing
networks in modular visualization environments, we have
developed an XML application, skML, for describing pro-
cessing within distributed and collaborative visualization.
Thinking about this problem led to the development of a lay-
ered reference model for visualization and caused us to think
about the need for ontologies for visualization, a topic of
current and future work. Tool support for skML has been de-
veloped, including tools to interface skML to IRIS Explorer
[Wal04] and a proof-of-concept tool for OpenDX [Ope]. Ex-
tension to other systems is discussed in section 9.

The gViz reference model is described next. Section 3 de-
scribes the skML language itself and the following three sec-
tions describe the skML visual editor and support developed
for IRIS Explorer and OpenDX. Section 7 discusses how this
work prompted the gViz project to begin to think about on-
tologies for visualization. Related work is discussed in sec-
tion 8.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

D.A. Duce & M. Sagar / skML

2. gViz Reference Model

We regard the visualization process as an ordered sequence
of work tasks, where results from one work task are input to
a subsequent work task. This notion corresponds closely to
the dataflow network models such as the Haber and McNabb
reference model [HM90] and the implementation models of
modular visualization environments such as IRIS Explorer
and AVS. The gViz model extends this idea by recognising
three different layers at which it can be applied: a concep-
tual layer where the network is defined in terms of abstract
processes independent of any software or physical resources
with which it might eventually be realised; a logical layer
which binds in the software resources; and a physical layer
which binds in computing resources.

The conceptual layer captures the intention of how appli-
cation data should be transformed to a visual presentation.
Since we are interested in collaborative visualization, this
layer also captures something about the collaborative nature
of this transformation, and the activity of each participant.

The logical layer binds the conceptual model to a partic-
ular configuration of software entites. Each entity might be
a component, or a module in a modular visualization sytem,
or a function from a procedure library. There is no constraint
that conceptual entities of the same kind be bound to logi-
cal entities of the same kind. In a collaborative setting, for
example, different participants might be using different soft-
ware to achieve the same result. The logical layer can though
introduce constraints on resources, for example, particular
processor characteristics, or requirements for co-location to
ensure that performance criteria can be met.

The physical layer realises the logical specification in
terms of a binding of components to particular physical re-
sources. The model does not assume that this binding is
static; it may change as the computation proceeds and re-
source requirements change.

At each of the layers the model describes the processing as
a graph of components and the flow of data and control be-
tween them. The model is deliberately avoids defining pre-
cisely what is meant by a component, leaving this as an ab-
stract concept that can be grounded as appropriate when the
model is applied.

One application of descriptions of this kind is to recognise
that a processing description forms a part of the provenance
of a visualization, describing how the visualiztion was pro-
duced, in such a way that this could be reproduced precisely
using the exact resources used originally (description at the
physical layer), resources of the same kind (description at
the logical layer) or other resources chosen to achieve the
same conceptual effect (description at the conceptual layer).

The next section describes skML, which aims to capture
the visualization process at any of the three layers.

3. The skML Language
3.1. Basic Features

Two insights are key to the design of skML: firstly that the
visualization application can be regarded as a graph whose
nodes represent processing and edges represent data flows
between processing entities. The second insight is to regard
the nodes and edges as resources to which annotations can
be attached. An annotation might, for example, describe the
type of processing entity the node represents (an IRIS Ex-
plorer module, say), or might express constraints such as the
kind of processor the node requires.

The design of skML drew inspiration from the Skm script-
ing language in IRIS Explorer and from general-purpose
XML applications for representing graphs, such as XG-
MML (eXtensible Graph Markup and Modelling Language)
[XGM]. The first version of skML was very similar to Skm,
but the two diverged somewhat as the gViz reference model,
described in the previous section, evolved and skML began
to be used in a more general way. We borrow some terminol-
ogy from IRIS Explorer. A processing graph will be called
a map, and the basic components of maps are modules con-
nected by links. Modules may have associated parameters.
The skML language has a simple structure. The main ele-
ments are skml, map, module, param and 1ink. The
skml element is the root element of a skML document. The
map element describes a processing graph of modules and
links. The element’s attributes include:

id a unique identifier for the map.
style used in the editing tool to distinguish one map from
another and to locate the map on the editor window.

The module element can be used to express the creation
of a new module instance, or destruction or modification of
an existing module instance. The attributes of this element
include:

id aunique identifier for the element. This is used to identify
an instance of a module within a map and hence has to be
unique across the collection of skML files related to that
map. It is represented by the XML ID type.

name the module’s name. skML uses name to mean the
type of module the element represents, for example, a
module to compute isosurfaces.

ref a reference to a module (a value defined in an id at-
tribute).

style used to position the graphical representation of a mod-
ule on an editor window.

action action to be taken when interpreting the ele-
ment. Values include: create, destroy, modify
and create-modify. The default value is create-
modify.

in-port name of input port.

out-port name of output port.

A simple example is shown below. These elements denote

(© The Eurographics Association 2005.

D.A. Duce & M. Sagar / skML

the creation of modules of types ReadImg and Display-
Img respectively.

<skml>
<map id="DisplayImage">
<module id="RImg" name="ReadImg" />
<module id="DImg" name="DisplayImg" />
</map>
</skml>

We developed a visual editor for skML (see section 4) and
in order to meet a requirement to save and load skML files
with the same visual appearance, module elements can also
be given a style attribute which can be used to record the
position of the module’s representation on the display sur-
face. The syntax follows the CSS style syntax. An example
is shown below which adds a style attribute to the previous
module instance to record the position of the top left hand
corner of the representation.

<module ref="RImg"
style="Left:300;Top:100;" />

The param element is used to set a parameter value, or
value range. The value is given as the content of the element.
The attributes are:

name the name of the parameter.
min the minimum value of the parameter.
max the maximum value of the parameter.

A simple example is shown below. The markup sets a
value for the £ilename parameter of the module with id
attribute RImg.

<module ref="RImg">
<param name="filename">pic.jpg</params>
</module>

The 1ink element can be used to connect or disconnect
two modules. The main attributes are:

id a unique identifier for the link element.

ref a reference to a 1ink element. This would be used, for
example, to identify a link that is to be disconnected.

action whether the element denotes the creation
(connect) or destruction (disconnect) of a
link. The default value is connect.

A simple example is shown below.

<link id="conl">
<module ref="RImg" out-port="Output" />
<module ref="DImg" in-port="ImgIn" />
</link>

The 1ink element describes the connection between the
two modules, the out-port of the Readlmg module is
connected to the Imgln port of the Displaylmg module. Each
type of module will have its own set of available port names.
A link is thus defined by the ports at the ends of the link.
Because in general we wish to describe processing graphs in

(© The Eurographics Association 2005.

which the modules can be drawn from heterogeneous soft-
ware systems, we do not impose any a priori typing con-
straints on links, modules and ports.

Disconnecting the link defined above is described by the
following skML.

<map id="DisconnectDisplay">
<link ref="conl" action="disconnect" />
</map>

Having the ability to describe disconnection of links and
destruction of modules gives skML the flavour of an audit
trail. Visualization maps are often changed during the course
of a collaborative visualization activity and it is useful to be
able to record this in skML.

An XML Schema has been developed to define the skML
language.

3.2. skML annotation

The skML language makes no assumptions about the mean-
ing of module names, ports, parameters etc. Thus skML is
able to represent maps in which the modules can be any-
thing. All we know about a module is that it has a name,
a distinguishable input port and output port, and can be pa-
rameterised. We use the Resource Description Framework
[RDFO04] to provide additional information about the entities
in a skML document. RDF provides markup for describing
resources; one way to think of this is that the RDF descrip-
tions annotate the skML document. An example is shown
below.

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/
02/22-rdf-syntax-ns#"
xmlns:v="http://www.gviz.org/skML/">
<rdf :Description about="DImg">
<v:Type>IRISExplorer</v:Type>
</rdf :Descriptions>
</rdf :RDF>

This annotation is saying that the module with id at-
tribute DImg is an IRIS Explorer module.

We exploit the fact that RDF provides mechanisms for
associating descriptions with resources but does not define
what those descriptions contain. The contents of the descrip-
tions are defined in other namespaces. In the example above
we used the namespace prefix "v" to identify the markup
language in which types of modules are defined. RDF thus
provides a flexible and extensible mechanism for associating
descriptions of many different kinds with skML entities.

Other kinds of annotation can also be described in this
way, for example, annotation that describes the allocation of
modules to physical resources at the physical layer or con-
straints on resource allocation at the logical layer.

Placements of the RImg and DImg modules in the exam-
ple above could be described by the annotations shown be-
low.

D.A. Duce & M. Sagar / skML

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/
02/22-rdf-syntax-ns\#"
xmlns:v="http://www.gviz.org/skML/" >
<rdf :Description about="RImg">
<v:Type>IRISExplorer</v:Type>
<v:Physicallocation
rdf :resource="http://cms.brookes.ac.uk/
pcl"/>
</rdf :Description>
<rdf :Description about="DImg">
<v:Type>IRISExplorer</v:Type>
<v:Physicallocation
rdf :resource="http://cms.brookes.ac.uk/
pc2"/>
</rdf :Description>
</rdf :RDF>

In the example the physical resources to which modules
are allocated are named with URIs and the names are at-
tached to the modules as anotations. We have used URIs in
the http scheme to denote processor resources for illustra-
tion. Proper application of this idea would give more careful
consideration to how resources are named, but this would
not affect the general style of the markup.

It was not the aim of the gViz project to develop vocab-
ularies and markup languages for describing computational
resources. Other projects are addressing this question, for ex-
ample the RSL resource description language from Globus
[RSL] and the Glue-Schema [Glu] (a conceptual data model
for Grid resource discovery and monitoring) in the InterGrid
project. An example of a resource constraint that might be
attached to a module at the logical level is shown below. The
constraint language is a very simple language developed by
us to illustrate the general idea.

<constraint
xmlns="http://www.examples.com/specML"
xmlnsg:rsl="http://www.globus.com/RSL">
<and>
<rsl:executable> a.out</rsl:executables>
<or> <and>
<rsl:count>5</rsl:count >
<rsl:memory operator=">=">64</rsl:memory>
</and> <and>
<rsl:count>10</rsl:count >
<rsl:memory operator=">=">32</rsl:memory>
</and>
</or>
</and>
</constraint>

In summary by regarding type descriptions, and perfor-
mance and other constraints as annotations to be expressed
in the RDF framework, we arrive at an extensible approach
that shows promise.

3.3. Distributed Collaborative Visualization

The aim of distributed collaborative visualization is to har-
ness the processing power of many humans and many com-

puers, each making their individual contribution to some
joint endeavour. The approach introduced in the previous
section enables us to describe distributed visualization, i.e.
maps in which modules are allocated to different processing
resources. This can be done at the logical layer where the
resources are not explicitly identified, but resource charac-
teristics (e.g. a processor of a particular kind) are expressed
as constraints. Using the same annotation mechanism, allo-
cation to actual named resources at the physical layer can be
expressed.

To capture the collaborative nature of a visualization map
we observe that different parts of the map will be associ-
ated with different participants. This leads to the idea that
different participants may play different roles in a collabo-
ration, and hence we can associate parts of the overall map
with particular roles. There may be constraints on the num-
ber of participants who can take a given role, for example in
a teacher-student setting, the number of students may be un-
limited but only one teacher is permitted. Introducing a new
participant in a particular role is then just a case of instantiat-
ing a particular collection of modules and links and likewise
removing a participant involves deleting modules and links.

Roles are represented by different maps within the same
document; the id attribute name can be chosen to identify
the role. For example a teacher role could be described by
the following map which allows the participant to select an
image to display.

<map id="Teacher" >
<links>
<module id="RImg" name ="ReadImg"
out-port="Output"/>
<module id="DImg" name ="DisplayImg"
in-port="Img In" />
</1link>
</map>

A student role could be described by:

<map id="Student" >
<link>
<module ref="RImg" out-port="Output"/>
<module id="SDImg" name ="DisplayImg"
in-port="Img In" />
</link>
</map>

This attaches another DisplayImg to the output port of
the ReadImg module.

4. The skML Visual Editor
4.1. Functionality

A visual editor for skML has been written. The user interface
is based on the Map editor in IRIS Explorer. The basic inter-
face is shown in Figure 1. The left hand pane contains an
expandable tree representation of stored map files and lists
of available modules. These are organised hieararchically.

(© The Eurographics Association 2005.

D.A. Duce & M. Sagar / skML

No other structure is imposed on this area. The example in
the figure shows areas for IRIS Explorer and OpenDX for
illustration.

=l81x|

Fle Edt Vew Favortes Took Heb |
adiess [E] e L]
Qe - - [¥] B | Psewen Joroonss @reas @[0- LW - /W RS
FOA [d] Free Downloads | [£] Downloads ~ ifoptions || ~] & [ETopDownloads ~ | *IPopupsatods ~ (DHelr >
File Edit View Help =
3 9vG Map Editpr Libraries
563 Maps
®{ RIS Explorer
EE3 opendx
8= 1s05urfaceMap
=3 Modules
#C IRIS Explorer Teea] =
=43 openDx —|—
3 mport
Ed 1s0surface
B2 pisplay fac oA =
8 mport I
B4 pisplay sy =
==

Figure 1: SVG Map Editor user interface.

The main functionality provided by the editor is:

. create/modify maps;

. import/export skML documents;

. organize/add new modules to the module palette;
. introduce new hosts.

AW =

The skML editor makes a minimal set of assumptions
about modules (that they have (more than one) named input
and output port), thus it is not tied to any particular visual-
ization system. The dialogue box for creating a new module
instance is shown in figure 2. The application type defines
the namespace from which the module is taken.

List 1

List3

create =

-

Lot Applcation: Host. [locelhost] iﬁ'@y
5| Actionc[ceae oF
Lt ——defaultApplication =]

Type: , Savein Modules

Library. I
i Tnput Ports: Output Ports:
p Input [Output
Filename Camera
Type : Editbox 2

In-port : Editbox 3 —— —addll , outport: Editbox 4
Delete Delete
Ok Cancel

+— Check box 1

Figure 2: Create new module type dialogue box.

If the instance is the first of a new type of module, the type
description can be saved in a library.

Some aspects of the configuration of skML are controlled
by configuration files (XML documents). The types of ap-
plication are specified by application elements within a type
element. It is thus easy to introduce new types of application.

<type>

<application name="defaultApplication"/>
<application name="IRISExplorer"/>
<application name="openDX"/>

</type>

(© The Eurographics Association 2005.

Individual modules are also described by XML docu-
ments, for example:

<module name="Render">
<inPort name="Input"/>
<inPort name="Input Camera"/>
<outPort name="Output Camera"/>
<outPort name:"Snapshot"/>
</module>

The module description lists the module’s input and out-
put ports. In this example the visualization application to
which the module belongs is not expressed in the module
description. This could be added as an annotation to the de-
scription, or, as we have done in the prototype editor, it can
be inferred from the location of this document in the module
library hierarchy.

As explained earlier, a skML document can contain more
than one map. New maps can be created, or existing maps
modified, through the "New/Modify Map(s)" entry in the file
menu. Selecting this menu item brings up the dialogue box
shown in figure 3.

BEE]

Maps List

default

Editbox 1 —-'—‘— Add
Delete Up_|Davn

Map:

Editbox2 — u_
Update

Opacity: 100%

Slide bar —

0ok Cancel

Figure 3: Maps list dialogue box.

Edit box 1 and the Add button are used to insert a new
map into the maps list. The Delete button deletes a map. The
Up and Down buttons are used to change the order in which
the maps will appear in the skML document saved from the
editor. The properties of a map can be changed by first high-
lighting the map in the maps list, then using edit box 2 to
change the name of the map, or the colour box to change the
colour of the map or the slide bar to change the opacity of
the map. Opacity was found to be a useful way to highlight
particular maps within the collection of maps.

Modules and links have similar graphical representations
to those used in IRIS Explorer. Figure 4 shows the tip boxes
that provide extra information about modules and links.
When the mouse pointer moves over a link, the pop-up box
gives information about the names of the input and output
ports which the link connects. When the mouse pointer is
over the square button at the top right hand corner of the
module box, a tip box appears which shows the value of the

D.A. Duce & M. Sagar / skML

module’s 1d attribute, the map with which the module is as-
sociated and (if appropriate) the name of the host to which it
is associated.

Displaylmg]

JE— p—

Output === Img In

+— Tip boxes

Readl!
m? ‘%Id = Readimg , Map = default, Host = Iocal-1osl|

Figure 4: Information provided by pop-up tip boxes.

Figure 5 illustrates the steps in creating a new link:

1. bring up the pop-up menu for the first module (by right
clicking on the button-shaped rectangle at the top right-
hand corner of the module box), select an out-port from
the menu (label 1 in figure);

2. select an in-port from the pop-up menu for the second
module (label 3 in the figure);

Displaylmg ~ _|
'

Img In .
In-ports list

Properties

Disconnect
——

Readlmg [

1
i“_% Output 'out-ports list

Figure 5: Creating a new link.

Right-clicking on a link brings up a pop-up menu with op-
tions to delete the link or change its properties. Selecting the
Properties option brings up a link properties dialogue box in
which the map to which the link belongs can be set along
with the type of the link (i.e. the type of information the link
can carry). We do not preclude specifying maps in which
the types of the input and output ports joined by a link are
different and hence type information is regarded as anno-
tation of the link. The benefit of this lax approach is that
type conversion can be inserted as necessary when the link
is instantiated. The skML editor does not itself perform type
checking.

4.2. Implementation

The SVG Map Editor runs in a Web browser and is imple-
mented using Scalable Vector Graphics (SVG) for the graph-
ical presentation and JavaScript. Graphical presentation is
generated by scripting the SVG Document Object Model
(DOM). Two JavaScript libraries were developed: a graph-
ics library to support the creation of graphics in SVG using
DOM methods and a user interface library providing similar

functionality to the Java Swing classes. An early version of
the libraries was described by Sagar [Sag03]. This approach
has proved to be effective in practice.

5. The IRIS Explorer Interface

An IRIS Explorer module (skMLCollaborative) has been
written that will taken a skML document and launch a se-
lected map within the document. A Skm script to save IRIS
Explorer maps in skML and a stand-alone tool to convert
skML documents to IRIS Explorer Skm scripts have also
been written.

The COVISA toolkit [WWB97] provides support for col-
laborative visualization in IRIS Explorer. The skMLCollab-
orative module automatically generates instances of COV-
ISA modules that are needed in order to transport data from
the instance of IRIS Explorer run by one participant to that
run by another. Thus many of the details of COVISA are hid-
den from the author of the skML description of the overall
visualization process.

6. OpenDX

As a simple proof-of-concept exercise, a translator from
skML to OpenDX [Ope] has been written. A skML map to
read a data file, generate an isosurface from it and display
the result is shown below.

<skml>
<map id="openDXIsoMap" style="left:147;top:87;
color:#d4d4d4">
<link>
<module id="data" name="Import"
out-port="out" style="left:0;top:0;">
<param name="Filename">
/usr/data/image/watermolecule
</param>
</module>
<module id="iso" name="Isosurface"
in-port="data" style="left:147;top:73;"/>
</link>
<link>
<module ref="iso" out-port="data" />
<module id="img" name="Display"
in-port="in" style="left:310;top:138;"/>
</link>
</map>
</skml>

The skML file is then translated to OpenDX; we have
written a simple utility program for this purpose. For the
example above, the translator generates the OpenDX script
below. The result of running this script is shown in figure 6.

data = Import ("watermolecule") ;
iso = Isosurface (data) ;

camera = AutoCamera (iso) ;

img = Display (iso,camera) ;

(© The Eurographics Association 2005.

D.A. Duce & M. Sagar / skML

-lof>
Help

JSTE

Fe Eit Exoute Panois
= Options Holp
—r Import name:

sarvatmotecuie]| [..

Figure 6: Script run in OpenDX.

7. Conceptual level skML

A skML document at the conceptual level can in principle
be transformed automatically to corresponding documents
at the logical level for different software systems. Simple
proof of concept translations have been developed for IRIS
Explorer and OpenDX to illustrate the idea. In the general
case, however, this is far from straightforward as there are
no guarantees that modules in one visualization system have
counterparts (either one-to-one or through some subgraph of
modules) in another, nor are there guarantees that even if the
functionality provided by corresponding modules in two sys-
tems is similar the semantics correspond. Modules to com-
pute isosurfaces in different systems might well use different
algorithms and have different numerical accuracy/stability.
Considerations such as these then lead to the question of how
one can assign meaning to visualization modules.

One of the approaches to this question is through the de-
velopment of an ontology of visualization. In an ontology
concepts are described using a set of constructors with a pre-
agreed meaning; for example through a set of relationships
that can be asserted between primitives. Since there are fixed
ways to define new concepts, ontologies can be made ma-
chine processable and this is one of the current research di-
rections in the Semantic Web with technology such as OWL.
Given the existence of an ontology for visualization, annota-
tions of modules in skML maps could be used to ground the
meaning of modules by referencing concepts defined in the
ontology. This is a direction for future work [DBDHss].

8. Related Work

One way of thinking about skML is that it is a language for
expressing visualization workflow. There is growing interest
in the Grid community in languages for expressing scientific
workflows, Kepler, Triana, ICENI and OGSA-DAI are good
examples. Each of these projects has developed a workflow
language, but from different starting points.

Kepler is a scientific workflow management system

(© The Eurographics Association 2005.

[ABJ*04], providing a GUI to support the creation of com-
plex workflows and a modular programming environment.
Workflows can be serialized in an XML application called
Modelling Markup Language (MoML) which is designed to
allow the specification of parameterized, hiearchically struc-
tured collections of components. Processing steps are called
actors performing computations such as signal processing
and statistical operations. Actors have input and output ports
that can be linked into a directed graph to allow dataflow
between actors; all the systems considered here, including
skML, share this fundamental model. Actors can include
Web and Grid services and hence support for distributed
computation is provided. Interestingly the paper cited above
points out that "the workflow also provides the provenance
for derived data products, allowing researchers to return to
previous states of the data as needed". We also point to the
use of skML maps as annotations of data sets and visualiza-
tions as a way to capture the provenance of the visualization,
the way in which it was generated. In the context of the gViz
3-tier model, this can be done at each of the three levels to
capture the higher level intentions of the visualization as well
as the precise way in which these were realized.

Triana [STO04] is a graphical Problem Solving Environ-
ment for scientific applications, originally developed for use
by data analysis scientists in a project concerned with the
detection of gravitational waves. It has now grown into a
sophisticated environment for supporting distributed work-
flows that map to Triana Web and P2P services. It also pro-
vides a simple XML workflow language for composing com-
ponents. Components are Java classes with a name, input and
output ports and parameters. Code wrapping is used to en-
able components written in other languages to be used.

The Taverna [Tav] system and Scufl workflow language
have evolved in the bioinformatics domain, typically to sup-
port workflows for in silico experiments expressed as com-
plex chains of database searches and analytical tools. The
Open Grid Services Architecture — Data Access and In-
tegration (OGSA-DAI) project has developed middleware
to assist with access and integration of data from different
sources. It is built around an activity-based workflow where
activities can include data retrieval and transformation.

ICENI [MYA*04] (Imperial College e-Science Net-
worked Infrastructure) provides a component programming
model to aid developers in constructing Grid applications,
and an execution infrastructure. The ICENI component
framework has 3 layers, and the separation of concerns has
parallels with the gViz 3-tier model. The three concerns are
meaning, behaviour and implementation. These concerns are
captured as metadata (expressed in XML) as components
are constructed. Meaning captures semantic constraints, be-
haviour captures control and data flow and thread data, im-
plementation captures performance characteristics and plat-
form specific requirements. ICENI too has an XML based
language to describe workflows [MMG™*02].

D.A. Duce & M. Sagar / skML

We would not argue for superiority of skML as a work-
flow language over any of the other languages mentioned
here; indeed it is probably true to say that in many cases it
would be straightforward to translate documents from one
language to any of the others. skML differs from these other
languages in recognising some kinds of metadata as annota-
tions that can be expressed in RDF.

9. Conclusions

We have described the gViz reference model and the skML
language. Tool support for the language has also been de-
scribed. skML offers a system-independent description of a
traditional dataflow network. The work has provided moti-
vation for studying ontologies of visualization and this di-
rection is now being pursued.

The implementation work was based on IRIS Explorer
and OpenDX. This raises the question of whether the ap-
proach could also be applied to other systems, e.g. AVS and
VTK. AVS products have a similar architecture to IRIS Ex-
plorer. A scripting language, CLI, is provided and users can
write new modules. AVS has also been extended to collab-
orative working in a similar manner to IRIS Explorer and
there would seem to be no conceptual difficulties in devel-
oping modules that mirror the IRIS Explorer skML import
and export modules. At first sight, VTK is rather different,
being a class library. However the VTK model is also a data
flow model and the class libraries include process objects
(classified into source, filters and mappers), and data objects.
Although VTK does not have an equivalent to the module
editor in IRIS Explorer and AVS, the toolkit is interfaced to
scripting languages including Tcl/Tk and Python. From an
initial inspection it would seem possible to translate from
skML into a script that would construct the corresponding
VTK pipeline, but this has not been confirmed.

Acknowledgements

The work was carried out within the gViz project funded
under the UK e-Science Core Programme and we gratefully
acknowledge their support. We would like to thank all our
colleagues in the project, for their support, especially Ken
Brodlie and Jason Wood, University of Leeds and Jeremy
Walton, NAG Ltd.

References

[ABJ*04] ALTINTAS I., BERKLEY C., JAEGER E.,
JONES M., LUDASCHER B., Mock S.: Kepler: To-
wards a Grid-Enabled System for Scientific Workflows.
In Workflow in Grid Systems Workshop in GGFI10 -
The Tenth Global Grid Forum, Berlin, Germany (March
2004).

[BDG*04a] BRODLIE K., DUCE D., GALLOP J., SAGAR

M., WALTON J., WooOD J.: Visualization in Grid Com-
puting Environments. In IEEE Visualization 2004 (2004),
pp. 155-162.

[BDG*04b] BRODLIE K., DUCE D., GALLOP J., WAL-
TON J., WooD J.: Distributed and Collaborative Visu-
alization. Computer Graphics Forum 23, 2 (2004), 223—
251.

[DBDHss] DUKE D., BRODLIE K., DUCE D., HERMAN
1.: Do You See What I Mean? IEEE Computer Graphics
and Applications (2005, in press).

[Glu] Glue Schema. http://www.cnaf.infn.it/
~sergio/datatag/glue/.

[HM90] HABER R. B., MCNABB D. A.: Visualization
Idioms: A Conceptual Model for Scientific Visualization
Systems. In Visualization In Scientific Computing (1990),
Shriver B., Neilson G.,, Rosenblum L., (Eds.), IEEE Com-
puter Society Press, pp. 74-93.

[MMG*02] MAYER A., MCGOUGH S., GULAMALI M.,
YOUNG L., STANTON J., NEWHOUSE S., DARLINGTON
J.: Meaning and Behaviour in Grid Oriented Components.
In 3rd International Workshop on Grid Computing, Grid
2002, volume 2536 of Lecture Notes in Computer Science
(2002).

[MYA*04] McGOUGH S., YOUNG L., AFZAL A., NEW-
HOUSE S., DARLINGTON J.: Workflow Enactment in
ICENIL. In Proceedings of the UK e-Science All Hands
Meeting, ISBN 1-904425-21-6 (2004).

[Ope] OpenDX. http://www.opendx.org/.

[RDF04] Resource Description Framework (RDF).
http://www.w3.org/RDF/, 2004.

[RSL] Resource Specification Language.
www-fp.globus.org/gram/rsl_specl.html.

[Sag03] SAGAR M.: An SVG browser for XML lan-
guages. In Proceedings of Theory and Practice of Com-
puter Graphics 2003 (2003), pp. 42 — 48.

[STO4] SHIELDS M., TAYLOR I.: Programming Scientific
and Distributed Workflow with Triana Services. In Work-
flow in Grid Systems Workshop in GGF10 - The Tenth
Global Grid Forum, Berlin, Germany (March 2004).

[Tav] Taverna. http://taverna.sourceforge.net/.

[Wal04] WALTON J. P. R. B.: NAG’s IRIS Explorer. In
Visualization Handbook (2004), Johnson C. R., Hansen
C. D., (Eds.), Academic Press. Available from http://
www.nag.co.uk/doc/TechRep/Pdf/tr2 03.pdf.

[WWB97] Woob J. D., WRIGHT H., BRODLIE K. W.:
Collaborative Visualization. In Proceedings of IEEE Visu-
alization "97 (1997), Yagel R., Hagen H., (Eds.), pp. 253—
259.

[XGM] XGMML (eXtensible Graph Markup and Mod-
eling Language). http://www.cs.rpi.edu/~puninj/
XGMML/.

http://

(© The Eurographics Association 2005.

http://www.cnaf.infn.it/~sergio/datatag/glue/
http://www.opendx.org/
http://www.w3.org/RDF/
http://www-fp.globus.org/gram/rsl_spec1.html
http://taverna.sourceforge.net/
http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf
http://www.cs.rpi.edu/~puninj/XGMML/

