
Towards Realism in Facial Image Prototyping: Results of a
Wavelet MRF Method

Bernard Tiddeman1, Michael Stirrat2 and David Perrett2

1. School of Computer Science, University of St Andrews
2. School of Psychology, University of St Andrews

Abstract
The ability to combine multiple images to produce a composite that is representative of the set has applications in
psychology research, medical imaging and entertainment. Current techniques using a combination of image warping
and blending suffer from a lack of realism due to unrealistic or inappropriate textures in the output images. This paper
describes a new method for improving the representation of textures when blending multiple facial images.  We select
the most likely value for each pixel, given the values of the neighbouring pixels, by learning from the corresponding
values  in  the  training  set  i.e.  we  use  a  Markov  Random  Field  (MRF)  texture  model.   We  use  a  multi-scale
neighbourhood  and separate low and  high frequency information  using a wavelet  transform.  This ensures proper
correlations of values across spatial scales and allows us to bias the global appearance to the mean for the set, while
selecting more specific texture components at higher resolutions.  We validate our results using perceptual testing that
shows that the new prototypes improve realism over previous techniques.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]
Feature Measurement (Texture), I.3.8 [Computer Graphics] Applications. 

 1 Introduction
The ability to capture the essential characteristics of a set
of  images  has  found  application  in  facial  perception
research, medicine and entertainment.  In facial perception
research, early theories of facial attraction focused on the
idea that averageness was attractive.  This was based on
evidence  from  other  species,  where  increased  survival
rates are correlated with being closer to the mean (e.g. in
body  size  and  shape).  Photographic,  and  later  digital,
blending of human face images supported this idea, with
the blends being rated as considerably more attractive than
the original  faces.    Perrett  et al  [PMY94]  showed that
attractive  faces  differ  systematically  from  average,  by
constructing  averages  of  a  more  attractive  subset.  The
researchers  then  began  to  investigate  the  role  of  other
attributes,  such  as  age  [PPL*02],  health  [JLB*04],
masculinity/femininity  [PPC*]  and  familial  resemblance
[DEB04]  in  facial  perception.   In  particular  they  are
interested in the mechanisms by which we learn to find
certain  faces  attractive,  and the  underlying evolutionary
and neurological processes involved. 

In  addition  to  producing prototype faces,  methods were
developed to transform images between sets, e.g. to age or
masculinise an individual's face image.   The methods are
based on adding the differences between two prototypes to
an individual's face image [RP95].  This has applications
in  other  areas,  such  as  entertainment,  e.g.  for  digital
ageing  of  actors,  and  medicine,  e.g.  for  predicting  the
outcome  of  surgery  by  learning  from  examples.
Prototyping  itself  has  found  application  in  other  areas.
For example for constructing average medical images for
facial surgery planning (e.g. [TDR00]) and brain analysis
(e.g. [TT96]).

The usual method for creating prototype images is first to
spatially align the component images to the mean shape of
the set, and then to find the average colour of each pixel

in the output image.  This method does not properly align
the  fine  detail  textures  and  so  the  output  images  have
blurred  (i.e.  very  smooth),  and  therefore  inappropriate
textures.  Hence improvements to image prototyping have
focussed on improving the representation of textures.

In the remainder of this paper we first review the relevant
literature from the image prototyping,  image fusion and
texture  synthesis  literature.   We then  describe  our  new
technique  for  synthesising  prototype  facial  images  and
present  the  results  of  a  perceptual  experiment  to
demonstrate the effectiveness of the new algorithm.

 2 Literature Review

 2.1 Facial Image Prototyping Literature
The creation of prototype images has a long history dating
back  to  the  methods  of  Francis  Galton  who  created
photographic averages by using multiple exposures after
aligning the  eyes and  mouth [GAL78].   More  recently,
prototypes have been created by digitally blending faces
together, after normalising the shape to the average using
image warping [BP93].  Simple averaging of the spatially
aligned images does not  produce  representative  textures
and several improvements have been suggested.  Wavelet-
magnitude  based  texture  prototyping  [TBP01]  uses  the
smoothed magnitude of the wavelets as a measure of the
average  local  activity  in  different  spatial  locations,
orientations and scales across the set.  The wavelet values
of the simple average are locally rescaled to approximate
these  activity  levels.   An alternative  wavelet  histogram
method has been proposed in which the histograms of the
prototype image and its wavelet subbands are modified to
match the (mean) histograms of the image set [MCV04].
These two methods produce visually similar results, with
random  textures  being  well  represented,  but  more
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structured textures (such as the hair) still appearing rather
unrealistic and unrepresentative of the set. 

An alternative approach is to use a local neighbourhood
surrounding each point to estimate the most likely pixel
value for the prototype [TID04].  By comparing the values
in the neighbourhood with the matching neighbourhoods
in  the  training  set  a  probability  distribution  can  be
estimated.  The highest probability value is selected from
this  distribution,  then  this  pixel   forms  part  of  the
neighbourhood  for  succeeding  pixels.  A  causal
neighbourhood,  spanning  two  neighbouring  scales,  was
used  for  efficiency  and  reconstruction  stability.   The
probability distributions were estimated by smoothing the
histograms of  neighbourhood values. Certain  choices  of
smoothing  parameters  caused  locking  of  the  algorithm
onto large parts of a single image in the training set.  To
avoid  this  behaviour  the  histogram  smoothing  was
increased at lower spatial scales, to give a more average
global  appearance,  but  leaving  more  specific  (and
therefore  realistic)  fine  scale  textures.  Although  no
perceptual  study was conducted,  the  results  appear very
realistic,  although  there  is  a  problem  of  occasional
discontinuities  in  the  reconstructed  images.   These
discontinuities  are  probably  caused  by  the  overlap  in
information  content  between  neighbouring  scales  in  a
multiresolution (Gaussian) pyramid. 

 2.2 Image Fusion Literature
Image prototyping  is  a  specialised  example of  multiple
image fusion.  The more usual  problem is that  of fusing
multiple  images  of  the  same scene,  taken  using  several
different sensors (e.g. visible and infra-red) or taken under
different conditions (e.g. focused on different objects or
with  different  exposures).    Methods  based  on  wavelet
pyramids have proved successful, with various algorithms
for  combining  the  individual  wavelet  components
proposed.  Point-based  methods  include  selecting  the
wavelet  coefficient  with  the  largest  absolute  value  or
making  a  simple  average.  Other  methods  inspect  the
values in a window about each point when calculating the
value.  These methods include choosing the pixel from the
image  with  the  largest  absolute  value  in  the  window
[LMM95]),   making an average of the  matching points
that is weighted by the local activity levels in the window
[BK93] or weighting the samples  based on the contrast
sensitivity of the human visual system [WRM95]. Several
comparisons of wavelet-based image fusion schemes have
been  conducted  [ZB99]  [BB04]  [HCB02]  and  these
indicate  that  over-complete  wavelet  decompositions  are
preferable  to  critically  sampled  decompositions  (for
reconstruction stability and fewer artefacts),  that  region-
based  methods  give  improved  results  over  point-based
methods and shorter filters reduce the number of artefacts
in the resulting fused images.

 2.3 Texture synthesis by analysis
The main problem in previous facial prototyping methods
has  been  identified  as  the  lack  of  appropriate  facial
textures  in  the  output  images.  Synthesising  patches  of
texture  from  examples  has  been  the  focus  of  a
considerable  number of research papers.   The statistical

nature  of  textures  inspired  methods  that  used  global
properties of the images, such as the image histogram and
the  histograms  of  wavelet  subbands  [HB95].   Starting
with random noise, the image and subband histograms are
alternately matched to the target histograms in an iterative
process. This method produced excellent synthetic results
for random textures, but was not able to reproduce more
structured  textures,  such  as  hair.   Extensions  to  the
method  using  additional  measures  of  the  wavelet
histograms  (such  as  correlations  within  and  across
subbands)  improved the results,  but  still  failed on more
complex textures [SP98].

An alternative to global optimisation of texture parameters
is  to  look  at  local  features.  In  MRF-based  texture
synthesis [JUL62] [HS81] [CC85a] [CC85b] [CJ83]  it is
assumed  that  the  probability  distribution  of  a  pixel's
intensity  is  dependent  on  its  neighbours.  The aim is to
construct  a  texture  such  that  the  local  conditional
probability  distribution  functions   of  the  synthesised
image  match  those  of  the  original  texture  sample.  The
original MRF methods proved to be very slow due to the
need to rebuild the histograms or select suitable matching
neighbourhoods  at  each  pixel  by  scanning  the  entire
image.  Several methods that  approximate the full MRF
method  have  been  devised,  usually  by  searching  the
example  image  for  the  best  matching  n  pixels,  and
choosing one of these using stochastic sampling [EL99].
Speed optimisations include using a multiscale approach
[PL98] (i.e. building up a low resolution approximation to
the texture and then refining it to higher resolutions) and
fast search algorithms  [WL00].  Performing the texture
synthesis  in  the  wavelet  domain  has  allowed  proper
separation  of  information  at  different  spatial  scales
[ZWT98], including a very efficient approximation using
a  neighbourhood  consisting  of  only  lower  resolution
subbands [DEB97].

 3 Method
The  prototyping  method  starts  in  the  same way as  the
previous  techniques  [BP93][TBP01][MCV04],  by using
feature-based  image  warping  [WOL90][RM95]  to
normalise the shape of the example faces to the average
shape for the set (Figure 1).  The facial feature points can
be  labelled  by  hand  or  placed  automatically  e.g.  using
active shape models [CTL95].  Alternatively optical  flow
can be used to align the component images automatically
[BP96][VP97]. 

Each example image is  then  transformed into a wavelet
basis.  There  is  a  wide  possible  choice,  not  only  of
particular  wavelet  filters  (e.g.  orthogonal  or  bi-
orthogonal) to use, but also of how they are applied. The
wavelet  subbands  can  be  critically  sampled  so  the
transformed image pyramid contains the same amount of
data  as  the  original,  or  can  be  sampled  at  the  original
resolution  leading  to  an  over-complete  (i.e.  redundant)
representation.   There  is  also  a  choice  between
subsampling the low-pass filtered image or leaving it  at
the original scale. In this work we use the results from the
image-fusion literature to chose a redundant wavelet basis
(sub-sampling  only  the  low-pass  filtered  image  at  each
level of the wavelet pyramid) and we use short filters to



reduce  reconstruction  artefacts.   The  decomposition
produces horizontally and vertically filtered components,
and so includes some directional information and we use
an exact  reconstruction algorithm.

The  filters  we  use  are  based  on  a  first  derivative  of
Gaussian  approximation,  with  the  low-pass  residual
subsampled by a factor of 2 in both x and y during the
construction of each level of the wavelet pyramid.  This is
for  greater  efficiency,  particularly  when  processing  the
lower resolutions.  As with the filters used in [TBP01], we
can  perform  an  exact  reconstruction  by  up-sampling,
filtering and addition. The down and up-sampling of the
low-pass  filtered  image  requires  that  the  high-pass
components are convolved with different filters at odd and
even pixels.   Figure  2 shows the analysis and synthesis
process  and  Table  1 gives  the  corresponding  filter
coefficients.

The  re-texturing  algorithm  starts  by  making  a  low-
resolution  approximation  to  the  prototype  image  by
blending  the  low-pass  residuals  from the  input  images.
Each successive finer resolution subband is then built up
by scanning across the image and picking the most likely
wavelet  coefficients  at  each  point  from the  conditional
probability  distribution.  The  conditional  probability
density  is  estimated  by sampling  from a  fixed  location
across  the  spatially  aligned  example  images.  The
probability  distribution  is  estimated  from  the  example
images  by  smoothing  the  histogram of  example  values
with  a  Gaussian  function  i.e.  we use  a  Parzen  window
method.

-2 -1 0 1 2

H 0.25 0.5 0.25

G 1 -1

F 0.5 1 0.5

L1 -0.25 0.25

L2 -0.125  -0.375 0.375 0.125

K1 0.125 0.75 0.125

K2 0.0625 0.125 0.625 0.125 0.0625

Table 1: The wavelet filters used.

The  neighbourhood of pixels we use includes a 12 pixel
non-symmetrical half plane (NSHP) neighbourhood at the
current resolution, a 3 by 3 symmetrical neighbourhood at
the  preceding  resolution,  and  1  pixel  from each  of  the
preceding resolutions (Figure 3).  The use of symmetrical
low-res neighbourhoods in addition to the NSHP high-res
neighbourhood  helps  to  stabilise  the  reconstruction,
without the need for optimising the probabilities of all the
pixels  simultaneously.  We  do  not  assume  total
independence  between  subbands,  but  use  all  the
information  available  from  previous  points  in  the
neighbourhood to estimate each of the coefficients at the
current point. 

An algorithm for estimating the conditional distribution is
given below:

Figure 1: The wavelet-MRF textured blending algorithm
is an extension  to  the  untextured algorithm illustrated
above. The input faces (Centre row) are delineated (top
row) and the average shape is found as the mean set of
delineated  feature  points.   The  input  images  are  all
warped into this shape (bottom row) and the colours are
averaged at each pixel to produce the average (bottom
right).

Figure 3: The distribution at each point is conditional
on  the  values  of  the  pixels  in  its  multi-resolution
neighbourhood.  The pixel's neighbourhood consists of
a 12 point  non-symmetrical  half  plane  at  the  current
resolution, a 3 by 3 block at the next lower resolution
and a  single  pixel  from each of  the  remaining  lower
resolution subbands.



Algorithm 1: Calculate conditional distribution
inputs: 

input image's wavelet transform (WT) I,
array of example images' WTs J, 
location (x,y),
subband s
neighbourhood N, 
smoothing parameter h, 
example sample size M, 
histogram bin width bw
number of bins bcount

variables:
Float histogram array p of length bcount
Float array u for neighbourhood in I
Float array v for neighbourhood in S[i]

begin:
1.  Initialise p to 0 
2.  u = values in N of Is(x,y) 
3. for i = 0 to M

3.1  v = values in N of Js[i](x,y)
3.2  p[Js[i](x,y)/bw] += Gaussian(v, u, h)

4. Smooth  p with 1D Gaussian of width  h and
re-normalise

5. Return probability distribution p

The  function  Gaussian(v,  u,  h) returns  the  value  of  a
uniform multidimensional Gaussian of standard deviation
h centred on u and evaluated at v.

The non-parametric distribution is estimated by smoothing
the N-dimensional  histogram using  a  multi-dimensional
Gaussian  as  the  kernel  function.  The  shape  of  the
distribution  is  critically  dependent  on  the  kernel's
smoothing  parameter,  in  this  case  the  width  of  the
Gaussian.  The "optimal" value,  h0,  given in [PL98] for
the  smoothing  parameter  is  only  optimal  if  the  true
underlying distribution is Gaussian [SIL86].  Experiments
using the Gaussian assumption for single texture synthesis
in  the  spatial  domain  proved  unsuccessful  because  the
distribution  is  smoothed  too  much [TID04].   This  may
have  been  due  to  the  high  correlations  between  scales
leading to an elongated shape for the Gaussian, and does
not  appear  to  be  a  problem  in  the  wavelet  domain
[ZWT98]. 

Another problem identified  in the spatial MRF work was
that the algorithm often "locks" on to a single image at a
low resolution,  resulting  in  a  final  image that  is  just  a

patchwork of areas copied from a small number of images
in the sample [TID04].  The same problem can occur in
the wavelet domain. Increasing the value of the smoothing
parameter,  h,  prevents  locking  but  leads  to  a  loss  of
apparent  texture,  as  shown  in  Figure  4.  To  avoid  this
problem  the  width  of  the  smoothing  window  can  be
increased  linearly  with  increasing  scale.  We  have
experimented with different values of  h and have found
h=(1+0.5l)h0, for pyramid level  l, produces good results
for a range of image sets of size 640 by 480 pixels. This
keeps the distribution similar to the Gaussian mean at low
resolutions,  but  retains  the  high-resolution  textures.
Further  experimentation  will  be  required  to  find  the
perceptually optimal value for h and the relationship with
image resolution.

 4 Results

 4.1 Visual evaluation

Figure  5 shows the results  of blending several  different
sets of face images, grouped by approximate age, sex and
ethnic  background,  and  compares  two  previously
published methods; wavelet-magnitude (WM) re-texturing
[TBP01] and spatial-domain MRF (spatial) [TID04,] with
the new approach.  The WM method simply magnifies the
wavelet coefficients to have the average magnitude value
for  the  set  at  each  point  in  each subband.   The  spatial
method  performs  an  MRF  algorithm  on  a  multiscale
pyramid.  Visual  inspection of these prototypes indicates
that  the  new  wavelet  MRF  method  provides  a  small

Figure  2: The construction  of  one level  of  the wavelet
pyramid.  A pair of filters in a box indicates application
to even and odd pixels respectively. 

Figure  4: The  effect  of  using  different  values  of  the
distribution smoothing parameter, h.  Setting the value
of h too high (h=3h0) textures are lost  (top left) giving
an  output  similar  to  the  untextured  prototype  (bottom
left). Setting the value too low (h=2h0) (centre top) the
texture  “locks”  on  to  an  individual  face's  textures
(centre bottom).   The function  h  = (1.0+l*0.5)h0  for
level l  in the  wavelet  pyramid produced both realistic
high-res textures and  average global  appearance  (top
right), but setting the gradient too high (e.g. h=(1+l)h0)
and the image appears noisy, rather than well textured
(bottom right).



increase  in  realism  in  addition  to  retaining  group
characteristics  such  as  age  and  gender.   Although  it  is
sometimes possible to identify some textural features from
individuals in the blends, the transitions between texture
components is not obvious and the end result looks like a
distinct individual of “typical” appearance. Figure 6 gives
further examples of the new prototypes.

 4.2 Experimental evaluation

In  order  to  test  the  new method  we conducted  a  web-
based experiment.  We used two experiments, in the first
subjects were asked to estimate the  age of the faces, and
in the second subjects were asked to rate the  realism of
the images produced.  Java applets were used to present
the images to  subjects  in  a  (pseudo)  randomised  order.
For realism subjects where asked to rate the faces on a 7

point scale from 0 (very unrealistic) to 6 (very realistic).
We compared the new method (MRF) with the WM and
spatial methods. Each subject was shown male and female
prototypes in the approximate age groups 8-12, 13-18, 25-
45 and over 45 years old created by each of the 3 methods
(spatial,  WM and  MRF),  plus  another  set  created  by a
variant on the method described here (results not shown). 

The  web-based  age-rating  experiment  had  over  500
responses.  As  with  all  web-based  experiments,  some
filtering of the data was required to  remove participants
who  did  not  complete  the  experiments  in  a  sensible
fashion e.g. by just clicking through after becoming bored.
Participant scores were removed from analysis when the
IP address was duplicated or where unreasonably young
ages were entered (e.g.  the  age rating was less  than 10
years for wavelet magnitude prototypes  for age bracket
greater than 13 years).  This left 488 participants. In order
to compare the age ratings we used the WM method as the
“ground truth” and compared the other methods with it.
This  method  has  previously  been  shown  to  produce
prototypes that are not perceived as significantly different
from the mean age of the set [TBP01].  

We calculated the mean and standard deviation for each
rated  image  across  all  participants.  There  was  a  high
degree of concordance of age estimates across participants
(Chronbach’s  Alpha  =  0.758).   We then  used  a  paired
samples t-test to compare the age differences, but neither
method was significantly different from the WM method
at  the  0.05  confidence  level  (MRF:  t7=1.53,  p=0.164,
Spatial: t7=1.8, p=0.102).   The spatial method tended to
produce images a little older than the WM method,  and
the MRF method a little younger (Figure 7). 

For the realism experiment we removed participant scores
from the analysis when the IP address was duplicated, if
they had  been  rejected  in  the  age  rating  experiment  or
when the standard deviation of the ratings was less than
1.0  and  when they  used  <=3  categories  of  the  realism
scale. This left 367 participants.  From these we calculated
the mean and standard deviations of the perceived realism
ratings  for  each prototype.  There  was a  high  degree  of

Figure  5: Comparison of the 3 different prototyping
methods. The images with the highest (left) and lowest
(right)  mean  rating  for  realism  from  each  set  are
shown. Top, the new method (MRF): ratings left 4.77
right 2.69. Centre, wavelet magnitude method  (WM):
ratings  left  4.48  right  2.69.  Bottom,  spatial  MRF
(spatial): ratings left 2.77 right 1.48. All on a 7 point
(0-6) scale.

Figure 6: Further examples of wavelet-MRF prototypes
of different groups of faces.



concordance of estimates across participants (Chronbach’s
Alpha = 0.849). The results of the perceptual study show
that  the  new  prototypes  do  indeed  show  a  significant
increase in realism (Figure 8).   The mean ratings were
spatial: 1.6, WM: 3.3 and MRF 4.0. We used a paired t-
test to compare the mean ratings for the 8 prototypes.  The
MRF method  was significantly  more realistic  than both
the  spatial  method  (t7=8.08,  p<0.0005)  and  the  WM
method (t7=2.84, p=0.025).

 4 Conclusions

We have described a new wavelet MRF based method for
prototyping facial images.  We have evaluated the results
using a perceptual study, and the results demonstrate that

the new method can produce significantly more realistic
prototypes  than  previous  methods.  The  new method  is
designed principally to aid psychology research, where the
ability to capture perceived facial attributes in prototypes
has allowed the design of more effective experiments into
facial perception.  It is hoped that this new method will
add to the range and effectiveness of these psychological
experiments.  In addition the improved representation of
texture may open up new possibilities, such as in medical
imaging and cosmetics research, for capturing the typical
appearance  of skin conditions. 
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