
EG UK Theory and Practice of Computer Graphics (2005)
L. Lever, M. McDerby (Editors)

Implementing FastMap on the GPU: Considerations on
General-Purpose Computation on Graphics Hardware

G. Reina and T.Ertl

Visualization and Interactive Systems Institute, University of Stuttgart

Abstract
In this paper we focus on the implications of implementing generic algorithms on graphics hardware. As an
example, we ported the dimensionality reduction algorithm FastMap to fragment programs and thus accelerated it
by orders of magnitude, allowing for interactive tweaking and evaluating of the algorithm parameters for datasets
of several hundred thousand points and tens of dimensions; even the animation of structural changes in relation
to parameters is possible. This allows to complement the algorithmic heuristic used by FastMap by explorative
results from human interaction. Such an approach can be considered a heuristic in itself, but has the advantage of
being based on visual feedback, therefore allowing for iterative improvement of the results. Thus we demonstrate
how to benefit from the high execution parallelism on commodity graphics hardware as an alternative to making
use of other, more costly, multiprocessing techniques. We discuss performance and bandwidth aspects as well as
accuracy problems since these results are of more general interest and can be applied to general processing on
graphics hardware as a whole.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

The recent years have seen a dramatic increase in available
data in all scientific areas. Automated experiments and large-
scale simulations provide a research base that has to be har-
nessed because human perception as well as available time
is limited. Such data sets often have the additional draw-
back of consisting of so many attributes (or dimensions) that
it is particularly hard to provide any kind of representation
beyond the straightforward spreadsheet. Practical examples
for such datasets are reaction maps, cancer screening data-
bases, or results from molecular dynamics simulations, to
name just a few. Several techniques for high-dimensional
visualization have been developed over the years, like the
classical parallel coordinates [Ins85], star glyphs [SFGF72],
or the more recent circle segments [AKK96] or recursive
pattern technique [KAK95]. Other approaches analyze the
high-dimensional structure of the data to produce a seman-
tically similar low-dimensional representation of it that can
be visualized and understood more easily. This can be ac-
complished by classical MDS [BG97], the FastMap [FL95]
algorithm we are employing, or by making use of clustering
techniques like BUBBLE [GRG∗99] or CSM [LC02]. Large

datasets imply large processing times when working with
them in any way, and we believe that one very important step
is to have the shortest time possible between first obtaining
a dataset and getting an impression of the overall structure
in such a dataset, concerning the distribution and similari-
ties in it. We show that it is possible to speed up this process
greatly by making use of current graphics hardware as co-
processor. We take advantage of this scenario to focus on the
implications when using the GPU in such circumstances as
well as providing a performance analysis to differentiate the
currently available GPUs and, above all, the bottlenecks that
come into play when ‘outsourcing’ CPU work to the graph-
ics card.
The rest of this paper is organized as follows: section 2 dis-
cusses the related work on multi-purpose GPU usage, sec-
tion 3 details our GPU-based implementation of the FastMap
algorithm. Section 4 shows the application we have imple-
mented, section 5 and 6 discuss the performance and ac-
curacy results in relation to the different graphics cards we
tested and section 7 concludes this document.

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

2. Related Work

Since the advent of flexibly programmable graphics cards
there has been great striving to make maximal use of the
always increasing capabilities of modern GPUs. Some ex-
amples are new approaches in volume rendering using ra-
dial basis functions [JWH∗04], the raytracing of scenes
[PBMH02] or the calculation of radiosity [CHL04]. Several
authors investigated geometry generation on the GPU, mak-
ing use of superbuffers to evaluate higher-order surfaces,
create vertices and render them directly on the graphics
card [MP03], [LH04]. Other publications suggest to gener-
ate implicit geometry using fragment programs and then use
a raycasting approach to render them. This minimizes stress
on the system bus, transmitting only single billboards or
point primitives to render geometrically complex objects like
ellipsoids [Gum03], [KE04] or application-oriented glyphs
[RE05]. Since the utilization of GPUs as co-processors for
algorithms that do not directly generate images is becom-
ing ever more wide-spread as well, a specific SIGGRAPH
workshop has been created to deal with the challenges that
arise [gpg].
The architecture of graphics cards is not yet as flexible as the
general-purpose CPU, so some limitations have to be worked
around before employing the graphics hardware for general
calculations. Different methods have been devised for stor-
ing complex data structures in textures, and workarounds
have been implemented for emulating program flow control,
for example using the z-test [KW03]. Recently support for
program flow control has been introduced with the so-called
Shader Model 3.0. Most implementations share the property
of making use of the fragment units even though also the
vertex units can be programmed. This is motivated by the
fact that the fragment processor has more parallel-working
VPUs (vector processing units) than the vertex processor,
usually about twice as many. Furthermore the instruction set
for fragment programs is more powerful and the access to
data (in form of textures) is much faster, even if not exclu-
sive anymore since Shader Model 3.0.
We have been confronted with large, high-dimensional
datasets for some time now, and have employed the FastMap
algorithm on different occasions, for example to allow for
fast previews of large datasets [RE04]. There are several
more sophisticated algorithms for dimensionality reduction,
like MDS and the many improvements thereof (for example
[MRC02], [MC04]). Even though the performance has been
improved significantly, there is still the drawback of higher
processing times, so for prompt overviews of large datasets
we use FastMap nonetheless. Since FastMap is heuristics-
based, we wanted to find out how the three-dimensional
structure of a dataset is affected when changing the para-
meters for the projection. To be able to comfortably, interac-
tively tweak those parameters, we first had to further reduce
the processing times enough to make experimenting less te-
dious.

3. The FastMap algorithm

The general concept of FastMap is that it projects high-
dimensional data into a lower-dimensional similarity space,
i.e. the resulting points are distributed on few dimensions
(for practical uses 2 or 3) such that their distance reflects
their similarity in the high-dimensional space. This algo-
rithm establishes that the target dimensions are axes which
connect so-called pivot points, which ideally should repre-
sent the most distant points in the high-dimensional space.
However, this is also the main flaw of the algorithm, since
no primary component analysis or the like is performed to
take into account the spatial distribution of the points, but for
the sake of execution time the points are heuristically chosen
based just on their distance. The error in inter-point distances
that results from the projection on one of these pivot-pivot
axes is compensated when the next coordinate is calculated
by projecting it onto the next axis, until there are as many
coordinates as are needed. An optimal choice of these points
is difficult and costly since a complete distance matrix of all
the processed points is O(n2) both in time and space. So the
heuristic works by randomly choosing a point and searching
for the farthest point in the dataset as opposite end of the
axis. This step is repeated a preset number of times alternat-
ing between the two end points of the axis and executed for
each of the desired target dimensions to obtain all of the re-
quired pivots.
The projection used by FastMap is quite straightforward. Af-
ter the pivot points have been chosen, equation 1 gives the
position of a point on an axis, where di, j represents the high-
dimensional distance between two points, a and b are the
pivot points for the particular axis and i is the point we want
to project.

xi =
da,i

2 +da,b
2 −db,i

2

2da,b
(1)

The high-dimensional distance can be of any metric de-
sired, for example the common euclidean distance, or any
fractional distance because of the better response to noisy
datasets [AHK01]. In our example we use the euclidean dis-
tance. For the target dimensions following the first one, the
distance is modified by the error of the previous projection:

d′
i, j

2
= di, j

2 − (xi − x j)
2 (2)

We want to obtain these values as quickly as possible af-
ter determining the pivots, but calculating a distance matrix
for all the combinations of pivots and points does not yield
a speedup since each of these distances is costly, but only
needed once. However we have the possibility to parallelize
this part of the algorithm, since the points do not influence
each other and we can store the pivots globally. We could
have used a multiprocessor machine or a cluster to speed
things up, but such hardware is not available widely and still
quite expensive. Therefore we made use of the massively
parallel fragment processing units available on commodity
graphics cards. These processors offer floating point preci-

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

sion in data storage and computation and are flexibly pro-
grammable. The restrictions that apply in this area (no geom-
etry can be generated in the vertex units, fragments cannot
be relocated) and the costly program flow control are not an
issue since we only want to use the GPU as a relatively cheap
floating-point coprocessor.

The GPU implementation

To execute FastMap on the GPU, we first prepare the piv-
ots on the CPU by using the heuristic described above. The
source data is then split into several floating point textures as
follows: all integer and floating-point attributes of the source
data are stored in groups of four in the red, green, blue and
alpha channel of textures, all on the same coordinate for one
single data point. Strings are mapped to unique IDs per at-
tribute (so if we have 5 string-type attributes in a dataset,
we get 5 distinct string lookup tables). This makes us save
memory since strings are usually categorical attributes and
thus repeated several times in one dataset. On the other hand
this makes string comparison much faster since we can de-
fine the difference between two strings as simple inequal-
ity, and for categorical values an editing distance would not
make sense anyway. The resulting IDs are also stored in tex-
ture color channels. If one looked at the resulting stack of
textures from above, all the attributes of one point would be
on the same line of sight (see figure 1), so we can access all
of the attributes by using a single texture coordinate.

G
R

B
A

.

.

.

.

.

.

.

.

.

.

.

.

pbuffer texture stack

fragment
program

Figure 1: Data as textures on the graphics card, one ‘col-
umn’ contains all attributes of one data point

Depending on the number of attributes and points in the
source data, the texture and stack size is varied, with differ-
ing impact on rendering performance (see section 5). Only
one texture stack is processed per rendering pass, yielding
one projected coordinate for texture_size2 points. This ren-
dering process is repeated until all input data has been re-
duced to lower dimensionality (resulting in d n

texture_size2 e it-
erations). The stack of textures is complemented by another
floating point texture, a pbuffer [pbu], as the rendering target,
with the same resolution as the texture stack. The xi calcu-
lated from the input stack is stored inside this pbuffer. If we

bind the pbuffer as texture, we can easily access the results
of a previous projection and can thus calculate the modified
distances d′. We calculate all result dimensions for a stack
consecutively, in order to keep the source data textures un-
touched for two additional passes (in our case of a 3D simi-
larity space).
To trigger the calculations, we render a single quad cover-
ing the whole viewport to obtain the texture coordinates for
processing every data point/pixel in the input texture stack.
The viewport has the same dimensions as the pbuffer. We
utilize an ARB_fragment_program that stores an xi as above
in the pbuffer, depending on the distance calculated from the
source data and the attribute values of the pivot points, which
are passed as program parameters. This is justified by the
fact that the pivot point could be in another texture stack and
thus would not be accessible. We could store the pivots at
a constant position in the input stack and lose just two data
points per iteration, but we can save 2∗ stack_height texture
lookups per result fragment if we store them as parameters;
the pivot points are constant for the whole stack, and thus
one rendering step, in any case. da,b and da,b

2 from equation
1 are also constant and therefore passed as parameters.
The fragment program basically consists of three blocks of
code: the floating point attributes are retrieved, subtracted
from the pivot attributes, squared and added up, yielding
a quadratic euclidean distance. String IDs are checked for
equality against the pivot values and added accordingly in a
subsequent block. The last block calculates xi. We can com-
pletely avoid using the square root operation since all the dis-
tances we calculated before are squared again in this block
(see equation 1). The necessary code is dynamically gener-
ated based on the dimensionality and dimension types of the
input file. We only need to generate the respective block per
texture; only the source texture unit and the program para-
meter containing the respective attributes of the pivots must
be set accordingly.
The fragment program for subsequent dimensions is gen-
erated in the same way and just needs two more parame-
ters (the latest projections of the pivots) and one more tex-
ture fetch for the latest projection of the point itself (from
the pbuffer of the preceding pass), along with another code
block for the calculation of d′ from d using these latest pro-
jections. After enough dimensions have been calculated (up
to four per pbuffer), we can read back the results to the main
memory and use them as a vertex array to display the re-
sulting low-dimensional representation of the data set. We
could also have used the result as a vertex buffer as in the
superbuffer specification, but only ATI cards support it and
practical tests by colleagues confirm that it does not work
very reliably.

4. Results

We tested our implementation with different excerpts from a
10D dataset of 2.3M points retrieved from a cancer screen-
ing database which we projected into 3D similarity space.

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

This dataset contains 8 numerical and 2 categorical alphanu-
merical attributes and quantizes the reaction of various can-
cer cells towards different substances in terms of cancer
growth inhibition. In Figure 2 the result from using the orig-
inal heuristic on a 1M point subset is shown in the appli-
cation we have implemented. The OpenGL window shows
the dataset in 3D similarity space with the pivots high-
lighted and colored according to the target dimension they
belong to (in RGB order). A short fragment program is used
to cool/warm-color-code the scatterplot depending on the z
depth of a point. Since unshaded points do not occlude each
other in a way that allows for satisfactory visual depth per-
ception, we used this approach to convey a better impression
of depth to the user. Intensity attenuation would also have
been an option, however the darkened points would be quite
difficult to perceive because of their small size. The para-
meter window allows the user to scroll through the different
pivot points in real time or even to animate one of the axes
with adjustable step size and delay between steps. Figure 2
shows some well-defined streaks with similar data, however
the result points all lie on a plane, so we use only two of the
available three dimensions.

Figure 2: Application user interface with OpenGL 3D scat-
terplot (right) and FastMap parameter window (left). Pivots
have been chosen using the original heuristic.

When tweaking the pivot points by hand in real time, other
cluster-like arrangements can be spotted. However we also
found that choosing pivots that are quite close on the result-
ing axis can yield results which are fanned out more thor-
oughly than when always using points that are as far from
each other as possible. Figure 3 shows such a hand-tweaked
result and suggests that three major clusters exist, the bottom
one being clearly composed of overlapping streaks, which
hints at several series of data with slowly varying attributes.
This does not mean that the original projection is faulty or

useless, but that we can spot different characteristics in one
dataset when making use of human interaction and exper-
imentation as an added heuristic to complement the auto-
mated one.

Figure 3: FastMap result with tweaked pivots. The result
points are much more widely spread in 3D.

5. Performance

To demonstrate that our approach is an improvement over
CPU-based FastMap, we have taken the timings of the im-
plementation for various datasets on an Intel Pentium4 run-
ning at 2,4Ghz and on a GeForce 6800GT (see figure 4).
The CPU-based FastMap also uses only 32bit floats in or-
der not to penalize its performance further by using doubles.
We used different excerpts from the cancer screening dataset
mentioned in section 4. The first subset is very small (26824
items) while the second consists of one million items. The
higher-dimensional datasets are just repetitions of the origi-
nal data to allow for simple investigation of the performance
variation when increasing texture reads per result point. One
can see that the GPU implementation clearly outperforms
the CPU variant by orders of magnitude, allowing for inter-
active adjustment of the pivot points. The projection times
stay below one second for source data sizes of up to two mil-
lion data points and 10 dimensions (since two color channels
are left in one of the source textures, we could get the same
performance for up to 12 dimensions).

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

0

2

4

6

8

10

12

14

16

26
82

4,
 1

0

26
82

4,
 2

0

26
82

4,
 3

0

26
82

4,
 4

0

10
00

00
0,

 1
0

10
00

00
0,

 2
0

10
00

00
0,

 3
0

10
00

00
0,

 4
0

datapoints, dimensionality

GeForce6800 GT, AGP 4X, i845 Chipset Pentium4 2.4Ghz, 1GB RAM, i845 Chipset

Figure 4: Total time in seconds for FastMap on CPU and
GPU with optimum texture size

We wanted to further investigate how the different parame-
ters of the implementation, like texture sizes, system bus
types and, last but not least, graphics chipsets, affect these
numbers. One would think that the optimal parameters for
executing such an algorithm in graphics hardware would be
the use of as few and as large textures as possible, to keep
management overhead at a minimum. The textures would be
created once and reused for every stack that has to be iter-
ated. By and large this is true, but the measurements we have
taken show where specific strengths lie for different GPUs
and some unexpected flaws that must be taken into consid-
eration when using them.
We chose OpenGL for the implementation of the GPU
FastMap in order to retain the option of easily integrating
it with our existing OpenGL-based solutions which could
benefit from the fast dimensionality reduction. This poses
a challenge when it comes to performance measurements
which go beyond simple FPS for final visualization. There-
fore we repeated our measurements many times and also
made sure that the GL pipeline was flushed after the timed
phases. The measurements were also taken with constantly
varying pivots so we could also visually verify the constantly
changing output to make sure the graphics drivers would
honor the glFinish() request. We can see in figure 5 that the
overhead for constantly replacing the contents of small tex-
ture stacks is much higher on nVidia chips than on the ATI
chips, so if we cannot use the whole graphics card memory
for FastMap, the approach becomes extremely slow. How-
ever with big textures the results are similar to the ATI X800
AGP. Another irregularity we discovered was extremely bad
readback performance on the PCIe X800 card with texture
sizes of 5122 and above, despite the acceptable results from
the AGP variant. Comparing the calculation of the 1M 10D
dataset, we found that moving from four stacks of 5122 tex-
tures to one stack of 10242 decreased the performance by

0

1

2

3

4

5

6

7

8

9

10

64
 *

3
* 1

28
²

16
 *

3
* 2

56
²

4
* 3

 *
51

2²

1
* 3

 *
10

24
²

64
 *

5
* 1

28
²

16
 *

5
* 2

56
²

4
* 5

 *
51

2²

1
* 5

 *
10

24
²

64
 *

8
* 1

28
²

16
 *

8
* 2

56
²

4
* 8

 *
51

2²

1
* 8

 *
10

24
²

64
 *

10
 *

12
8²

16
 *

10
 *

25
6²

4
* 1

0
* 5

12
²

1
* 1

0
* 1

02
4²

stacks * height * texture size

ATI X800 Pro AGP ATI X800 Pro PCIe
nVidia GeForce 6800 GT AGP nVidia GeForce 6800 GT PCIe

Figure 5: Total time in seconds for FastMap on different
GPUs with different tiling of the 1M dataset and increasing
dimensionality

four times, after the already irregularly small increase from
2562 (see also table 1). We also encountered a side-effect
on an ATI X800 Pro AGP, where the 20-dimensional dataset
with 1 million items distributed over 4 stacks of 5 5122-sized
textures produced a delay after each calculation, so the mea-
sured 623ms produced only 1 result frame per second. This
seems to be a driver bug, since for example 4 stacks of 8
5122-sized textures resulted in no such delay, and the same
executable with the same parameters did not cause a delay
on any other configuration. We cross-checked the readback

card 5122 10242

GeForce 6800GT AGP 750.47 751.31
GeForce 6800GT PCIe 818.92 829.37
ATI X800 Pro AGP 117.21 116.36
ATI X800 Pro PCIe 235.32 7.56
ATI 9700 Pro AGP 114.03 113.31

Table 1: Readback performance in MB/s for RGBA float
pbuffers of given size from a particular graphics card.

performance with an individual test, the results of which can
be seen in table 1. It is conspicuous that the readback per-
formance has not improved moving from ATI 9700 to X800
(for the AGP cards). The result for 5122 textures shows that
the native PCI Express interface on the X800 cards is an im-
provement over the AGP interface, however the cards can-
not catch up with the current nVidia chips (at least when
working with float formats). The lack of a significant per-
formance improvement on the GeForce when moving from
AGP to PCIe seems to be caused by the fact that the chip
does not have a native PCIe interface, but uses a transponder
chip instead.
An additional factor of the overall performance of the al-

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

gorithm is the execution speed of the code on the GPU. A
detailed analysis has been conducted in this regard [DE04],
however we wanted to find out the specific effects for our
case. In figure 6 we can see that current generation of ATI
chips has a big advantage over the nVidia cards. The cause
of this is two-fold: the ATI cards have a much higher core
clock and make use of only 24bit-floating-point VPUs (see
also section 6). We can also see that the ATI X800 scales
much better with increasing number of texture reads and
constant texture size than the GeForce 6800, but has a weak
spot when it comes to 5122 texture sizes. The ATI X800
PCIe could have the performance lead (if not the precision
lead) were it not for the much better readback performance
of the nVidia cards regardless of the system bus employed.
The CPU bus and chipset should also not be underestimated
for its performance impact. We compared a i845-based sys-
tem with 400Mhz FSB and AGP 4X to a i865-based system
with 800Mhz FSB and AGP 8X, using a GeForce 6800GT
in both cases. We measured a performance increase of over
200% instead of the optimistically anticipated 100% which
demonstrates that also different chipsets and the increased
FSB bandwidth have a significant performance impact.

0

10

20

30

40

50

60

70

80

90

100

3
* 1

28
²

3
* 2

56
²

3
* 5

12
²

3
* 1

02
4²

5
* 1

28
²

5
* 2

56
²

5
* 5

12
²

5
* 1

02
4²

8
* 1

28
²

8
* 2

56
²

8
* 5

12
²

8
* 1

02
4²

10
 *

12
8²

10
 *

25
6²

10
 *

51
2²

10
 *

10
24

²

stack height * texture size

ATI X800 Pro AGP ATI X800 Pro PCIe nVidia GeForce 6800 GT AGP nVidia GeForce 6800 GT PCIe

Figure 6: Fragment program execution time in milliseconds
per stack with different stack sizes and texture sizes

6. Precision

If the GPU is used to replace the CPU, a major issue that
arises is the computational accuracy. ATI chips currently
offer only 24 bits for computational accuracy, even though
source and result data is stored as 32bit IEEE floats. nVidia
chips allow the programmer to select between half (16bit)
and full (32bit) precision floats for computation, while stor-
age relies on 32bit IEEE floats as well. One advantage of
the CPU over the GPU is the availability of higher-accuracy
number formats and the possibility of at least using these for
calculation, even if the results are then stored only as floats

Operations ATI X800/9700 nVidia GF6800
x 0.000003636 0
x∗ x 0.013201884 0.000023515
x 1

x+1 0.000016217 0.000000005
(x + x)(x + x) 0.052807537 0.000094060

Table 2: Computational accuracy (average relative error)
for selected operations on different GPUs.

(if we want to save memory, but want to reduce the accumu-
lating error). We investigated the effects the precision has on
the relative error of some example operations. The results
can be seen in table 2. These values are obtained as follows:
A small test program uploads a RGBA float texture to the
GPU, activates a fragment program and draws a viewport-
filling quad into a pbuffer. Then the pbuffer is read back and
compared to CPU-based results calculated with double ac-
curacy which represent the ideal, if not correct, result. This
obviously is a worst-case scenario since also on the CPU
normal floats would be less precise. The texture contains
5122 ∗ 4 floats with the value 1

512 (index + 1), that is, values
in the range [1

512 ,2048]. As a first test we simply passed the
values from the texture to the pbuffer (x in the table). Since
the data has to pass through the VPU, we already get an error
on ATI chips from this. The other tests execute some simple
calculations. We chose a different denominator from x in the
reciprocal multiplication to avoid that the operation simply
be discarded by optimization in the drivers. We can see that
the 24bit VPU accumulates a large error quickly, however
the implications only become clear when we consider some
applications. If we calculate a position for displaying data
(as is also the case with FastMap) and normalize each di-
mension to allow us to fill a unit cube, and we display this
cube at screen size (1200 pixels in height), this would re-
sult in an average vertical positional error of 60 pixels on an
ATI card when considering the 5% relative error ((2x)2 in ta-
ble 2). On an nVidia card this error would amount to barely
1
10 of a pixel, which is more than sufficient. As these cards
are originally intended for delivering good performance and
visual effects for computer games, this can be considered
adequate, but for general processing on graphics cards it is a
factor that must be kept in mind (especially when using ATI
cards). We also measured the error of the FastMap algorithm
and compared it to FastMap on the CPU (using only floats as
in the performance comparison). For the 1M dataset the ATI
card produced an average relative error of 0.000294823, the
nVidia card one of 0.000056497, so the discrepancy is well
below one pixel in both cases if the same assumptions as
above apply.

7. Conclusion and Future Work

We have demonstrated how graphics hardware can be used to
improve the execution times of FastMap, opening up the pos-
sibility of interactively changing the parameters and observ-

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

ing the structural changes in the resulting low-dimensional
data. We also have discussed the more generally applicable
performance and accuracy constraints that come into play
when using GPUs as co-processors, pointing out some pit-
falls to keep in mind when considering to move an algo-
rithm from the CPU to the GPU. From this example we
can see that if we keep these limitations in mind, a modern
GPU can provide a very cost-effective way to execute mas-
sively parallel algorithms. With the availability of high-level
languages like GLSL or Cg, or specialized frameworks like
Brook [Buc03], [BFH∗04], the porting of an algorithm has
become quite easy if one finds an efficient way to map the
data structures onto ‘flat’ arrays (textures).
For the future we would like to give a more thorough analy-
sis of the factors that influence the resulting accuracy of
GPU calculations, like inter-operation and value-range de-
pendent effects. We would also like to rewrite the algorithm
for Brook for easier comparison of Direct3D and OpenGL
performance. Additionally we can now use our implemen-
tation to investigate different heuristics for choosing pivot
points as well as manually optimize the low-dimensional
projections produced by FastMap by using hand-selected
pivots.

Acknowledgements

We would like to thank Thomas Klein for his additional
bandwidth benchmarking results and fruitful discussion.

References

[AHK01] AGGARWAL C. C., HINNEBURG A., KEIM

D. A.: On the surprising behavior of distance metrics
in high dimensional space. Lecture Notes in Computer
Science 1973 (2001), 420.

[AKK96] ANKERST M., KEIM D. A., KRIEGEL H.-P.:
Circle segments: A technique for visually exploring large
multidimensional data sets. In Proceedings Visualization
’96 (1996), IEEE Computer Society.

[BFH∗04] BUCK I., FOLEY T., HORN D., SUGERMAN

J., FATAHALIAN K., HOUSTON M., HANRAHAN P.:
Brook for GPUs: Stream Computing on Graphics Hard-
ware. In SIGGRAPH 2004 (2004).

[BG97] BORG I., GROENEN P.: Modern Multidimen-
sional Scaling. Springer Verlag, New York, 1997.

[Buc03] BUCK I.: Data parallel computing on graphics
hardware. In Graphics Hardware ’03 (2003).

[CHL04] COOMBE G., HARRIS M. J., LASTRA A.: Ra-
diosity on graphics hardware. In Proceedings of Graphics
Interface ’04 (2004).

[DE04] DIEPSTRATEN J., EISSELE M.: In-Depth Perfor-
mance Analyses of DirectX9 Shading Hardware concern-
ing Pixel Shader and Texture Performance. In Shader X3
(2004), Wolfgang Engel, (Ed.), Charles River Media.

[FL95] FALOUTSOS C., LIN K.-I.: FastMap: A fast algo-
rithm for indexing, data-mining and visualization of tra-
ditional and multimedia datasets. In Proceedings of the
1995 ACM SIGMOD International Conference on Man-
agement of Data (1995), pp. 163–174.

[gpg] SIGGRAPH 2004 GPGPU Workshop
http://www.gpgpu.org/s2004/.

[GRG∗99] GANTI V., RAMAKRISHNAN R., GEHRKE J.,
POWELL A. L., FRENCH J. C.: Clustering large datasets
in arbitrary metric spaces. In ICDE (1999), pp. 502–511.

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids
with depth correction. In VMV (2003), pp. 245–252.

[Ins85] INSELBERG A.: The plane with parallel coordi-
nates. The Visual Computer, 1 (1985), 69–91.

[JWH∗04] JANG Y., WEILER M., HOPF M., HUANG J.,
EBERT D. S., GAITHER K. P., ERTL T.: Interactively
Visualizing Procedurally Encoded Scalar Fields. In Pro-
ceedings of EG/IEEE TCVG Symposium on Visualization
VisSym ’04 (2004), Deussen O., Hansen C., Keim D.„
Saupe D., (Eds.).

[KAK95] KEIM D. A., ANKERST M., KRIEGEL H.-P.:
Recursive pattern: A technique for visualizing very large
amounts of data. In Proceedings VIS ’95 (1995), IEEE
Computer Society, p. 279.

[KE04] KLEIN T., ERTL T.: Illustrating Magnetic Field
Lines using a Discrete Particle Model. In Workshop on
Vision, Modelling, and Visualization VMV ’04 (2004).

[KW03] KRUEGER J., WESTERMANN R.: Acceleration
techniques for gpu-based volume rendering. In Proceed-
ings IEEE Visualization 2003 (2003).

[LC02] LIN C.-R., CHEN M.-S.: A robust and efficient
clustering algorithm based on cohesion self-merging. In
KDD ’02: Proceedings of the eighth ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining (2002), ACM Press, pp. 582–587.

[LH04] LACZ P., HART J. C.: Procedural Geometric Syn-
thesis on the GPU. In Proceedings of the GP2 Workshop
(2004).

[MC04] MORRISON A., CHALMERS M.: A pivot-based
routine for improved parent-finding in hybrid mds. Infor-
mation Visualization 3, 2 (2004), 109–122.

[MP03] MĚCH R., PRUSINKIEWICZ P.: Generating sub-
division curves with L-systems on a GPU. In GRAPH
’03: Proceedings of the SIGGRAPH 2003 conference on
Sketches & applications (2003), ACM Press, pp. 1–1.

[MRC02] MORRISON A., ROSS G., CHALMERS M.: A
hybrid layout algorithm for sub-quadratic multidimen-
sional scaling. In IEEE Information Visualization ’02
(2002), pp. 152–158.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,

c© The Eurographics Association 2005.

G. Reina & T.Ertl / Implementing FastMap on the GPU: Considerations on General-Purpose Computation on Graphics Hardware

HANRAHAN P.: Ray tracing on programmable graph-
ics hardware. ACM Transactions on Graphics 21, 3 (July
2002), 703–712. ISSN 0730-0301 (Proceedings of ACM
SIGGRAPH 2002).

[pbu] OpenGL ARB pbuffer specification,
http://oss.sgi.com/projects/ogl-sample/
registry/ARB/wgl_pbuffer.txt.

[RE04] REINA G., ERTL T.: Volume visualization and visual
queries for large high-dimensional datasets. In VisSym (2004),
pp. 255–260.

[RE05] REINA G., ERTL T.: Hardware-Accelerated Glyphs for
Mono- and Dipoles in Molecular Dynamics Visualization. In Eu-
roVis ’05 (2005).

[SFGF72] SIEGEL J., FARRELL E., GOLDWYN R., FRIEDMAN

H.: The surgical implication of physiologic patterns in myocar-
dial infarction shock. Surgery 72 (1972), 126–141.

c© The Eurographics Association 2005.

