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Abstract

“AA Patterns” is a recently discovered kind of algorithmic art in the form of pixel patterns; where each pixel in
a 2D bitmap is set or unset according to a simple test applied to its coordinates pair. In spite of their iteration-
free algorithm, AA Patterns exhibit signs which suggest some relation to fractals. This paper investigates this
relationship, and reveals a new fractal which comes from an iteration-free process.

Categories and Subject Descriptors (according to ACM CCS): 1.3.0 [Computer Graphics]: General—

1. Introduction

“AA Patterns” refer to a recently developed kind of algo-
rithmic art, in which a simple affine transformation is em-
ployed to generate pixel patterns exhibiting some symme-
tries [Ahm11c], like those shown in Figure 1. For every dis-
tinct real number o between 1 and 2, an AA Pattern, AA(ov),
is defined as the set of integer points (X,Y) which do not
satisfy the equation
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for any integer pair (x,y). Different algorithms were devel-
oped in [Ahm11c] to generate and color AA Patterns, and
many of their properties were discussed in [Ahm11a] and
[Ahm11b].

As apparent in Figure 1, the constituent points of AA Pat-
terns group in ‘clusters’ which have gradually increas-

(a) ()
Figure 1: Example AA Patterns.
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ing levels of complexity, and they exhibit a form of self-
similarity between these cluster levels. Self-similarity is a
cornerstone of fractals (see [Man83]), which suggests some
relationship between AA Patterns and fractals. On the other
hand, AA Patterns miss another common characteristic of
fractals, which is iteration. Indeed, generating AA Patterns
is an iteration-free process which can be optimized for ex-
tremely fast execution. Thus, if the exact relationship be-
tween AA Patterns and fractals is revealed, then that might
help in developing iteration-free fractal generating algo-
rithms controlled by real parameters.

2. Fractal properties of AA Patterns

According to Falconer [KenO3], a typical fractal set (i)
has fine structure (detail on arbitrarily small scales), (ii) is
too irregular to be described in traditional geometrical lan-
guage, both locally and globally, (iii) has some form of self-
similarity, perhaps approximate or statistical, (iv) has a ‘frac-
tal dimension’ greater than its topological dimension, and (v)
is defined in a very simple way, perhaps recursively.

In the light of these properties of fractals let us highlight
some properties of AA Patterns. In doing so we are by no
means trying to prove that AA Patterns are fractals; rather,
we are trying to show signs of a possible relationship be-
tween the two. Indeed, AA Patterns are defined in a simple
way, yet they are too irregular to be described in traditional
geometrical language.

The continued fraction expansion (CF) of the parameter
u:[];m7(x17a27a37"'] (2)

plays an analogous role to iteration in fractals. It was demon-
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Figure 2: Level-2 clusters of (a) AA([1;1,2,2,3,2]) are dis-
tributed in a similar manner to points in (b) AA([1;2,3,2)).
Notice the partial similarity in continued fractions.

strated in [Ahm11b] that each one or two additional entries
o; add new clusters in AA(ct) at a higher level of complex-
ity; the same way that each additional iteration adds detail to,
say, Koch’s curve. Another way to state it is that truncating
the CF at a certain entry limits the pattern to the correspond-
ing level of detail; and the truncated pattern resembles the
original up to that level.

Proceeding with our analogy, we can think of patterns
with irrational parameters, infinite entries in CF, and infinite
levels of detail, as the original AA Patterns; and ones with
rational parameters (k entries in CF) as approximations only;
the same way that for a fractal set F', “‘pictures of F’ tend
to be pictures of one of the £y, which are a good approxima-
tion to F when k is reasonably large” [Ken03]. Note, how-
ever, that whereas details in fractals usually appear at smaller
scales, details in AA Patterns appear at larger scales, as we
zoom out.

Even though AA Patterns are not defined recursively, they
posses recursive structures. In Figure 1, for example, each
cluster looks as if it was recursively synthesized from parts
of smaller clusters; and each cluster recursively houses, and
is recursively surrounded by, a set of smaller clusters.

AA Patterns are self-similar in the sense that the set of
clusters at each level of complexity is distributed in a (visu-
ally) similar form to an AA Pattern; as illustrated in Figure 2.
For some parameters with periodic CF (see [Ahm11b]) the
distribution of clusters resembles the pattern itself, manifest-
ing self-similarity, as illustrated in Figure 3. We might think
of these as ‘scaling’ AA Patterns.

We should not leave this section without having a look at
the color maps used to color AA Patterns, like the two shown
in Figure 4. More about these color maps and how they are
constructed and used can be found in [Ahm11c]. What is
relevant here is their fractal-like shape. At first glance they
might give the impression of a variant of Sierpinski carpet,
where instead of removing squares in each iteration they are
just painted in a different color.

() (b)

Figure 3: Scaling self-similarity of AA (\/§) illustrated by
zooming at (a) level-3 and (b) level-4. Notice how each clus-
ter in (a) is replaced by a higher-level cluster in (b). Colors
of the second plot were shifted so as to highlight similarity.
Plot (a)is 112 x 112, and plot (b) is 418 x 418; and the scale
between the plots ~ 2 + V3.
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Figure 4: Color maps used to color (a) level-3 and (b) level-
4 approximations of AA(\/3) shown in Figure 3. Besides the
apparent similarity between the two maps, map (a) is identi-
cal to 12 regions in map (b).

3. Analysis of algorithms

Having seen some fractal symptoms in AA Patterns, we will
try to analyze the algorithms that plot them to see how these
could generate a fractal, if any. As pointed out in [Ahm11a],
the value of m in (2) affects only the dispersion of points, but
not the general shape of the pattern, so we can safely focus
our analysis on the case of

m=1. 3)

Under this constraint we revoke two important sub-
parameters from [Ahm1Ic]:

t=9-13 @)
r=4%t-1=1-%, )
r< p<t<i (6)

The original plotting algorithm [Ahm11c], which follows
directly from (1), plots the complement set of AA Patterns,
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Algorithm 1 Plotting a transformed version of AA Patterns.
Adapted from [Ahm11c].

For all integer points (x, y)
dX = frac ((alphaxx — y)/2)
dY = frac ((alphaxy + x)/2)
if (dX < t) and (dy < t)

set (x, y)

Algorithm 2 Splitting Algorithm 1 into two passes.

For all integer values of y
For all integer values of x
dX = frac ((alphaxx — y)/2)
if (dX < t)
set (x, y) in plotl
For all integer values of x
For all integer values of y
dY = frac ((alphaxy + x)/2)
if (dY < t)
set (x, y) in plot2
For all integer points (x, y)
if (x, y) is set in plotl and plot2
set (x, y) in final plot

which hardly helps here. We skip forward and look at Algo-
rithm 1, which was developed in [Ahm11c] to plot a trans-
formed version of AA Patterns. The function “frac” extracts
the fractional part of its argument:

frac(x) =x— |x] @)

We start our inspection by splitting the joint condition into
two separate conditions, effectively turning the plotting pro-
cess into a two-pass setup, as shown in Algorithm 2. The
first-pass plot can be decoupled further by distributing the
fraction extraction over addition:

dX = frac (frac(ow/2) — frac(y/2)), (8)

which is equivalent to
dX = frac (frac(%x) + %(y%Z)) , )

where % means modulo division. Thus, as far as dX is con-
cerned, only y%?2 is relevant, rather than the actual value of
y. We conclude that the first plot is simply a vertical tiling
of the same pair of rows. Similarly, the second plot is a hor-
izontal tiling of a pair of columns. This explains the role of
the % in Equation (1).

Let us zoom further into (9) to understand the structure of
this pair of rows. First, notice that for the same value of x
there is always a spacing of % between the value of dX in
even and odd rows. Now since ¢ is always less than %, we
conclude that for any x, if a point is set in the even row, then
it is unset in the odd row, and if it is set in the odd row, then it

(© The Eurographics Association 2012.

(b)
Figure 5: (a) First-pass plot of (b) AA(58/31).

is unset in the even row: it can not be set in both rows; though
it can be unset in both rows, as we will see in a moment.

Next, notice that as we move along the x-axis, we incre-
ment by % to get consecutive values of dX. As long as only
the fractional part is concerned, we are effectively decre-
menting dX by r with each step along the x-axis, as implied
by (5).

Starting in the even row with some dX in the range

t—r<dX <t,

we will have consecutive points set, with the “pen down” all
the way till dX becomes less than r. This marks a dash in
this row, and remember that the other (odd) row will remain
unset during this interval.

The subsequent value of dX in the even row will cross the
integer boundary and land somewhere within a distance of r
below 1. That range is larger than ¢, so the pen will be up in
the even row. In the odd row dX will be within a distance of
r below %, which is still larger than ¢, so the pen will also be
up. Thus, we have an unset point in both rows, which turns
into an unset column in the first-pass plot.

Moving on along the x-axis, the subsequent value of dX
will fall below ¢ in the odd row, starting a dash in this row;
and the process continues, with the even/odd roles swapped
each time dX crosses the integer boundary.

The first-pass plot is illustrated in Figure 5. It is composed
of a stack of dashes in the even-indexed rows, a one-pixel-
thick gap, a stack of dashes in the odd-indexed rows, a one-
pixel-thick gap, and so on. The plot appears like a vertical
tiling of horizontally-running dashed lines, offset in such a
way that dashes in one row are next to gaps in the adjacent
rows. Dashes are one pixel shorter than gaps on each end, so
that dashes in adjacent rows do not touch. These gap-pixels
create vertically-running lines of ‘voids’ interspersed on the
horizontally-running lines of dashes.

Another way to look at it is as columns of horizontal
dashes at each second row. Adjacent columns are horizon-
tally spaced by a one-pixel-thick void, and are vertically off-
set by one pixel, so that dashes of one column align with
gaps in the adjacent two columns.

The second-pass plot is essentially a 90 degrees rotation
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Figure 6: “Urea”, the first synthesized AA Pattern. This pat-
tern was not generated by Algorithm 1; it was generated by
the superposition of two plots of vertically- and horizontally-
running dashes of arbitrarily selected lengths and distribu-

tions.

Figure 7: Superposition of dashes.

>

of the first-pass plot, composed of horizontally-running lines
of voids interspersed on vertically-running lines of dashes.
Or, seen from another perspective, it is composed of rows of
vertical dashes in each-second column, with one-pixel-thick
voids between rows.

4. Superposition

The two plots are combined with an ‘and’ operation, so that
a pixel is set if and only if it is set in both plots. As illus-
trated in Figure 6, any such superposition of two plots like
those described in Section 3 above will generate a pattern
similar to AA Patterns, even if the plots were not coming
from Algorithm 1.

When a column of horizontal dashes crosses a row of ver-
tical dashes, the result is a grid of points separated horizon-
tally and vertically by one pixel, as shown in Figure 7. They
are these grids that constitute the general distribution of pix-
els in AA Patterns.

Notice that the lines of voids in one of the constituent plots
run in the same direction as the lines of dashes in the other
plot, so each void line will completely erase a dashed line.
Erasing gaps in the dashed line makes no change, but erasing
dashes has an interesting effect: dashes have adjacent gaps
in both sides, so when a dash is erased the result is a three-
pixel-thick gap in place of the erased dash. Thus, lines of
voids will be replaced by intermittent lines of ‘bold’ gaps, as
illustrated in Figure 8.

This U]
void NN
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to generate Ng
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Figure 8: How lines of voids in one plot interact with lines
of dashes in the other plot. Lines of voids were ignored in
the middle plot for sake of clarity.

At each intersection of the void lines in the constituent
plots, there is exactly one horizontal bold gap running either
to the left or to the right of the intersection, depending on
the location of the erased dash, which in turn depends on
whether the index of the erased dashed line is even or odd.
Similarly, at each intersection there is exactly one vertical
bold gap running either up or down. Thus, whether the in-
dex of a horizontal or vertical void is even or odd, decides
between two alternatives for the generated intermittent line
of bold gaps.

How is that index defined, then? Well, the distance be-
tween consecutive void lines is the length of the dash be-
tween them, which is either |¢/r|, or |¢/r] + 1, depending
on the value of dX at the beginning of the dash. Inevitably,
one of these lengths is even and the other is odd. When the
length of the dash is odd, the index of the following void line
is the same as that of the preceding one in an even/odd sense;
and the bold gaps will be aligned on these lines. When the
dash length is even, the indexes of the two void lines are dif-
ferent: one is even and the other is odd; and the bold gaps
will be offset.

5. AA Fractal

They are these intermittent lines of bold gaps that make
the visible outlines of AA Patterns, inside which grids of
the constituent points of the pattern are laid. Let us make a
closeup of these outlines, abstracting them as dashed lines.
There are only two possibilities for each dashed line, which
strongly suggests a binary encoding, as we will use in our
subsequent diagrams.

We will look at different configurations with the help
of diagrams in Figure 9. Diagram (a) shows the simplest
possible setup, in which all vertical and horizontal lines
are aligned. This all-zeros configuration creates a matrix of
small square ‘islands’, each outlined by a single dash on each
side. (b) Shows the effect of toggling a single horizontal line:
vertical dashes link dashes in the toggled line to dashes in
an adjacent horizontal line, to form a first-order horizontal
‘chain’; we will see higher orders soon. In (c) we toggle a
single vertical line to make a first-order vertical chain. The
two chains break at their point of intersection, and cross-link
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Figure 9: Interaction of horizontal and vertical dashed
lines.

to make two bent chains. In this specific setup, the lower ver-
tical chain is linked to the rightmost horizontal chain, and the
upper to the leftmost.

In (d) we skip four vertical lines to the right, and tog-
gle the fifth to create another vertical chain, which breaks
on intersecting the horizontal chain, this time cross-linking
lower-left and upper-right. At this point we have a ‘penin-
sula’ bounded from left, top, and right sides. (e) Toggling a
second horizontal line, five steps below the previously tog-
gled one, turns the peninsula into an island bounded by first-
order chains. This island is larger that those in (a), and it
houses a small island inside. (g) shows formation of a level-3
island in AA(+/3) (the green cluster in Figure 1-(a)). (h) and
(1), respectively, show level 4 and 5 islands from the same
pattern, scaled to the same size, with inner islands removed
to avoid distraction. Each island has a square ‘mainland’ and
many peninsula which closely resemble the smaller-sized is-
lands (along with their peninsulas).

If in (e) we were to toggle the fourth line instead of the
fifth, then the vertical chains would have linked the new hor-
izontal chain to the previous one to create a second-order
chain, as shown in (f). Second-order chains, in turn, can be
linked into higher order chains. Those chains are self-similar
in the sense that they all resemble the first-order chain, but
instead of dashes they have lower order chains as their links.
Note that chains can vary in number of links.

To what extent can the described (highest-order) chains
and (largest) islands be called fractals; comparing them to
Koch curve and Koch island, for example? Well, in many as-
pects AA Patterns have an opposite sense to fractals; though
they are, to some extent, equivalent. For example, elements
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in Koch curve are scaled down while end points are fixed;
whereas elements in AA chains are fixed while end points
move apart. We can see the mainland of a Koch island be-
cause it has a finite area, but we can not see its coastline
because it has infinitely fine detail; in contrast, we can not
see the mainland of an infinitely large AA island, but we can
see its coastline.

6. Conclusion

In this paper we investigated the fractal behaviour exhibited
by AA Patterns. Our investigation revealed a form which we
called “AA Fractal”. It comes from the interaction of hori-
zontal and vertical dashed lines, which cross in such a way
that at each intersection there are exactly one horizontal and
one vertical dashes.

The results we have found, and the way we arrived there,
pose many questions, and open many doors for work to fol-
low this paper. For example, what are the different proper-
ties and fractal measures of this AA Fractal? How do these
measures, if any, relate to the pattern parameter? The param-
eter o encapsulates the recursive/iterative logic to generate
AA Patterns; can the logic of different kinds of fractals be
encapsulated similarly in real parameters? How can we ex-
plain the fractal-like shape of the coloring maps of AA Pat-
terns?

At the application level, an important contribution of this
paper is the two-plot decomposition of AA Patterns. This
opens the door for synthesizing patterns with higher level of
control over details. Another hint is the binary encoding of
the outlines, which might suggest applications in visualiza-
tion. Applications developed by the author will be available
athttp://aapatterns.abdallagafar.com
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