EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Efficient Image Blur in Web-Based Applications

M. Kraus

Department of Architecture, Design, and Media Technology, Aalborg University, Denmark

Abstract

Scripting languages require the use of high-level library functions to implement efficient image processing; thus,
real-time image blur in web-based applications is a challenging task unless specific library functions are available
for this purpose. We present a pyramid blur algorithm, which can be implemented using a subimage copy function,
and evaluate its performance with various web browsers in comparison to an infinite impulse response filter.
While this pyramid algorithm was first proposed for GPU-based image processing, its applicability to web-based
applications indicates that some GPU techniques are of more general interest than previously assumed.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation:

Bitmap and framebuftfer operations

1. Introduction

Efficient image blur is of increasing interest for many ap-
plications. For example, graphical user interfaces employ it
to direct the user’s attention to modal dialogs while depth-
of-field effects enhance the immersion in games and virtual
reality environments. Efficient image blur is also one of the
best researched visual effects. In fact, the theory of infinite
impulse response (IIR) filters provides an algorithm of opti-
mal time complexity [YvV95].

However, IIR filters are often not the most efficient
method for image blurring. In web-based applications, for
example, the limited performance of interpreted scripting
languages requires the use of high-level library functions
for efficient image processing. Another example are GPUs
(graphical processing units) because the massive parallelism
of their architecture is not well exploited by IIR filters. An
interesting consequence is that algorithms specifically de-
signed for GPUs may perform better than IIR filters in web-
based applications.

In this work, we adapt a GPU-based pyramid algorithm
for efficient image blur to the specific requirements of a pop-
ular framework for web-based applications, namely HTML5
[HH10] and JavaScript/ECMAScript [ECM09]. On GPUs,
this pyramid algorithm was made possible by the render-
to-texture functionality. Similarly, the possibility to copy

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/009-016

subimages between HTMLS canvas elements [HHSGO09] al-
lows us to implement the algorithm efficiently in JavaScript.

The rest of this paper is organized as follows. Section 2
discusses previous work and introduces the basic pyramid al-
gorithm for image blurring. Section 3 presents three different
variants of the analysis phase of the pyramid blur algorithm
while Section 4 discusses three variants of the synthesis
phase. Section 5 presents results and Section 6 shows some
potential applications of image blur in computer graphics.
Conclusions are discussed in Section 7.

2. Previous Work

Blur filters have many applications in computer graphics;
some examples—such as depth-of-field rendering and soft
shadows—are illustrated in Section 6. In some cases, how-
ever, it is still very difficult to obtain visually satisfac-
tory results in real time—even with GPU-based algorithms
[Dem04]. The problem of efficient blurring is even more se-
vere for web-based applications in JavaScript unless blur fil-
ters are offered by the web browser [Mic10].

JavaScript implementations of blur filters show limited
performance and are therefore not very common. One pub-
licly available implementation [Nic10] implements a sepa-
rable two-dimensional Gaussian blur filter by two succes-
sive one-dimensional convolutions with a truncated Gaus-
sian kernel. The time complexity of this approach is linear

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/009-016

10 M. Kraus / Efficient Image Blur in Web-Based Applications

analysis synthesis
0 0
0 0
level Gy
1 ’ ! 1 ° 1
1/16xG1 (0,1) § p G11,1x3/16
0 level G| 0 \
A G140 316xG1 00 & X ? /Gl 10)x9/16
3 3
2 2
1 level G, 1
0 HdxGy (21 GyGx1a 0 0 Gg 2D
1/4><lGo @20 Go 3,0)x1/4 0 |
2 3 2 3

X

Figure 1: Basic structure of the pyramid blur methods: bottom-up analysis (left) followed by a top-down synthesis (right) of
image data. The analysis operation for G1(1,0) averages only four pixels and is therefore often too narrow to avoid artifacts.
The synthesis filter applied to compute Gy(2,1) results in a biquadratic B-spline filter. The gray dots represent the coordinates

of the corresponding single bilinear texture lookups.

in the width of the kernel; thus, this approach is not suitable
for strong blur effects. A more efficient algorithm published
by Young et al. [YVV95,vVYV98] approximates Gaussian
blur filters by infinite impulse response (IIR) filters. This al-
gorithm is linear in the number of output pixels; thus, it is of
optimal time complexity.

However, IIR filters are less relevant in GPU-based ap-
proaches since the required sequential processing does not
match well to the parallel architecture of GPUs [Gre05]. The
most common GPU-based approach to blurring is a combi-
nation of downsampling and upsampling of images (see for
example the work of Hammon [EHO7]). In particular, the in-
terpolation of images of coarse mipmap levels as described
by Demers [Dem04] is a common technique, which resem-
bles a pyramid algorithm [Bur81]. Pyramid algorithms are of
optimal linear time complexity in the number of processed
pixels and are well suited for GPUs that support rendering to
textures as shown by Strengert et al. [SKE06].

Figure 1 (reproduced from [SKEO06]) illustrates a basic
GPU-based pyramid blur algorithm with a 2 X 2 analysis
filter (which can be implemented by an appropriate bilin-
ear texture lookup) and a biquadratic B-spline synthesis fil-
ter (which can also be implemented by a blinear texture
lookup with appropriate texture coordinates). As discussed
by Kraus [Kra09], the staircase artifacts of this approach can
be significantly reduced by 4 x 4 analysis filters. The blur
strength of the original approach is varied in discrete steps
by performing the synthesis and analysis only on a limited

number of levels (see Figure 7). An extension to continuous
blur strength was presented by Kraus [Kra09].

In this work, the pyramid blur algorithm published by
Strengert et al. [SKE06] is adapted to web-based applica-
tions using HTMLS [HH10] and JavaScript/ECMAScript
[ECMO09], in particular the drawImage method of the
CanvasRenderingContext2D [HHSGO09]. Since some
of the details of its specification are relevant for the
implementation of our proposed algorithm, we sum-
marize it here: The drawImage method may be in-
voked as “drawImage (image, sx, sy, sw, sh,
dx, dy, dw, dh)” where the “source rectangle is the
rectangle whose corners are the four points (sx, sy),

(sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).
And the “destination rectangle is the rectangle whose
corners are the four points (dx, dy), (dx+dw, dy),

(dx+dw, dy+dh), (dx, dy+dh).” Furthermore, the
specification states: “ When drawImage () is invoked, the
region of the image specified by the source rectangle must
be painted on the region of the canvas specified by the des-
tination rectangle, after applying the current transformation
matrix to the points of the destination rectangle.”

HTMLS5 [HH10] and JavaScript/ECMAScript [ECMO09]
have been implemented in popular web browsers such as
Safari (we refer to version 4.0.5 on Windows XP), Chrome
(version 4.1.249.1064 on Windows XP), and Firefox (ver-
sion 3.6.3 on Windows XP). Furthermore, Internet Explorer
9 will support HTMLS to a wider extent than previous ver-
sions [Hac10]. The availability of HTMLS and JavaScript

(© The Eurographics Association 2010.

M. Kraus / Efficient Image Blur in Web-Based Applications

(a)

Figure 2: Minification: (a) detail (128 x 128 plxels) of the Lena image and mmtﬁcatlons to 16 x 16 plxels using (b) Safari,

(c) Chrome, and (d) Firefox.

(a) (b) (© (@

Figure 3: Analysis: (a) basic analysis (see Section 3.2) using Safari, and a wider analysis filter (see Section 3.3) using (b) Safari,

(c) Chrome, and (d) Firefox.

across browsers and operating systems (including operating
systems for mobile devices such as iPhone OS and Android)
makes it an important programming framework for interac-
tive graphical applications of many kinds. Thus, it is worth-
while to research the applicability of published computer
graphics algorithms within this framework—not only in or-
der to find the most suitable algorithm but also to learn about
the applicability of algorithms that have been proposed for
different APIs, in particular hardware-accelerated OpenGL.

3. Adapted Analysis

The analysis of the pyramid blur algorithm repeatedly down-
samples an input image by a factor of 2 in each dimension.
The number of downsampling steps determines the strength
of the resulting blur. This section discusses two implemen-
tations of the analysis phase of the pyramid blur algorithm
using the drawImage method of HTMLS. First, however,
we discuss how to replace the analysis by an image minifi-
cation using drawImage.

3.1. Minification instead of Analysis

If the drawImage method is used to downsample an im-
age, i.e., if the destination rectangle covers less pixels than
the source rectangle (see Section 2), a so-called minification

(© The Eurographics Association 2010.

filter is employed to determine the colors (and opacities) of
the resulting output [SA03]. The HTMLS standard does not
specify this minification filter and in fact different filters are
employed by different implementations. For example, Fire-
fox employs subsampling, i.e. each pixel of the output image
is determined by just one pixel of the input image (without
any actual filtering), see Figure 2d. The minification filter
of Chrome is slightly wider but still rather narrow; see Fig-
ure 2¢ for an example. Safari employs a substantially wider
minification filter, which is presumably based on a mipmap
hierarchy [SA03]; see Figure 2b.

In the case of a sufficiently wide minification filter, a
downsampling step using a single call to drawImage may
replace the whole analysis phase of the pyramid blur algo-
rithm (see Figure 5 for examples). While this approach re-
sults in the most efficient blur algorithms, the minification
filter of actual implementations of drawImage will in most
cases be too narrow to avoid staircase artifacts. Therefore,
this approach should only be used to blur static images for
which the artifacts are less objectionable.

3.2. Basic Analysis

A basic analysis for the pyramid blur algorithm can be effi-
ciently implemented by repeatedly downsampling an image

12 M. Kraus / Efficient Image Blur in Web-Based Applications

(a) (b)

(©) (d

Figure 4: Maxification: (a) The 16 X 16 pixels minification computed by Safari (see also Figure 2b) is (b) maxified by Safari to
128 x 128 pixels. Analogously, the minifications in Figures 2¢ and 2d are maxified by (c) Chrome and (d) Firefox.

using drawImage where each call to drawImage down-
samples the image by a factor of 2 in both dimensions.

The smoothest results are obtained with the widest anal-
ysis filters. In the case of the drawImage method, all
pixel sampling positions should therefore be translated by
(0.5,0.5) in order to ensure that the minification filter is cen-
tered at the corners between pixels. In the mentioned im-
plementations of HTMLS, this can be achieved either by
specifying an appropriate translation transformation using
“translate (0.5, 0.5);” or by offsetting both coor-
dinates dx and dy of the “destination rectangle” (see Sec-
tion 2) by 0.5. However, due to the small minification fil-
ters employed by Chrome and Firefox, this approach is inef-
fective for these browsers. On the other hand, the approach
works well in Safari, see Figure 3a.

3.3. Wider Analysis Filters

As discussed by Kraus [Kra09], wider box analysis filters are
advantageous for the pyramid blur algorithm. In HTMLS, a
wider anlysis filter can be implemented by additional calls to
drawImage with translated sampling positions. For exam-
ple, the translations could be (1,0), (0,1), and (1,1) pixels
relative to the original coordinates. Again, these translations
can be specified either by the translate method or by
offsetting the coordinates of the destination rectangle. The
resulting colors of the drawImage calls have to be scaled
appropriately. The most efficient way to achieve this is by
specifying the globalAlpha member of the Canvas—
RenderingContext2D [HHSGO09]. Furthermore, the re-
sulting images have to be added. This can be efficiently im-
plemented by specifying "1ighter" asthe globalCom-
positeOperation of the CanvasRenderingCon-—
text2D.

An implementation of a wider analysis filter by 4 calls
to drawImage is rather expensive in terms of performance
but it results in the best visual quality on all tested browsers,
see Figures 3b, 3c, and 3d. It should be noted that the qual-
ity of the analysis filters can only be evaluated in an actual
pyramid blur algorithm; see Section 5.

4. Adapted Synthesis

The synthesis phase of the pyramid algorithm repeatedly up-
samples the coarsest image level computed by the analy-
sis until the dimensions of the original image are reached.
This section discusses two methods for this synthesis us-
ing drawImage. First, however, we discuss the use of the
drawImage method to replace the synthesis.

4.1. Maxification instead of Synthesis

If the drawImage method is used to upsample images, a
so-called maxification filter (usually an interpolation filter) is
used to compute the pixels of the result [SA03]. Similarly to
the minification filter, HTMLS does not specify the maxifi-
cation filter. Therefore, implementations of HTMLS5 employ
various filters; for example, Chrome and Firefox employ bi-
linear interpolation which results in typical diamond-shaped
artifacts (see Figures 4c and 4d). Safari employs a smoother
interpolation filter, which unfortunately results in stronger
staircase artifacts (see Figure 4b in comparison to a depic-
tion of the coarse image level in Figure 4a). Employing a
maxification instead of the synthesis is extremely efficient;
however, it is usually not suitable for a blur algorithm due to
the strong visual artifacts.

4.2. Biquadratic B-Spline Filtering

Strengert et al. [SKEO06] suggest to use a bilinear texture in-
terpolation to achieve a biquadratic B-spline filtering in the
synthesis as illustrated in Figure 5a. If the maxification fil-
ter is a bilinear interpolation (e.g. with Chrome and Firefox),
this approach can be easily implemented with the drawIm-
age method by translating the coordinates of the destination
rectangle by (0.25,0.25) (again either using the trans-
late method or by offsetting the destination coordinates
in the drawImage call). As noted by Kraus [Kra09] this
biquadratic B-spline filtering can produce very good visual
results in a pyramid blur algorithm if a suitable analysis filter
is employed.

Unfortunately, this approach is not applicable to Safari

(© The Eurographics Association 2010.

M. Kraus / Efficient Image Blur in Web-Based Applications

Figure 5: Syntheszs: (a) synthesis resulting in a blquadratlc B-spline filter using Chrome; (b) synthesis for bilinear interpolation
using Safari; two-steps-forward-one-step-back method using (c) Safari and (d) Chrome.

Table 1: Time in milliseconds for different blur strengths in
a 128 x 128 pixels image using Safari; see Figure 7.

steps in pyramid 1 2 3 4
time 24 35 46 57

due to its different maxification filter. However, it is inter-
esting to note that a translation by (0.5,0.5) will result in a
bilinear interpolation on all tested browsers, including Sa-
fari, see Figure 5b.

4.3. Two Steps Forward, One Step Back

While the biquadratic B-spline filtering is the best alternative
for the synthesis if the maxification filter of drawImage
is a bilinear interpolation (e.g. in the case of Chrome and
Firefox), higher-order interpolation filters (such as employed
by Safari) require a different approach unless they can be
used to replace the whole synthesis (which is not the case
for Safari due to staircase artifacts).

Our suggestion is to apply an upsampling scheme that
resembles a “two steps forward, one step back” approach.
Specifically, each upsampling step first upsamples the im-
age by a factor of 4 and then downsamples it by a factor
of 2 resulting in a total magnification by a factor of 2. The
only exception is the very last synthesis step, which should
only employ a single upsampling by factor 2 to avoid exces-
sive performance costs. In order to widen the maxification
and minification filters, all destination coordinates of the em-
ployed drawImage calls are translated by (0.5,0.5). This
approach resulted in the visually best results with Safari (see
Figure 5c) and it also works well with implementations that
employ a bilinear maxification (see Figure 5d).

5. Results

The described blurring techniques were implemented and
tested on a Microsoft Windows XP Professional PC with an

(© The Eurographics Association 2010.

Table 2: Time in milliseconds for blurring images of differ-
ent dimensions with Safari (the image of 128 x 128 pixels is
depicted in Figure 7c).

size 5122 2562 1287 64% 322 16°

pyramid 81 20 46 20 08 06
IIR 270 66 17 42 1.1 04

Table 3: Time in milliseconds for different blurring methods
(pyramid blur with basic analysis, a wider analysis filter; and
1IR filter) using different browsers; see Figure 8.

pyramid blur IIR filter
Safari Chrome Firefox Safari Chrome Firefox
basic 4.6 2.5 5.7 17 37 15
wide 10.2 6.0 14.3 17 37 15

Intel Core2 Duo CPU T9600 (2.8 GHz). Table 1 and Fig-
ure 7 show results depending on the number of processed
pyramid levels. Since the input image of 128 x 128 pixels
is already rather small, the higher pyramid levels are even
smaller; thus, the number of pixels per pyramid level is not
very relevant for the performance, but each additional level
requires about 1.1 milliseconds.

Table 2 presents the performance of a pyramid blur
method with Safari (using the basic analysis described in
Section 3.2 and the two-steps-forward-one-step-back syn-
thesis described in Section 4.3) and the performance of a
JavaScript implementation of an infinite impulse response
(IIR) filter to approximate Gaussian blur [YvV95]. While
the timings of both methods are about linear in the number
of pixels, the timings of the pyramid blur method show a
considerably smaller slope. Thus, these timings suggest that
the processing of pixels by the drawImage method is more
efficient than the processing of pixels in JavaScript. There-
fore, the proposed pyramid blur method is particularly well
suited for large images.

14 M. Kraus / Efficient Image Blur in Web-Based Applications

(a) (b)

(© () (®

Figure 6: Applications of image blur: (a) glossy reflection, (b) depth of field, (c) glow, (d) soft shadow, and (e) inpainting.

Table 3 and Figure 8 present the recommended variants
of the discussed pyramid blur method for the three tested
browsers using 3 pyramid steps on an image of 128 x 128
pixels. We have also included results using an IIR filter
for comparison. For Safari the synthesis should employ the
two-steps-forward-one-step-back approach (see Section 4.3)
while Chrome and Firefox should use the synthesis resulting
in a biquadratic B-spline filter (see Section 4.2). Depend-
ing on the required visual quality, either the basic analysis
(see Section 3.2) or the wider analysis filter (see Section 3.3)
should be employed. The pyramid blur methods are in gen-
eral faster than the implementation of the IIR filter; however,
the actual speedup factor depends strongly on the particular
web browser: it varies between about 1 and 15. Moreover,
it also depends on the dimensions of the image as shown by
Table 2.

6. Applications of Image Blur

Figure 6 illustrates some of the possible applications of im-
age blur in computer graphics. Further applications include
motion blur and various transition effects. All examples are
based on a version of the Lena image that is depicted in the
upper half of Figure 6a. This image was augmented with a
manually specified opacity channel in order to better convey
the nature of the effects.

The glossy reflection in the lower half of Figure 6a was
produced by a combination of blur, geometric mirroring, and
reduced opacity. The illusion of depth of field in Figure 6b
was achieved by blending several blurred versions of the im-
age over each other while the glow effect in Figure 6¢ simply
blends the original image over one blurred version. Blending
the original image and several blurred versions over more
strongly blurred versions results in a basic inpainting tech-
nique as suggested by Lefebvre et al. [LHNO5] and shown in
Figure 6e.

The soft shadow in Figure 6d was generated by rendering
a rectangle filled with the shadow color and then drawing a
blurred version of the image on top of it with the compos-
ite operation "destination-in" [HHSGO9]. Rendering
soft shadows might appear to be an academic exercise since
the CanvasRenderingContext2D provides the possi-
bility to render soft shadows. However, Chrome does not im-
plement this feature, Firefox limits the supported blur, and
the implementation of Safari is inefficient for strong blur.
These are three good reasons why a web application might
require its own implementation of soft shadows.

7. Conclusions

This paper describes efficient blur methods for web-based
applications using HTMLS and JavaScript; in particular, the
presented blur methods are in general more efficient than
implementations of IIR (infinite impulse resonse) filters if
a reduced visual quality is acceptable. Furthermore, an effi-
cient method for biquadratic B-spline upsampling has been
presented. Unfortunately, the latter method is only appli-
cable to implementations of the drawImage method that
employ bilinear interpolation. For implementations using
higher-order interpolation, we suggest a “two steps forward,
one step back™ approach, which provides a similar image
quality.

Our experiments showed that the proposed methods are
not beneficial for very small images. While we assume that
most web images are sufficiently large to benefit from our
methods, it should also be noted that the presented approach
is not limited to bitmap images but may be applied to any
graphics that is dynamically rendered in a canvas element.
This is likely to include large and even full-screen graphics,
which would benefit considerably from our approach.

The presented methods are based on previously published
GPU-based techniques [SKE06, Kra09]; thus, this work also

(© The Eurographics Association 2010.

M. Kraus / Efficient Image Blur in Web-Based Applications 15

proves that some of these techniques are relevant even with-
out GPUs. This insight should motivate further research on
the applicability of GPU-based methods in other contexts, in
particular HTMLS with JavaScript.

Additionally, there are at least two conclusions for the
evolving HTMLS standard. First, the specification of the in-
terpolation method and the minification filter of the draw—
Image method would allow programmers to write more ef-
ficient platform-independent code since these filtering meth-
ods are crucial for the proposed blur algorithm and pre-
sumably also for other algorithms. Second, many more
techniques proposed for GPUs and/or the OpenGL fixed-
function pipeline could be exploited in HTMLS5 if the Can—
vasRenderingContext2D would provide more meth-
ods for efficient image processing. In particular, a more flex-
ible specification of the blending operation similar to the
specification of the OpenGL blend equation [SA03] could
be very useful, for example in order to process color chan-
nels independently.

References

[Bur81] BURT P. J.: Fast Filter Transforms for Image Pro-
cessing. Computer Graphics and Image Processing 16
(1981), 20-51. 2

[Dem04] DEMERS J.: Depth of Field: A Survey of Tech-
niques. In GPU Gems (2004), Fernando R., (Ed.), Addi-
son Wesley, pp. 375-390. 1,2

[ECM09] ECMA INTERNATIONAL: Standard ECMA-
262: ECMAScript Language Specification, 5Sth edition.
Tech. rep., ECMA International, December 2009. 1, 2

[EHO7] EARL HAMMON J.: Practical Post-Process Depth
of Field. In GPU Gems 3 (2007), Nguyen H., (Ed.), Ad-
dison Wesley, pp. 583-606. 2

[Gre05] GREEN S.: Image Processing Tricks in OpenGL.
Presentation at GDC 2005, 2005. 2

[Hac10] HACHAMOVITCH D.: IEBlog: HTMLS5
and Same Markup: Second IE9 Platform Pre-
view Available for Developers. IEBlog
(The Windows Internet Explorer ~ Weblog):
http://blogs.msdn.com/ie/archive/2010/
05/05/html5-and-same-markup—-second-—
ie9-platform-preview-available-for-
developers.aspx, last accessed: 5/11/2010, 2010.
2

[HH10] HIicksoNI., HYATT D.: HTMLS5 — A vocabulary
and associated APIs for HTML and XHTML. W3C work-
ing draft, World Wide Web Consortium, March 2010. 1,
2

[HHSG09] HicksoN 1., Hyart D., SCHEPERS D.,
GRAFF E.: Canvas 2D API Specification 1.0. W3C ed-
itor’s draft, World Wide Web Consortium, October 2009.
1,2,4,6

(© The Eurographics Association 2010.

[Kra09] KRAUS M.: Quasi-Convolution Pyramidal Blur-
ring. Journal of Virtual Reality and Broadcasting 6,
6 (August 2009). urn:nbn:de:0009-6-18214,,
ISSN 1860-2037. 2,4,6

[LHNO5] LEFEBVRES., HORNUSS., NEYRET F.: Octree
Textures on the GPU. In GPU Gems 2 (2005), Pharr M.,
(Ed.), Addison Wesley, pp. 595-613. 6

[Mic10] MICROSOFT: MSDN Library: Blur Filter. MSDN
library: http://msdn.microsoft.com/en-
us/library/ms532979%28VS.85%29.aspx, last
accessed: 5/11/2010, 2010. 1

[Nicl0] NICKERSON P.: Pretty Fast Gaus-
sian Blur in Javascript. Author’s blog entry:
http://pvnick.blogspot.com/2010/01/im—
currently-porting-image-
segmentation.html, last accessed 5/11/2010,
2010. 1

[SAO03] SEGAL M., AKELEY K.: The OpenGL Graphics
System: A Specification (Version 1.5). Silicon Graphics,
Inc., 2003. 3,4,7

[SKEO6] STRENGERT M., KRAUS M., ERTL T.: Pyramid
Methods in GPU-Based Image Processing. In Proceed-
ings Vision, Modeling, and Visualization 2006 (2006),
pp. 169-176. 2,4,6

[vWYVO98] VAN VLIET L. J., YOUNG I. T., VERBEEK
P. W.: Recursive Gaussian Derivative Filters. In Pro-
ceedings of the 14th International Conference on Pattern
Recognition (1998), vol. 1, pp. 509-514. 2

[YvV95] YouNGI. T., VAN VLIET L. J.: Recursive Im-
plementation of the Gaussian Filter. Signal Processing 44
(1995), 139-151. 1,2,5,8

M. Kraus / Efficient Image Blur in Web-Based Applications

Figure 7: Blurrmg an image of 128 x 128 pzxels with different strengths by performmg (a) 1, (b) 2, (¢) 3, or (d) 4 steps of the
analysis and the synthesis (using the basic analysis filter and the two-steps-forward-one-step-back synthesis with Safari).

@) (b) » © @
® ©)

Figure 8: Blur techniques with the highest performance: (a) basic analysis and two-steps-forward-one-step-back synthesis
using Safari; basic analysis and biquadratic B-spline synthesis using (b) Chrome and (c) Firefox; (d) for comparison an ap-
proximation to a Gaussian filter using an IIR filter [YvV95]. Blur techniques producing the best image quality: (e) wide analysis
filter and two-steps-forward-one-step-back synthesis using Safari; wide analysis filter and biquadratic B-spline synthesis using

(f) Chrome and (g) Firefox; (h) for comparison a wider IIR filter.

(© The Eurographics Association 2010.

