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Abstract
This paper proposes an implicit surface reconstruction algorithm based on Self-Organising Maps (SOMs). The
SOM has the connectivity of a regular 3D grid, each node storing its signed distance from the surface. At each
iteration of the basic algorithm, a new training set is created by sampling regularly along the normals of the
input points. The main training iteration consists of a competitive learning step, followed by several iterations of
Laplacian smoothing. After each training iteration, we use extra sample validation to test for overfitting. At the
end of the training process, a triangle mesh is extracted as the zero level set of the SOM grid. Validation tests
and experiments show that the algorithm can cope with the noise of raw scan data. Timing measurements and
comparisons show that the algorithm is fast, because the fixed and regular connectivity of the SOM means that the
search of the node nearest to a sample can be done efficiently.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling I.6.5 [Simulation and modeling]: Model Development

1. Introduction

Learning algorithms such as Self-Organising Maps (SOMs)
[Koh82] use an alternative computational model for data
processing. Instead of directly manipulating the data, a SOM
adapts to the data, or, using the standard terminology, learns
from the data. This computational model offers a certain
flexibility, which can be used to develop fast and robust data
processing algorithms. For example, instead of engineering
the SOM and the main training process only, one can also
manipulate the training data, feeding the SOM with differ-
ent data sets at different stages of the process. Also, one can
interchange the main training process with post-processing
steps, further increasing the quality of the results.

In this paper we propose a surface reconstruction algo-
rithm for implicit surface reconstruction based on SOMs.
The input of the algorithm is a set of points with normals.
If normal information is not available, we estimate normals
using [YLL∗07], which is a method based on [HDD∗92].
The input data are used to train a SOM with the connectivity
of a regular 3D grid, each node storing a scalar value rep-
resenting the signed distance of the node from the surface.
The trained grid gives a discrete implicit representation of
the surface in the form of the zero level set of the signed

distance function

f : R3 → R (1)

Finally, a triangle mesh representing the surface is extracted
from the SOM grid, using the marching cubes algorithm
[LC87].

SOMs have already been used several times in surface re-
construction applications [HV98,Yu99,BF01,IJL∗05]. What
these previous approaches have in common is that the SOM
is seen as a representation of the surface, with the nodes cor-
responding to mesh vertices and the synapses corresponding
to mesh edges. Whilst that seems to be a convenient and nat-
ural choice, several problems arise in practice, such as how
to learn the surface geometry without foldovers, or how to
adapt the connectivity to the topology of the data.

Instead, in this paper, the SOM has the connectivity of a
regular 3D grid, rather than of a 2D surface, and the nodes
store scalar values rather than 3D vertex positions. The re-
sults presented in this paper show that such an approach in-
herits the stability and robustness usually associated with im-
plicit methods, especially regarding the topology of the sur-
face, which is automatically extracted by the marching cubes
algorithm.
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Moreover, despite the large number of nodes caused by
the one extra dimension in SOM connectivity, the nearest
node queries, which are the computationally intensive part of
the training process, are fast. The reason is that the position
of a training sample is compared against the positions of the
SOM nodes, which are fixed and regular, rather than vertex
positions stored in the nodes as variables. As a result, we can
efficiently train a 3D SOM to a satisfactory level of surface
detail.

An important but often overlooked issue in surface recon-
struction is the problem of overfitting. When the data con-
tains noise, as is always the case with real scan data, a sur-
face that is very close to the data will model not only the
information, but also the noise in them. See Fig. 1 for an
example of overfitting in curve reconstruction. In this paper
we use extra sample validation to control overfitting. The
input data set is separated into two subsets, the training data
and the validation data. The SOM is trained with the training
data, while the validation data are used to find an indepen-
dent error estimate, which is used to detect overfitting and
terminate the training process.

In the literature, overfitting is usually detected by creating
several models of different degree of smoothness, or com-
plexity, and comparing them. That can be computationally
costly, or in the case of multiscale model reconstructions
as in [LLIS06], it can be algorithmically involved. In con-
trast, the proposed SOM algorithm naturally detects overfit-
ting during the training process, without the need of multiple
reconstructions.

Summarising, the main contribution of the paper is to
show that the proposed implicit SOM reconstruction com-
bines the robustness usually associated with implicit surface
reconstruction methods, with the simplicity in overfitting de-
tection usually associated with SOM training applications.
One disadvantage of the proposed method is that the discrete
setting and the non-standard computational model of SOMs
training, means that we do not have any theoretical results re-
garding the continuity and smoothness of the reconstructed
surface.

2. Previous work

Surface reconstruction is an active research area, driven both
by practical applications and theoretical interest. [HDD∗92,
TL94, BBX95, CL96] are some of the earliest, and most in-
fluential, computer graphics oriented techniques for surface
reconstruction.

A branch of surface reconstruction algorithms is based on
Voronoi tessellations. The surface is described by a trian-
gle mesh, obtained as a subset of the triangles of the Delau-
nay tetrahedrization of the data set [ABK98, DG03, KSO04,
MAVdF05].

Projection on a local surface fitting of the data is an-
other popular technique for surface reconstruction. Most of

such algorithms use the Moving Least Squares fitting of the
data [Lev98, ABCO∗03, GG07], while [LCOLTE07] uses a
median projection.

In other recently proposed surface reconstruction tech-
niques, [NRDR05] combines separately acquired positional
and normal information. [Kaz05] reconstructs the model by
computing the Fourier coefficients of its characteristic func-
tion. [KBH06] solves a Poisson equation, [HK06] uses an
unsigned volumetric grid with node values approximating
the probability of the surface passing from a voxel, while
[ACSTD07] maximizes the anisotropic Dirichlet energy.
Another recent research direction in surface reconstruction
is the use of Bayesian statistics [DTB06,JWB∗06,HAW07].

Implicit surface reconstruction algorithms compute a
signed distance function f , as in Eq. 1, and extract the
surface as the zero level set of f . The function f is usu-
ally obtained by blending implicit functions fitting locally
the data. [CBC∗01, OBS04] use RBFs for the local fittings,
while [OBA∗03] uses quadratics. As described in Section 3,
our algorithm uses the normal information of the data in a
way very similar to these methods to compute f . On the
other hand, the use of SOMs makes the computational side
of the algorithm very different.

SOMs were introduced by Kohonen in its seminal pa-
per [Koh82]. Since then, they have found numerous applica-
tions in a wide range of scientific fields, including geomet-
ric modeling and computer graphics. In one of the earliest
graphics related applications, SOMs are used in [GS93] to
visualize multi-dimensional data. In surface reconstruction,
SOMs have been used in [HV98,Yu99,BF01,BEP05]. A spe-
cial type of SOMs, the Growing Cell Structures, introduced
by Fritzke in [Fri93], was used for free form surface recon-
struction in [VHK99] and for triangle mesh reconstruction
in [IJS03,IJL∗05]. However, in all the above approaches, the
SOMs have the connectivity of a surface, while in this paper
the SOM has the connectivity of a regular 3D grid.

Systematic theoretical studies of the noise in point sets
can be found [KV03, PMG04]. However, in most of the lit-
erature on surface reconstruction, the related problem of data
overfitting is not dealt with. In particular, the previously pro-
posed SOM based surface reconstruction algorithms, termi-
nate either automatically or with user intervention, without
establishing if a state of overfitting has occurred. Some al-
gorithms address the problem of overfitting with user con-
trolled parameters, which specify the expected level of noise.
[OBS04] uses a regularisation parameter to control overfit-
ting, while in [DTB06] the variance of the noise is specified
by the user. In [LLIS06], the problem of overfitting is ad-
dressed with extra sample validation on a hierarchical frame-
work.
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Figure 1: (a) A noisy point set. (b) An underfitted model. (c) A model with appropriate level of complexity. (d) An overfitted
model.

3. SOM implicit surface reconstruction

Section 3.1 describes the basic algorithm for SOM implicit
surface reconstruction. Making use of the flexibility afforded
by the SOM training setting, we use a different training set at
each iteration of the algorithm. The aim is to resolve artifacts
occurring when two sheets of the same surface are close to
each other. Exploiting further the flexibility of the setting, we
interchange competitive learning steps with post-processing
smoothing steps, improving the quality of the results.

Another advantage the use of SOMs is the efficient de-
tection of overfitting. An extended algorithm incorporating
overfitting control is described in section 3.2.

3.1. The basic SOM algorithm

The SOM is created by subdividing the bounding box of the
input data into a k3 regular grid. A typical value of k, used
in all our experiments, is k = 256. As the bounding box is
a rectangular parallelepiped, each cell of the grid is also a
rectangular parallelepiped, rather than a cube.

The basic training iteration of the SOM algorithm con-
sists of three steps. The first step creates the training data.
Second comes a competitive learning step, where the SOM
learns from the data, and third is a smoothing step which
propagates the grid values further away from the surface.

Step 1: The training algorithm starts by creating the train-
ing data along the normals of the original points. The scalar
values assigned to the training data represent an estimate of
their signed distance from the surface. Following a standard
technique [CBC∗01, OBA∗03, OBS04], we assign zero val-
ues at the original input points, which are thus assumed lying
on the surface, negative values to points lying on the interior
the surface and positive values to points lying on its exterior,
as indicated by the orientation of the normal, see Fig. 2 (left).

The variables length and distance determine the length of
the interval along the normal, and the distance between two
consecutive points sampled along the normal. The value at
each sampled point is the signed distance from the original
input point. In the first iteration of the basic training step,
length = 1.0 and distance = 0.1, where the length of the
diagonal of the data’s bounding box is set to be 10.0. That
means that we sample 21 equidistant points from the interval

Figure 2: Left: The input data points are shown in black.
The training points, shown in white, are sampled along the
normals of the input points. Right: Two surface sheets close
to each other.

[-1.0, 1.0] along the line of the normal. At each next itera-
tion, we multiply both length and distance by 0.6, mean-
ing that we again sample 21 equidistant points, but this time
from a shorter interval.

We notice that the data are treated in a way very similar
to other implicit methods, where an RBF or a quadratic is
locally fitted so that its value at the input point is 0, while
its values at the end points of the normal are 1 and -1, re-
spectively. A common problem with this approach is that if
another part of the surface is near to the input point, then
the end point of the normal pointing to the outer of the sur-
face may in fact be in the interior of the surface, see Fig. 2
right. [CBC∗01] proposes a pre-processing step to address
this problem, but it is not clear how efficient such a step can
be when a surface has not been reconstructed yet. Our algo-
rithm adapts to this problem by narrowing at each iteration
the length of the normal interval that is sampled for training
data. Of course, that does not mean that it solves completely
the problem which is intrinsic to the nature of surface recon-
struction as an ill-posed problem.

Step 2: The second step is the competitive learning step. For
each training sample si obtained from the first step, we find
the nearest node Gi of the SOM, and update its value by

Gi = Gi +α · (si−Gi) (2)

The variable α determines the sensitivity of the SOM to the
training. A large α facilitates fast training, while a small α

means that the training process is approaching convergence
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and the SOM stabilises. As it is usually the case with SOM
training, we begin with a large α, which gradually decreases
as the algorithm progresses. In our experiments, the initial
value of α is 1, and the at each iteration it is halved.

Notice that the training step affects only the values of the
few grid nodes that are nearest neighbours of one of the
training data. It is Step 3 that propagates learning further
away from the surface.

Step 3: The smoothing step consists of five iterations of
Laplacian smoothing

Gi = λGi +(1−λ)Ai (3)

which updates each node as a linear combination of itself
and the average Ai of its 6 direct neighbors. In our experi-
ments, the initial value of the λ is 0.9, and at each iteration
we subtract 0.15. When it becomes zero we stop smoothing.

Our use of smoothing to propagate learning is similar to
that in [IJS03, IJL∗05], where a learning step was followed
by a smoothing step to increase the stability of the algorithm.
The main drawback of using this approach here is the higher
computational cost, given that we smooth the whole grid and
thus, perform a lot of operations far away from the surface
which do not have any effect on the final result. However, we
believe that a more classical approach, where the processed
sample si directly influences the neighborhood of its nearest
node, would produce surfaces of lower quality.

The pseudocode of the basic implicit SOM reconstruction
algorithm without overfitting control is:

Main()
Input: point set P
Initialize length, distance, λ;
for # iterations of basic step

S = SamplePoints(P, length, distance)
CompetitiveLearning(S)
for # smoothing iterations

Smooth(λ)
Decrease length, distance and λ

3.2. Overfitting Control

The above algorithm could terminate after a certain number
of basic iteration, or when convergence is detected. How-
ever, in both cases the result may not be satisfactory as the
grid function may overfit the data. To control overfitting, we
need a reliable estimate of the prediction error, that is the
expected error measured against an independent set of data
from the same source.

The simplest and most accurate way to estimate the pre-
diction error is extra sample validation. We divide the input
points into two disjoint sets. From the first set we create the
training data and from the second set the validation data, as
indicated by Fig. 2 (left).

The training step uses the training data only. Then follows
the validation step, which compares the value of each point
of the validation set with the weighted average of the grid
values of its cell, and considers the difference as the error
estimate. We average the error values all over the validation
set to produce an average error estimate.

We note that the computation of the prediction error is
simple and fast, because we measure the error of the implicit
function, rather than the error of the implicitly defined sur-
face. In contrast, the overfitting check in [LLIS06], which
uses the Taubin distance [Tau91] or the Metro tool [CRS98],
is more complicated and computationally intensive.

After each iteration, we compute the ratio of the errors of
the current and the previous iteration. If the ratio is smaller
than a threshold r, typically r = 1.5, then the algorithm stops.
Notice that the choice of r does not imply any assumption for
the amount of noise in the data. Its function is to control the
trade off between the accuracy in detecting overfitting and
algorithmic speed. A value of r much larger than 1, means
that the algorithm stops before a definitive detection of over-
fitting, while a value near one means that the algorithm stops
only when overfitting has been positively identified.

The pseudocode of the algorithm with overfitting control
is as follows:

Main()
Input: point set P
Initialize length, distance, λ;
repeat

S = SamplePoints(P, length, distance)
(Strain,Stest ) = DivideTestAndTraining(S)
CompetitiveLearning(Strain)
for # smoothing iterations

Smooth(λ)
error = CalculateError(STest )
if (current error / previous error) < r

stop
Decrease length, distance and λ

Notice that the algorithm with overfitting control uses
only half the initial data at each training step. In some cases
this can be a problem, because even though the use of scan
data means that generally we are in a data rich situation,
nevertheless, locally, parts of the surface may be underrep-
resented in the data set, in which case we can not afford to
exclude any points from the training step.

If this is the case, using the standard technique of two-
fold cross validation, at each step we can swap the training
and the validation data and repeat the process. Then, the two
outputs are averaged to produce the final result. Notice that
the averaging can be conveniently done on the grids by av-
eraging the values of the corresponding nodes, before using
marching cubes to create triangle meshes. However, the ex-
periments in Sections 4 and 5 indicate that the extra com-
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putational cost for cross validation is not justified by any
improvement in the results.

4. Validation

To validate our method and compare it with similar ap-
proaches, we experimented with data from an already recon-
structed triangle mesh, in this case the Bulldog model. The
vertices of the model, with noise added to them, are the input
data, while the initial mesh serves as the base against which
we measure the error. The added noise is a displacement
along the normal, with the length of the displacement follow-
ing the uniform distribution on the interval [−d,d], where d
is the average distance between a vertex of the model and its
nearest neighbour.

Fig. 3 (left), shows the true error at each step of the SOM
training algorithm, measured by the Metro tool as the Haus-
dorff mesh and the original. Fig. 3 (right) shows the ratio r
of the error estimates at two consecutive steps, as measured
by the extra-sample validation. Notice that while the true er-
ror represents the distance between two surfaces, the error
estimates refer to the values of the implicit function.

We notice that the error estimates predicted correctly that
overfitting occurs after seven training steps. We also notice
that relatively large values of r may correspond to small
reductions of the true error. This observation justifies our
choice of r = 1.5, which avoids the computational cost of
training steps that have small effect on the true error.

Figure 4: The true error of the Bulldog reconstruction for
MPUs, RBFs and SOMs

Fig. 4 shows the true error of the Bulldog reconstruc-
tion by several algorithms. We used the MPU recon-
structions [OBA∗03] for the values of the tolerance ε =
0.002, 0.004, 0.006, the RBF reconstructions [OBS04] for
the values of the regularisation parameter λ = 0.0, 0.2, 0.4,
and implicit SOMs with and without two-fold cross valida-
tion. We notice that the SOMs reconstructions have smaller
error than the MPUs, but higher than the RBFs. We also no-
tice that the extra computational cost for cross validation is
not justified, as it does not reduces significantly the error.
Fig. 5 shows the corresponding reconstructions.

5. Experimental results

To further test the method and compare it with similar
approaches, we experimented with inputs from scan data.
Fig. 6 shows the results of the reconstruction of the Dragon
model. Notice that the SOM implicit algorithm avoids some
surface artifacts near sharp features, which are common with
implicit reconstruction methods, and are probably caused by
wrongly oriented normals.

Fig. 7, 8 show the results of reconstructions from the scan
data of the Buddha and the Armadillo models.

Figure 7: Left: SOM without cross validation. Right: SOM
with cross validation.

Figure 8: SOM reconstructions of Armadillo: Top: SOM
without cross validation. Bottom: SOM with cross valida-
tion.

Table 1 shows the timings measured on a PC with an In-
tel Core2 processor at 1.83GHz and 1GB memory. Notice
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Figure 3: Left: The error at each step of the algorithm measured by the Metro tool. Right: The ratio of the error between two
consecutive steps of the algorithm, as estimated by extra-sample validation on the implicit function f .

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a)-(c) MPU reconstructions with parameter ε = 0.002, 0.004, 0.006, respectively. (d)-(f) RBF reconstructions with
parameter λ = 0.0, 0.2, 0.4, respectively. (g) SOM without cross validation. (h) SOM with cross validation.

that a direct comparison between the timings of MPU and
those of the other methods is difficult, as the former depend
heavily on the error tolerance parameter ε. Here, we used the
default value ε = 0.005. Also notice that the performance of
the SOM depends on the size of the grid, which in the exper-
iments was 2563.

6. Discussion - Future work

We presented a SOM based algorithm for implicit sur-
face reconstruction. Validation tests show that the algorithm
has several nice properties usually associated with implicit

MPU RBF O. C. C. V.
Dragon 20 349 62 121
Buddha 150 Memory 287 553

Armadillo 88 Memory 142 277

Table 1: Timing results in seconds for MPU with ε = 0.005,
RBF with λ = 0.0, SOM without cross validation, and SOM
with cross validation. In the Buddha and Armadillo models,
the RBF reconstruction caused a memory overflow.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Dragon: (a)-(c) MPU reconstruction with parameter ε = 0.002, 0.004, 0.006, respectively. (d)-(f) RBF reconstruction
with parameter λ = 0.0, 0.2, 0.4, respectively. (g) SOM without cross validation. (h) SOM with cross validation.

methods, such as speed and robustness in the presence of
complex topology and noisy input data. It also has sev-
eral nice properties usually associated with Self-organising
maps, such as the simplicity of the implementation, and a
natural and efficient way to control overfitting during the
training process. A disadvantage of the algorithm is the lack
of any theoretical guarantees on the analytic properties of the
continuous surfaces underlying the reconstructed meshes.

A comparison with the MPU algorithm, which is still con-
sidered one of the fastest available, shows that our algorithm
is only slightly slower, especially when we compare like for
like, that is, without overfitting control. A direct comparison
of the quality of the results is not straightforward as it is rel-
atively difficult to fine tune other algorithms for overfitting
control. However, the experiments show that the proposed
algorithm produces surfaces of high quality and can easily
cope with the amount of noise usually present in raw scan
data.

For the future, we plan several speed optimisations, which
might allow the use of finer grids than the 2563 we cur-
rently use. We notice that the computational bottleneck is the
smoothing step, which has cubic complexity with the size of
the grid and constant complexity with the size of the data. In
contrast, the learning and the overfitting control steps have
linear complexity with the size of the data and constant com-
plexity with the size of the grid. Thus, reducing the number
of smoothing operations on grid nodes further away from the
surface, where they seem to be superfluous, could improve
significantly the algorithmic efficiency on large grids.

A GPU implementation is another possible speed optimi-
sation. The proposed SOM algorithm seems to be well suited
for GPU implementation, mainly because of the grid’s regu-
lar structure. However, the limited functionality of GPU pro-

gramming means that an efficient GPU implementation may
be a technically challenging problem.
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