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Abstract
The paper proposes a set of techniques for improving the quality of MLS surfaces reconstructed from point clouds
that are composed by the union of many scanned range maps. The main idea of those techniques is that the
range-map structure should be exploited during the reconstruction process and not lost in the uniform point soup
that is usually fed into reconstruction algorithms; on this purpose a set of per-range-map weighting schemes are
proposed. The presented weighting schemes allow to cope with some of the various issues that usually arise during
the integration of point clouds composed by set of range maps, like tangible alignment errors, anisotropic error
on sensor data and sensible difference in sampling quality.

1. Introduction

Semi-automatic modelling techniques based on digital sam-
pling are becoming the preferred solution for many applica-
tions to build up accurate and dense digital 3D models. Many
digitization technologies produce in output so-called range
maps, since the scanning of complex objects is performed
by taking a (usually large) set of partially overlapping views,
each one producing a regular set of sampled points. The
classical pipeline which characterizes a 3D scanning session
is rather complex, involving many different operations that
usually end with the final reconstruction of a single surface
from a set of well aligned, cleaned range maps. As reviewed
in Section 2, many different algorithms have been proposed
for the task of reconstructing a surface starting from a set
of possibly noisy samples. In the rest of the paper we will
present a practical and robust implementation for an out-of-
core framework for reconstruction of surfaces from samples
adopting the Moving Least Squares (MLS) approach. We
should remark that we are focusing on 3D scanning tech-
nologies applied to Cultural Heritage, so some aspect of the
reconstruction, notably the management of a very large set of
range-maps, the possible presence of systematic errors in the
set of samples (typically due to errors in the registration pro-
cess) must be taken into account. In section 4 we will present
some practical results and timing of the discussed approach,
comparing it with the results obtained using a standard vol-
umetric approach based on [CL96].

2. Related Work

Methods for surface reconstruction aim to find a mathemat-
ical discrete description of an object surface from its sam-
pling. The need of requiring certain guarantees on the re-
constructed surface along with the necessity of reducing the
computational resources needed by the algorithms for giv-
ing such a description makes this problem an active sub-
ject of research. In this context, a lot of new solutions and
approaches have been proposed in the last years. Some of
them use the topological information inside the rangemaps
in order to reconstruct the surface, e.g. by sewing together
adjacent range maps by a triangulation of a this overlap
border [TL94]. Ignoring the topological information inside
the rangemaps but constraining the surface to interpolate the
point cloud, Bernardini et al. [BMR∗99] suggested a region-
growing approach based on the ball-pivoting operation.

Different solutions have been formulated starting from
the Delaunay complex associated to the point cloud. The
alpha-shape approach [EM94] represents the first work in
this direction; Bajaj et al. [BBX95] extended the initial idea
with heuristics aimed to capture concave features which
the initial algorithm was not able to detect. Amenta et al.
[AK04a,AB98] solve the same problem with the Crust algo-
rithm, which dynamically adapt the complexity of the sur-
face to the curvature local factor.

Volumetric methods detect the surface distance at the cor-
ners of a regular grid, building up a signed distance func-
tion from the point cloud [HDD∗92] . In order to generate
an explicit description of the reconstructed surface, gener-
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ally the volumetric methods are combined with some polyg-
onalization algorithms, such as the marching cubes [LC87]
or related solutions [LLVT03,KBSS01,SW04,JLSW02,Joe,
HWC∗05].

A relatively more recent idea is to describe the surface
of an object through a convenient set of functions. Carr and
al. [CBC∗01, CBM∗03] demonstrated the suitability of this
approach to real problems combining the Radial Basis Func-
tion (RBF) representation with a greedy algorithm. Ohtake
and al. [OBA∗03] partitioned the point cloud with an adap-
tive octree and represent the portion of the surface contained
inside each leaf with an opportune explicit function, whose
weighted combination allow to generate a description of the
complete surface implied by the point cloud. Using a blend-
ing function similar to the previous, Shen et al. [SOS04]
associate to each point a different function so that also the
gradient of the overall implicit function is constrained near
the surface. Actually both approaches share the same mathe-
matical framework, known as Moving Least Squares (MLS).
This method constitutes the kernel of the projection oper-
ator originally proposed by Levin [Lev98]; this operator is
able to project a point near the point cloud on a continu-
ous surface which minimizes a local error measure formu-
lated in terms of the least squares. The set of points which
project onto themselves represent a surface generally called
point set surface (PSS). These projection based approaches
have been subject of investigation in the last years by nu-
merous researchers by virtue of their many interesting prop-
erties, first of all the ability to automatically filter out the ac-
quisition noise inside the rangemaps. Adamson and Alexa
[ABCO∗01] provide a definition of smooth and manifold
surface starting from a point cloud and then expand their
work [AA03b, AA03a] in order to combine the PSS defi-
nition with rendering and ray tracing methods. Amenta e
Kil [AK04a] propose a projector operator defined on sur-
fels, namely point-normal pairs, and give an efficient proce-
dure of minimization along with a proof of the convergence
of projected points onto the PSS surface. Later the same au-
thors [AK04b] extend the domain of the projector operator
and give two definitions of PSS surface with different ra-
tio between the computational complexity and the precision
of the sharp feature description. With reference to this last
aspect, Reuter and al. [RJT∗05] suggest a different projec-
tor operator based on the Enriched Reproducing Kernel Par-
ticle Approximation (ERKPA) method, aiming to limit the
smoothing out of corners and edges in the PSS surface. This
modified projection operator allows to correctly reconstruct
surfaces with sharp features, but limited to those volume ar-
eas manually marked before by a user. Kolluri [Kol05] pro-
poses a different projector operator and shows theoretically
its correctness under the assumption of a uniform sampling.
Dey e Sun [DS05] give a definition of MLS surface based on
the local feature size and provide guarantees on the quality
of the reconstructed surface under the hypothesis of an adap-
tive sampling. Fleishman et al. [FCOS05] adapt the forward-

search paradigm to drive the MLS operator during the sur-
face definition process: starting from a small set of samples
not containing outliers, this paradigm progressively add new
samples to the set provided that these new samples verify
some statistical properties which monitor the quality of the
surface. By means of this framework, they are able to man-
age the noise inside the dataset and also to detect sharp fea-
tures and outliers.

3. Surface Reconstruction following the MLS approach

Different point-based methods for surface reconstruction
have been proposed in the last years since Levin’s early for-
mulation of the moving least squares (MLS) projection op-
erator. This operator is defined on set of unorganized points
and it is able to project points in the neighbourhood of the
input pointset into the surface that they imply, defining a
smooth and continuous implicit surface. We developed our
methods for polygonal surface extraction on top of this op-
erator; but before describing the details of our approach, we
give a brief review of the MLS projector operator.

The MLS operator constitutes the kernel of our recon-
struction algorithm: starting from an unorganized set of
points, a implicit representation is built through the MLS
operator, and then an explicit description is extracted. The
implicit representation we use in our algorithm has been de-
scribed in [AK04a] and will be briefly sketched out here.
It belongs to the family of extremal surfaces, which is the
set of surfaces that can be described by the interactions of a
energy function with a vector field. In order to make the al-
gorithm more robust, both the energy function and the vector
field can be defined on the set of points and on the associ-
ated normals. Sometimes the normals are directly available
with the point cloud (for example, in the case of a pointset
obtained by the discretization of a polygonal model). Other-
wise, normals should be extrapolated during a preprocessing
phase using heuristic as in [HDD∗92].
The definition of the vector field n follows the intuition that
its evaluation in a point p in R3 must mimic the normal at
the piece of surface closer to that point: thus the vector field
can be computed from the normals in the dataset, in such a
way that the direction associated to a point p is more influ-
enced by the nearest points in the dataset. That condition is
enforced through the following weighting function:

ϑN(p,xi) =
e−

‖p−xi‖2

h2

∑ j e−
‖p−x j‖2

h2

, (1)

which is a normalized gaussian weighting function based on
the distance. Here the parameter h is the smoothing factor,
and can be though of as the minimum feature size to be pre-
served. The vector field is then defined as the weighted av-
erage of the surfel normals, i.e.:

nPSS(p) = ∑
i
~niϑN(p,xi).
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Figure 1: The weighting function applied to a range map of the Sophocle model. From left to right, the input set of samples, the
samples colored with their geodesic distance, with their sampling rate and finally with their MLS-based quality.

Also the energy function is formulated in a very intuitive
way as the unsigned distance from the surface in terms of
the surfel positions and normals. Since we would like to give
more relevance to points lying along the surfel normals, the
energy function formulation make use of the Mahalanobis
distance distM , a distance measure similar to the euclidian
one but with elliptical rather than spherical support:

distM(p,xi,~ni)=
(
(p−xi)·~ni

)2 +c
∥∥∥(p−xi)−

(
(p−xi)·~ni

)
~ni

∥∥∥2
,

where c is a scale factor witch affects the ellipsis shape: in
particular when k = 1, the Mahalanobis distance is equiv-
alent to the euclidian distance between the point p and the
sample qi, whereas when k = 0 it corresponds to the distance
from p to the plane through xi with normal ~ni. The resulting
energy function is:

ePSS(p,~n) = ePSS(p) = ∑
i

distM(p,xi,~ni) ϑN(p,xi).

Finally the implicit surface is determined by the set of
points where the energy function e, evaluated along the di-
rection ` of the vector field n, takes its minimum, i.e.:

S =
{

p |p ∈ arglocalmin
q∈`p,nPSS(p)

ePSS
(
q,nPSS(p)

)}
.

4. Practical Weighting Scheme

As defined so far weighting functions, energy function, and
vector field were formulated in the same way for each point
in the dataset. A better solution would be to assign to each
sample a weight representing the quality of the sample. In
the case of sampled data, we may define heuristics which es-
timate the accuracy of each sample, by taking into account
the errors the acquisition pipeline introduces. First of all we
must take into account the sampling noise introduced by the
scanner: this noise is not uniformly distributed on the whole

dataset, but can be estimated stronger near the borders of the
rangemaps. Some more errors are then introduced during the
alignment phase, when the local frames of each rangemap
are mapped into a global common frame. At the end of this
phase, the set of points from the various range maps are ex-
pressed in the same reference frame, and constitutes a sin-
gle but not uniform distributed point cloud. Indeed each por-
tion of the surface is probably described by more than one
rangemap and, almost certainly, each rangemap describes
that surface patch at a different sampling density. Therefore
using the per-rangemap sampling rate as a measure of the
point quality might be restrictive. Conversely, a more reli-
able measure of the quality for each sample should be the
overall sampling rate, since this measure describe very well
how points are scattered across the surface of the acquired
object.

The measure of the quality of each point can be formu-
lated by taking into account all these considerations. The
idea underlying our intuition is to weight each sample point
both on its position inside the single rangemap and on the
position with respect to the whole set of rangemaps. Namely
we suggest to enrich each sample point with two distinct at-
tributes, the geodesic distance and the sampling rate, captur-
ing both these characteristics. Once the per-sample geodesic
and the sampling qualities are computed, these two measures
can be combined with the weighting function of eq. 1, so that
the quality assigned to each point p is a function not only of
its position but also of the quality of the nearest samples.

4.1. Geodesic blending

The geodesic distance is defined here as the length of the
minimal path from a point to an open border of the surface.
Despite the simplicity of this definition, the geodesic dis-
tance computation is not simple, as is not clear what a path
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is on a point cloud. Therefore, the geodesic distance com-
putation can be solved by computing the minimal spanning
tree (MST) with multiple sources over the point cloud, where
each source corresponds to a sample on the border of the
rangemap.

Our approach is to see the point cloud as a graph (G,E),
where each node in G corresponds to a point in the dataset
and E is the set of edges between a point and its k nearest
samples, where the weight of an edge is the Euclidean dis-
tance between the points corresponding to its vertices. For
each point in the graph, the initial geodesic distance attribute
is set to ∞. Then the border points are detected and their
geodesic distance attribute is set to zero. This sample con-
stitutes the sources of the MST algorithm, and thus they are
used to initialize the queue of the visited nodes.

This approach requires to solve the problem of detecting
the borders of a point cloud. Different solutions have been
proposed in the last few years to this problem. The largest
projected angle criterion [SFS05] marks a sample as a bor-
der one if the maximal angle between the projection of the k
nearest samples on the tangent plane at the surface is greater
than a threshold angle specified by the user.
A more complex approach is proposed in [BSK06] . Here the
kε-neighborhood graph is defined and four criteria over this
graph are developed aiming to correctly detect the border of
a point cloud. The kε-neighborhood graph is a symmetric
graph that overcomes the biasing effect that typically affects
pointset with variable sampling rate. A robust computation
of the overall boundary probability is finally obtained as the
average sum of the four criteria. Since this latter approach
perform very well in practice (also in presence of noise), we
adopted it in our reconstruction tool and used it as prelimi-
nary step in the computation of the geodesic distance.

4.2. Data distribution and sampling density

A very useful parameter for valuating the goodness of a sam-
ple is the sampling density. In many works this parameter is
frequently associated with the surface curvature, especially
when the reconstruction algorithm needs a greater sampling
density in order to be able to accurately reconstruct those
area with high curvature; in other works, the sampling den-
sity is a measure of the overall quality of a rangemap.

We suggest instead to associate to each sample point a
value representing the sampling factor at the point. We com-
pute this value regardless of the whole dataset, considered
as the union of the points of the various rangemaps, but in
relation to the single rangemap during a preprocessing of the
dataset. The sampling quality qs we assign to each point is
directly proportional to the distance from its kε-neighbors,
i.e.:

qs = ∑
qi∈kεNgbh(p)

e
d(qi ,p)2

h2 ,

Figure 2: One of the advantages of the MLS operator is the
ability to smoothly interpolate between the input samples;
however this behavior is not always convenient, especially
when we are interest in preserving and correctly reconstruct-
ing sharp features.

where h corresponds to the minimum feature size and kε −
Ngbh(p) is the kε-neighborhood set for the point p.

This way the sampling factor for a point is not a mere
measure of the mean sampling, computed for example as
the ratio between the dimension of the surface described
by a rangemap and the number of samples inside the same
rangemap, but an estimate of how much a portion of the
surface was visible from the acquisition point: indeed por-
tions of the surface most visible from a certain position will
be described by a denser sampling. Furthermore, since the
sampling factor is formulated in terms of the distance, the
sampling factor assigned to each sample can be compared
between points belonging to different rangemaps too.

Given this value as measure of the quality of the local
sampling, we can combine the sampling factor inside the
weighting function of equation 1 used during the applica-
tion of the projector operator. The weights assigned to points
belonging to different rangemaps reflect the sampling qual-
ity of the surface for a specific rangemap: points belong-
ing to rangemaps more dense in a given volume portion
will have a smaller value for the sampling quality and thus
they will influence less the projector operator compared to
points belonging to rangemaps less dense in the same vol-
ume portion. We point out that specifying the sampling qual-
ity through the value k of the neighborhood size guarantees
a consistent definition of this quality measure even in un-
dersampled areas: thus samples inside such areas will affect
more the projection operator during the reconstruction pro-
cess than points belonging to denser area. Certainly such a
weighting scheme would not seem much reasonable, since it
gives more weight to isolated points: however models re-
constructed by adopting such a measure in the weighting
function did not present the swellings which generally af-
fect surfaces built through the MLS operator. The reasons of
a such counter-intuitive behavior are a consequence of MLS
operator definition and can be explained with the help of two
figures: Figure 2 illustrates a known limitation of the MLS
operator, that is its inability to identity sharp features and
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Figure 3: Reconstruction of a sharp feature from surfaces
with different sampling rate. In this case the standard MLS
operator not only connects the two surface witch a patch that
smoothly interpolate the input samples, but the reconstruc-
tion is also asymmetric since the two surfaces have different
sampling rate.

to correctly preserve them; conversely, a continuous surface
which smoothly interpolates the original sample points is the
general behavior of the MLS operator. Figure 3 presents the
particular case where two surfaces are described with a very
different sampling rate; in this case they are joined by a sur-
face patch which not only interpolates them but is also asym-
metric on account of their different sampling rate.

Our idea is to increase the influence these samples have
on the reconstruction process by increasing their weights. In
this way, even though we are not able to completely elim-
inate the MLS smoothing tendency, however we can see a
limitation of such a phenomenon and obtain more faithful
reconstructions of the acquired surfaces.

4.3. Locally changing the support of the MLS operator

Both measures discussed above are able to capture the qual-
ity of each sample in relation to points belonging to the
same rangemap. Even thought both the geodesic distance
and the sampling rate are expressed in such a way that
their values are meaningful when compared between differ-
ent rangemaps, a global measure is still needed. We suggest
to introduce a new global quality measure that can be ex-
ploited to face with misalignment errors: being able to cor-
rectly detect areas where rangemaps are not well aligned,
we can guarantee the reconstruction of a single coherent sur-
face. The necessity to introduce such a new measure results
from the observation that the reconstruction algorithm lacks
of the necessary information to detect if two slightly over-
lapped sheets in the same volume portion actually describe
the same surface; besides, neither the sampling rate nor the
geodesic distance are useful to detect such situations. Our
idea is to take advantage of the smoothing ability of the MLS
operator and to use it to extract a height map where to each
sample point is assigned the magnitude of the shift the MLS
operator impose on it. In other words, given a neighborhood
size n, we apply the MLS operator to a random subset of the
whole point cloud, and for each of them we record how much
each point has been shifted when projected onto the surface.

Since misalignment errors are not local but they spread over
large portion of the dataset, adopting a monte-carlo approach
does not preclude the effectiveness of the measure. In or-
der to guarantee that each point come with its own value,
we developed two strategies for spreading the sampled val-
ues across the whole dataset: both these strategies take ad-
vantages of the previous consideration, namely the fact that
the misalignment error is by definition a error that involves
whole areas rather than isolated sample points.

The first strategy is as follows: for each point in the
dataset, we look for its neighbors and assign to each point
the maximum value over its neighboring samples. We repeat
this process for a number k of iteration chosen by the user.
In this manner the local maxima spread across small surface
patches, in a way that mimic the nature of misalignment er-
rors.

In order to guarantee that a meaningful value is assigned
to each sample point, a clustering step finally completes the
computation. During this phase we traverse the octree used
to index the whole point cloud, and analyze the samples con-
tained in each of its leaves: if a sample has not been reached
during the previous phase, than we assign it a value com-
puted as average of the values of the other samples contained
in the same octree leaf.

The combination of the two previous strategies allow us to
assume that a valid quality value is assigned to each sample.
Since we can think of this quality as a measure of the local
misalignment error, we use this property for locally chang-
ing the MLS support during the reconstruction phase: there-
fore, where this measure reaches greater values, the samples
are distributed on different surface sheets, and thus we need
a broader support in order to define a single surface; on the
other hand, where this measure reaches lower values, the
rangemaps are well-aligned and a small number of points
is needed to define a single surface path.

5. Surface Extraction

The combined use of both of sampling and geodesic qual-
ities in the projector operator allows us to obtain an im-
plicit surface that continuously and smoothly approximates
the pointset. However such a implicit description isn’t very
practical to work with, and so an explicit description such as
a simplicial mesh is generally needed. As suggested by many
authors as well, a simplicial mesh can be efficiently gener-
ated by combining a polygonalization algorithm with a dis-
tance field regularly sampled at discrete intervals in space.
A signed distance function can be obtained from the results
generated by the projection procedure. As said before, what
we obtain when we apply the projection operator to a point
p is the projection along the direction defined by the vec-
tor field at p of that point on the nearest implicit surface: in
other words, the application of the projection operator to a
point p gives back a point-direction pair (p?,~n?) that we can
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Figure 4: The weighting function values on the synthetic
model: plane disposition (left); samples colored by their
geodesic distance (center) and by sampling rate (right).

Figure 5: Reconstruction of the synthetic models without
and with the use of the weighting function on the left and
on the right respectively.

interpreter as the projection of the point p on the surface and
the direction it has been projected along respectively. Fur-
thermore, since the projection operator is recursively defined
until a stationary point is obtained, the direction~n?) can be
considered a good approximation of the surface normal be-
cause it has been computed when convergence is reached.
The pair (p?,~n?) allows us to define the plane P, passing
through p? and having direction~n?, which comes out to be
the best local approximation of the portion of the surface
nearest to the original point p. We use this plane to estimate
the distance between the point p and the implicit surface:
thus the distance d(p,P) between the point p and the plane
P corresponds to the magnitude of the shift the projection
operator has imposed on the point p.

Through this signed distance function we are now able to
define the scalar field that, together with a polygonalization
algorithm, allows us to extract a polygonal model from the
implicit representation. The approach we follow is simple
but at the same time robust and straightforward: we sam-
ple the signed distance function at the corners of the leaves
of an octree used to index the point cloud. Since the leaves
of the octree cover only the portion of the volume where
sample points are distributed, limiting the sampling only
at these leaves reduces the number of samplings needed to
build a polygonal surface. At the moment we generate the
polygonal description of the surface through the Marching
Cubes [LC87] and the Extended Marching Cubes [KBSS01]
algorithms.

6. Results

We integrated the weighting measures presented in the
previous section with the reconstruction tool described in
[FCS07]. We initially analyze the result obtained by recon-
structing a synthetic model: this will provide a deeper com-

Figure 6: Here two planes with the same sampling rate are
reported, same spatial position as the previous example.

Figure 7: Here two planes with the same sampling rate are
reported: we maintain for each plane the same spatial posi-
tion as the previous example. On the center and on the right
the samples are colored with their value of the geodesic and
sampling functions respectively.

prehension of the meaning of the weights and thus will give
us the opportunity to better explain how the MLS projec-
tion operator and the reconstruction algorithm are influenced
by these weights. Then we will present results obtained dur-
ing the reconstruction of a gargoyle model, a real dataset
acquired with a laser-triangulation scanner.

The synthetic example is constituted by two planes, both
perpendicular to the z axis but slightly shifted, in order to
simulate a misalignment error, and partially overlapped (see
Figure 4). The two planes have different density: the plane
on the right is one third denser that the plane on the left. In
the center and on the right of Figure 4 the planes are col-
ored with the per-sample value of the geodesic and density
function respectively. In order to show how these functions
impact the MLS projector operator, we have reported the
models obtained with and without the use of these values in
Figure 5, where we have the result of the standard MLS op-
erator on the left (three different steps are easily identifiable
in the reconstructed surface); conversely, those steps disap-
pear in the surface on the right, which has been reconstructed
by using the sampling and geodesic weights (where different
heights of the samples are gradually merged). Moreover the
surface extracted is closer to the plane with greater sampling
rate.

A similar experiment has been run on two planes, with the
same spatial configuration of the previous example, but hav-
ing the same sampling resolution (Figure 6) The surface ob-
tained by using the original definition of the MLS projector
operator presents now two pronounced steps next to the area
where the two planes overlap (see Figure 7, left), while the
surface obtained by adopting our weighting scheme is more
smooth; moreover, since the two planes have same resolution
and thus their samples have same values for both geodesic
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Figure 8: The gargoyle dataset: input point cloud
and geodesic distance, sampling rate and MLS
quality mapped on a color ramp.

and sampling function, the two surfaces are bridged by a
continuous patch, which is exactly at the same distance by
both the planes and that smoothly interpolate the drop.

The third experiments was run on the Gargoyle pointset
(around 800K points sampled by eight range maps acquired
with a Konica Minolta VI910 scanner), which due to the ma-
terial characteristics is quite noisy sampling (see Figure 8
left). Moreover, a glaring misalignment error is present on
the gargoyle’s left wing. For these reason we believed this
dataset was a good assessment test-bed. We reconstructed
the gargoyle’s model first by adopting the standard MLS pro-
jector operator, and then by constraining its behavior with
the quality measures. The gargoyle’s samples are colored
with their geodesic, sampling and MLS quality measures
in Figure 8. As expected, where the surface was regularly
sampled, the two reconstructed models do not present vis-
ible differences (see Figure 9). On the other hand, visible
differences were present next to the misalignment error on
the left wing or, in general, where the surface has a sudden
change in curvature: zoom-in views are presented in Figure
9, without the use of the weights (left) and with the use of
the weights (right).

7. Conclusions and future work

We have presented three practical quality measures that can
be directly computed on a pointset without the need of ad-
ditional topological information. These measure are based
on the geodesic distance and on the sampling rate and are
able to capture the degree of importance of each sample. The

Figure 9: The reconstructed gargoyle: standard MLS is on the
left, weighted one is on the right.

Range map Samples Graph Geodesic Sampling
R00 115K 15.67s 24.45s 1.67s
R01 92K 10.75s 18.33s 1.66s
R02 95K 16.47s 25.63s 1.70s
R03 89K 15.51s 24.56s 1.67s
R04 108K 14.13s 22.63s 1.88s
R05 111K 16.05s 24.39s 1.67s
R06 74K 15.91s 24.08s 1.67s
R07 101K 20.19s 29.56s 1.67s

Table 1: Times needed to compute our weights on the
rangemaps for the gargoyle model. We do not included the
time for the MLS weight because, unlike the geodesic and the
sampling quality which are a per-rangemap measure, this is
a global measure computed on the whole point cloud. For
this model, consisting of 785K samples, computing the MLS
quality took 217.84 seconds.

values these measures take over the pointset are used by a
new weighting function to influence the behavior of the MLS
projection operator adopted by our reconstruction algorithm.
Differences between models reconstructed with and without
the use of these weights have been discussed in the result
section. Visual differences underline the effectiveness of the
quality measures introduced, since surfaces defined through
the new weighting function are turned out to be more robust
in front of sudden changes in the sampling rate as well as in
front of misalignment error between the input range maps.
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