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Abstract
High dynamic range (HDR) displays are capable of providing a rich visual experience by boosting both luminance
and contrast beyond what conventional displays can offer. We envision that HDR capture and display hardware will
soon reach the mass market and become mainstream in most fields, from entertainment to scientific visualization.
This will necessarily lead to an extensive redesign of the imaging pipeline. However, a vast amount of legacy
content is available, captured and stored using the traditional, low dynamic range (LDR) pipeline. The immediate
question that arises is: will our current LDR digital material be properly visualized on an HDR display? The
answer to this question involves the process known as reverse tone mapping (the expansion of luminance and
contrast to match those of the HDR display) for which no definite solution exists.
This paper studies the specific problem of reverse tone mapping for imperfect legacy still images, where some
regions are under- or overexposed. First, we show the results of a psychophysical study compared with first-order
image statistics, in an attempt to gain some understanding in what makes an image be perceived as incorrectly
exposed; second, we propose a methodology to evaluate existing reverse tone mapping algorithms in the case of
imperfect legacy content.

Categories and Subject Descriptors (according to ACM CCS): I.4.0 [Image Processing and Computer Vision]:
General–Image Displays I.3.3 [Computer Graphics]: Picture/Image Generation H.1.2 [Models and Principles]:
User/Machine Systems Human factors–Human Information Processing

1. Introduction

High dynamic range imagery allows a broad range of
physically-accurate photometric values to be stored per
pixel, mimicking the ranges that can perceived by the hu-
man visual system [RWPD05]. The well-known process of
tone mapping [DCWP02] deals with the problem of strong
contrast reduction of the stored HDR radiance values to fit
the low dynamic range of traditional display technology, typ-
ically trying to preserve image details and/or color appear-
ance.

The problem of tone mapping is expected to progres-
sively fade away when HDR displays reach the mass mar-
ket [SHS∗04]. However, during the logical transition pe-
riod, there will be a need to display conventional low dy-
namic range (LDR) imagery on HDR displays. Although
this need may decline over time (once HDR capture be-
comes mainstream), 8-bit photography will most likely still
be used for a long time. This means that display algorithms

will have to scale up luminance and contrast, instead of
compressing them. This brings about the problem of re-
verse tone mapping†, to which currently no definite solu-
tion exists. Recently, Seetzen et al. [SLY∗06] and Yoshida
et al. [YMMS06] showed that the subjective perception of
image quality increases when both brightness and contrast
are increased simultaneously. Besides, Čadík and colleagues
[ČWNA06] also suggest that the global appearance of an im-
age seems to depend much more on brightness and contrast
than other attributes, as shown in their OIQ (overall image
quality) equation. This result indicates that merely emulat-

† Some authors [BLDC06, AFR∗07] refer to the process as inverse
tone mapping, while others [RTS∗07] use the term reverse instead.
Given that the field is still in its infancy, a fixed nomenclature has
not been chosen yet. We opt to use reverse since the term inverse can
also refer specifically to mathematically inverting a tone mapping
operator, not to the whole process.
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ing LDR characteristics on an HDR display is probably not
the best option, as suggested in [RTS∗07].

Very few works exist that deal with the problem of reverse
tone mapping. Banterle and colleagues [BLDC06, BLD∗07]
propose a method by first inverting Reinhard’s tone mapping
operator [RSSF02]. The authors then find areas of high lu-
minance and apply density estimation techniques to produce
an expand-map, which guides the range expansion of the im-
ages. In the work by Meylan et al. [MDS06] the user first
selects which pixels in the image can be considered high-
lights and then two different linear scaling functions are ap-
plied according to this classification. Rempel et al. [RTS∗07]
present a real-time reverse tone mapper operator (rTMO)
based on a linearization of pixel values and contrast scaling,
followed by a brightness enhancement function similar in
spirit to the expand-map. In a series of psychophysical tests,
Akyüz and co-workers [AFR∗07] come up with a surprising
conclusion: LDR data might not require sophisticated treat-
ment prior to its visualization on an HDR display. By merely
linearly scaling the range of the LDR input image to fit the
range of the HDR display the results are considered as good
as (or better than) an original HDR image. Unfortunately,
they base their tests solely on correctly exposed images, and
the outcome is unclear if that assumption is broken. In fact,
while some of the above works present solutions to minimize
noise expansion [BLDC06, RTS∗07], none deal specifically
with the problem of bad exposure in imperfect, legacy con-
tent, where the image is either under- or overexposed. High-
lights in [MDS06] are in fact defined as overexposed pixels
above a certain threshold value; however, the method seems
to work better if these are localized to small regions of the
image. It is unclear whether the algorithm would provide a
pleasant solution by boosting large areas (such as an overex-
posed sky) the way it boosts small highlights.

We need a method to deal with imperfect content as well,
but how to expand its dynamic range is not obvious. Clearly,
under- and overexposure effects have been consciously used
for decades, and have become standard artistic expressions,
not just the result of a faulty capture process (Figure 1).
Common dodge and burn techniques, for instance, are usu-
ally employed to apply local adjustments to aid tonemap-
ping; however, they can be used for exactly the opposite rea-
sons, to actually simulate the effects of incorrect exposure. In
other words, sometimes what we call bad exposure is a de-
liberate decision based on artistic and aesthetic issues, and
then we are facing the additional problem of carrying over
the mood to an HDR display when reverse tone mapping is
applied.

This paper aims at shedding some light onto reverse tone
mapping for imperfect digital photography. We first show the
results of a psychophysical test, where the subjects were pre-
sented a series of images with increasing exposures within
each image set, and were asked to tag each individual im-
age (exposure) as underexposed, correctly exposed or over-

Figure 1: Using exposure as artistic expression (Jill, by
Joseph Szymanski)

exposed merely by visual inspection. We analyze the results
comparing with four luminance statistics in the image: his-
togram, mean, median and percentage of under- and over-
exposed pixels. We then propose a methodology to evalu-
ate four existing reverse tone mapping algorithms for incor-
rectly exposed content, also based on psychophysics. To our
knowledge, this is the first time that such study is performed,
and the reasons to do it are twofold: on the one hand, the
fact that, as argued, a lot of the current digital content is not
properly exposed (and complete backward compatibility is
a must for HDR displays to succeed). On the other hand,
before a working reverse tone mapping algorithm can be de-
veloped, it is necessary to understand all the aspects of the
problem, both technical and psychophysical.

The rest of the paper is organized as follows: the next sec-
tion introduces the concepts of under- and overexposure, and
justifies the psychophysical approach to the following tests.
In Section 3 we present the stimuli, methodology and results
for our test on the perception of exposure. Section 4 explains
the proposed methodology to evaluate four existing reverse
tone mapping algorithms. Finally, Section 5 presents conclu-
sions and future work.

2. Under- and overexposure

Exposure in photography can be defined as the total amount
of light allowed to fall on the photographic medium during
the process of taking a photograph [Kel06]. Under- or over-
exposure can then be loosely defined as having allowed too
little or too much light. But according to what? Let us imag-
ine the following "text-book" example: a scene made up of
a green landscape, a red car and a man driving it. If the pho-
tographer wants the red car to have correct exposure then he
has to measure the light reflecting off of it and sub-expose
the photometer reading between one and two stops. How-
ever, if he wants the (pale) driver to be correctly exposed,
he will have to over-expose one and a half stops, and if he

c© The Eurographics Association 2008.

190



Miguel Martin, Roland Fleming, Olga Sorkine & Diego Gutierrez / Understanding exposure for reverse tone mapping

wants the grass to be correctly-exposed he will use the exact
measuring of the photometer. So, even if the camera were
able to interpret such high-level components of the scene as
the green landscape, the red car and the pale driver, it still
could not guess the intention of the photographer.

If the images’ exposure correctness could be objectively
assessed using only image data (with no human interpreta-
tion), the digital cameras’ firmware could in theory automat-
ically obtain the proper exposure for every scene. Whilst
most consumer cameras do offer an estimation that works
well for a sufficiently large number of cases, sometimes
skilled human intervention is necessary, especially at pro-
fessional levels.

We thus argue that high-level semantics and human inter-
pretation of the image are necessary in the process of deter-
mining whether an image is under- or overexposed. This is
further backed by the experiments performed by Akyüz and
colleagues [AFR∗07]. The authors use LDR bracketed se-
quence as proposed in [DM97] to create the HDR images.
The participants were asked to determine which single ex-
posure was the best among the exposures used. Their results
(not included in the paper, but available in [Aky]) show that
participants do not always choose the image with the fewest
under- or overexposed number of pixels, nor simply the mid-
dle exposure of the bracketed sequence. A high-level (and
probably individual) interpretation of the scene seems to take
place in the decision-making process. The design of our psy-
chophysical tests is in part motivated by these findings.

3. Psychophysical test: exposure perception

As we have argued, under- and overexposure have appar-
ently not yet been defined in objective terms‡. This suggests
that there is no correlation between aparent correct expo-
sure and objective image data, such as luminance histogram,
mean, median or percentage of under- or overexposed pixels
(see Figure2), which holds for a sufficiently large number
of images. It would be possible in theory to detect a subset
of cases, for instance when the histogram shows null values
above or below certain thresholds. But even then, false de-
tections would happen, as in the case of low-contrast images
with uniformly lit surfaces. For some applications, a use-
ful approach may be to define a threshold under which pix-
els will be considered underexposed, and a second one over
which overexposure is defined (which is how Meylan and
colleagues define highlights in [MDS06]). However, these
are operations performed at pixel level, and provide no in-
formation about the aspect of the image as a whole. More
complicated cases include the possibility of an image being
under- and overexposed at the same time in different areas
(see Figure 3).

‡ This has been confirmed by interviews with professional photog-
raphers and cinematographers

Figure 2: Two different photographs with very similar lumi-
nance histogram, mean, median and percentage of saturated
pixels. However, taking into account high-level semantics,
the photograph on the left can be considered correctly ex-
posed, while the one on the right is clearly overexposed.

Figure 3: Under- and overexposure in the same photograph.
Not enough light reaches the corner of the wall, while there
is too much light in the window area.

It thus seems that to properly classify an image as under-
or overexposed we need to rely on context-dependent, high-
level image semantics, as suggested in previous studies
[AFR∗07, Aky] and shown in Figure 2. We put this assump-
tion to the test, by comparing the subjective perception of
exposure in images with first-order image statistics: lumi-
nance histogram, mean, median and percentage of under-
and overexposed pixels (defined with reference to a certain
threshold). Gaining insight on this matter seems crucial for
the problem of reverse tone mapping for imperfect legacy
content.

3.1. Stimuli

We use images taken from 10 different scenes. The stimuli
images were captured with a Nikon D200 at a resolution of
3872 by 2592 and then down-sampled to 1920 by 1080 for
visualization purposes. The scenes were chosen to cover a
broad range of lighting conditions and environment types.
We shot a bracketed series of five exposures for each scene,
ranging from clearly underexposed (labeled as 1 in the pa-
per) to highly overexposed (labeled as 5), giving a total of
50 images used. For each scene, a tone-mapped sample is
shown in Figure 4 for visualization purposes .

Luminances values for the experimental stimuli are ob-
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tained from their (R,G,B) pixel values according to L =
0.213R+0.715G+0.072B, as proposed in [RWPD05]. Fig-
ure 5 shows the complete bracketed sequence for the sunset
scene, along with the respective histograms. Tables 1 and
2 present the luminance mean and median respectively; Ta-
ble 3 shows the percentage of pixels above a given lumi-
nance threshold of 254. This value is chosen since it has been
found to work well discriminating overexposed areas in pho-
tographs [RTS∗07]. Finally, Table 4 shows the percentage of
pixels with null luminance value, which represents our un-
derexposed pixel threshold.

Sequence / Exposure 1 2 3 4 5
Building 126.66 158.96 183.77 211.39 232.45
Car 14.72 23.79 38.41 58.58 85.06
Indoor flower 19.67 30.29 50.28 60.41 60.51
Lake 70.77 86.47 138.04 170.17 201.54
Pencils 26.68 43.37 68.65 104.5 138.95
Computers 14.93 20.55 24.05 34.98 52.51
Waxes 29.48 50.41 78.21 111.85 148.84
Sunset 91.86 108.56 139.87 194.62 229.99
Graffitti 127.06 169.69 202.56 226.57 242.94
Strawberries 90.39 130.18 168.60 199.79 223.45

Table 1: Pixel-luminance mean for the bracketed sequence
of each scene.

tinySequence / Exposure 1 2 3 4 5
Building 85 137 189 240 255
Car 6 14 27 50 86
Indoor flower 7 15 33 45 45
Lake 43 61 119 164 210
Pencils 9 18 39 83 136
Computers 0 3 5 11 26
Waxes 23 46 80 120 167
Sunset 75 97 136 218 255
Graffitti 133 189 233 255 255
Strawberries 90 140 198 246 254

Table 2: Pixel-luminance median for the bracketed sequence
of each scene.

3.2. Experimental design

The design of the psychophysical experiment follows the
scheme sometimes referred to as the method of constant
stimuli [DBW08]: the fifty images are shown one by one, in
random order, thus mixing both exposures and scenes. The

Sequence / Exposure 1 2 3 4 5
Building 4.60 19.97 40.03 44.33 47.78
Car 0.02 0.03 0.21 0.60 1.90
Indoor flower 0.64 0.79 1.30 1.95 1.98
Lake 0 0 18.71 23.93 34.49
Computers 0.14 0.54 0.90 2.32 7.36
Waxes 0 0 0 0.01 2.26
Sunset 0.01 4.45 8.35 26.16 51.72
Pencils 0 0 0 0 1.94
Graffitti 0.01 1.00 20.19 49.20 61.46
Strawberries 0 0.01 5.97 22.16 38.39

Table 3: Percentage of pixels with luminance values 254 and
255.

Sequence / Exposure 1 2 3 4 5
Building 0 0 0 0 0
Car 30.66 19.65 9.23 4.08 1.16
Indoor flower 26.11 17.10 5.99 3.62 3.50
Lake 0.10 0 0 0 0
Computers 58.06 23.53 14.11 2.70 0.12
Waxes 13.13 4.56 0.45 0 0
Sunset 0 0 0 0 0
Pencils 12.51 8.38 5.04 1.02 0.06
Graffitti 0 0 0 0 0
Strawberries 0 0 0 0 0

Table 4: Percentage of pixels with null luminance values.

participants are requested to classify each image in one of
these groups: (1) underexposed, (2) correct, (3) overexposed.
There is no fixed time for every image to be shown. The par-
ticipant can move forward (to the next photograph) when-
ever they are done judging the current image. To ensure the
validity of the data, a brief learning task is performed prior to
the real test as suggested by [Ken75]: the participants are in-
vited to judge a few images before they start classifying until
they feel confident and understand the concepts. These pre-
vious images come from extra scenes and are not part of the
test itself. The display used was a 24-inch FP241VW model
from BenQ. The experiment was set up in a darkened room
in order not to reduce the perceived contrast ratio of the dis-
play (measured at 60:1). Ambient luminance measured from
the wall was 26 cd/m2.

A gender-balanced group of 24 participants took part in
the experiment. Half of them had some photographic skills,
whilst all reported normal or corrected-to-normal vision.
They sat at a viewing distance of approximately a half meter
from the display.

3.3. Significance of the results

Visual inspection of the results of the test (Figure 6) shows
the expected logical diagonal distribution of perceived ex-
posure. Strong backlighting of the main objects in some
scenes has been mostly interpreted as under- (indoor, car)
or overexposure (building, sunset), although it could be that
the photographer’s intention was to achieve that effect. This
again indicates the need for high-level semantics and possi-
bly human intervention when judging exposure. Some kind
of machine learning or classification method, such as Sup-
port Vector Machines [Vap95] would be interesting to opti-
mally separate images perceived as under- or overexposed,
or even correctly or incorrectly (both under and over) ex-
posed. Four of the five images with strongest gradients (the
four previously mentioned plus computers) obtained the
least number of "correct exposure" votes, suggesting that
second-order statistics could provide additional insight into
this topic. As expected, the histogram by itself does not pro-
vide enough information about an image’s exposure.

To analyze correlations in the data, we rely on the Pearson
correlation coefficient ρX ,Y , defined as:
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Figure 4: Tone-mapped samples of each stimuli scene.

Figure 5: The complete bracketed sequence for the sunset scene, along with the respective histograms.

ρX ,Y =
E(XY )−E(X)E(Y )√

E(X2)−E2(X)
√

E(Y 2)−E2(Y )
(1)

where E is the expected value operator, X is the results of
the phychophysics evaluation and Y represents the objective
parameter being under study (mean, media or the percent-
age of under- or overexposed pixels). For luminance mean
and overexposure, this Pearson coefficient is ρ

o
m = 0.869.

This is a relatively high value for psychological research,
according to Cohen [Coh88]. Similar correlation exists for
the luminance median and overexposure (ρo

md = 0.846). This
correlation is logically negative for perceived underexposure
but, maybe surprisingly, not so strong (ρu

m = −0.726 and
ρ

u
md =−0.691).

A similar behavior can be observed for the percentage
of badly exposed pixels. There is a strong positive corre-
lation between perceived overexposure and saturated pixels
(ρo

p = 0.890) but it becomes lower again for perceived under-
exposure and pixels with null values (ρu

p = 0.675). Although
this is nothing but mere speculation at this point, these re-
sults may suggest some correlation between perceived ex-
posure and the well-known asymmetry of the human visual
system under photopic and scotopic conditions [Liv02]. We
believe this is an interesting result which we plan to inves-

tigate further. Figure 7 shows these results for the case of
mean and underexposure. Figure 8 shows the relation be-
tween perceived overexposure and the percentage of overex-
posed pixels. These two cases represent the most-correlated
cases for under- and overexposure respectively. Finally, it
could be thought that perceived correct exposure may be re-
lated to the low occurrence of badly exposed pixels in the
image. We found evidence of this, as indicated by its low
correlation coefficient (ρc

sum =−0.676).

In conclusion, the two key ideas learned from this exper-
iment, at least for the images shown and the statistics ana-
lyzed, are:

• The results seem to confirm the hypothesis that high-level
semantics are needed for a proper classification of expo-
sure. This is interesting since it apparently clashes with
the notion that visual appeal is based on low-level at-
tributes of an image [AFR∗07].

• We found an asymmetry in under- and overexposure per-
ception which may be deeply rooted in the behavior of our
visual system. To confirm this, more research needs to be
conducted.

c© The Eurographics Association 2008.

193



Miguel Martin, Roland Fleming, Olga Sorkine & Diego Gutierrez / Understanding exposure for reverse tone mapping

building

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

car

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

indoor flower

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

lake

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

computers

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

waxes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

sunset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

pencils

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

graffitti

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

strawberries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Figure 6: Results of psychophysics test: participants’ stimuli taxonomy. X-axis represents the five exposures for each scene;
Y-axis represents the percentage of agreement in classification (blue for underexposure, yellow for overexposure and red for
correct exposure).
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Figure 7: Inverse correlation between psychophysics results for perceived underexposure (blue) and pixel luminance mean
(red). X-axis represents the five exposures for each scene; Y-axis represents the percentage of subjects who perceived the
stimulus as underexposed (left) and mean luminance values (right). Note the changing scale in the Y-axis.

c© The Eurographics Association 2008.

194



Miguel Martin, Roland Fleming, Olga Sorkine & Diego Gutierrez / Understanding exposure for reverse tone mapping

building

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

car

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 3 4 5

indoor flower

0%

5%

10%

15%

20%

25%

1 2 3 4 5

lake

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

computers

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5

waxes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

sunset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

pencils

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

graffitti

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

strawberries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Figure 8: Correlation between psychophysics results for overexposure (blue lines) and percentage of overexposed pixels (bars).
X-axis represents the five exposures for each scene; Y-axis represents the percentage of subjects who perceived the stimulus as
overexposed.

4. Evaluating rTMO’s with incorrect exposures

The results of the previous experiment provide us with a
systematic labelling of images as under-, correctly-, and
over-exposed. Given this labelling, a key question is how
well the existing reverse tonemapping techniques can handle
incorrectly-exposed LDR data. The aim of reverse tonemap-
ping is to take LDR content and ‘boost it’ to HDR without
introducing objectionable artifacts. Do any of the existing
techniques achieve this goal? Which reverse tonemapping
schemes are most appropriate for each level of exposure? To
test these questions, we are currently conducting an experi-
ment in which we ask subjects to compare the appearance of
reverse tonemapped images on a Brightside DR37-P moni-
tor. The design of the experiment is as follows.

Our goal is to perform a side-by-side comparison of the
following four reverse tonemapping schemes:

1. LDR: the original LDR image shown on the HDR moni-
tor,

2. Linear: the contrast of the original LDR image is lin-
early scaled to match the displayable range, as described
in [AFR∗07],

3. Map: rTMO based on expand-maps introduced by
[BLDC06],

4. Fly: the ‘on-the-fly’ rTMO introduced by [RTS∗07].

Stimuli were created as follows. For all 5 exposures of each
of the10 scenes (i.e. 50 images), we apply these four rT-
MOs to the image, to yield four alternative HDR renditions.

On each trial, subjects are presented with the four rendi-
tions of a given image simultaneously in a randomized 2x2
grid (a ‘stimulus quadruple’). Subjects are asked to rank the
four images according to how ‘visually appealing and com-
pelling’ they appear. Subjects are instructed that this is a sub-
jective judgment and that there is no correct answer, they
should simply indicate the ordering of their personal prefer-
ence. Given that previous studies showed that different judg-
ment criteria (such as ‘realism’, and ‘attractiveness’) corre-
late strongly [AFR∗07, SLY∗06], we decided a single sub-
jective criterion was sufficient.

Blocks of trials consist of all 50 stimulus quadruples in
pseudo-random order, with the constraint that consecutive
trials cannot feature images from the same scene. Subjects
are given unlimited time to respond to each trial. The en-
tire experiment consisted of three blocks of trials. Between
blocks, subjects are instructed to take a short pause before
continuing with the experiment.

Once the data is analyzed, the results will provide a mean
ranking score for each rTMO applied to each exposure level
of each scene. This will allow us to determine which rTMO
is most effective for each exposure level, and whether there
is a general consensus across subjects and across scenes, or
whether current rTMOs have to be selected on a case-by-
case basis.
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5. Conclusions and Future Work

Reverse tone mapping is a process for which no definite so-
lution exists. With the increasing availability of HDR dis-
plays, the question of how to display the huge amount of
LDR legacy content becomes an important issue. In this
paper we have focused on imperfect legacy content, more
specifically on under- and overexposed material. Rather than
attempting to come up with a new reverse tone mapping al-
gorithm, we first have looked into the crucial topic of how
exposure is perceived, so that an algorithm can be devised
that keeps the look and feel of the original LDR image when
viewed on an HDR display. We argue that preliminary steps
in this direction are necessary, in order to avoid a prolifera-
tion in a near future of multiple co-existing rTMO’s, repre-
senting partial, incomplete solutions to the problem. Accord-
ing to Google Scholar, there is more than 900 papers written
on the topic of tone mapping, which amount to at least a few
dozen different algorithms [MS08]. This is a situation we
would like to avoid for reverse tone mapping.

From our psychophysical tests, two conclusions are
drawn: first, the results seem to confirm that high-level se-
mantics are probably needed for a reliable classification of
exposure in images. It could be argued, though, that for some
extreme cases this assumption would fail: for instance, a
badly washed-out image will most likely be tagged as over-
exposed even in the absence of any recognizable features
(and probably due to this absence of recognizable features).
However, we believe our assumption holds for a sufficiently
large number of cases. Second, we have found a clear ten-
dency for asymmetric exposure perception, which may be
related to the functioning of the human visual system.

In any case, both conclusions need to be further inves-
tigated, and in that sense we believe there is potential for
lots of future research in this area. It could be argued, for
instance, that the thresholds chosen for the experiments in-
troduce bias, a topic worth looking into. We are also aware
that there is an intrinsic correlation in our chosen param-
eters (histogram, mean, media and pixel percentages); our
results should thus be seen just as a first attempt at provid-
ing a taxonomy of visual stimuli for reverse tone mapping
research. Nevertheless, we hope to confirm our conclusions
with additional tests which will de-correlate these parame-
ters. Higher-order statistics will be analyzed as well, given
that visual inspection of the results suggests a correlation
with luminance gradients. Finally, more advanced analysis
techniques need to be employed.

The psychophysical experiment proposed in Section 4 to
evaluate four existing reverse tone mapping algorithms is al-
ready being performed by the authors, using a BrightSide
DR37-P (display area of 32.26 by 18.15 inches, contrast ra-
tio in excess of 200.000 : 1, black level of 0.015 cd/m2 and
peak luminance of 3000 cd/m2). We hope to be able to re-
port the results soon in a subsequent publication.
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