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Abstract. A new physically-basedillumination model describing the interaction
of light with a system composed of an isotropic substrate coated by an isotropic
film with geometrically identical statistical rough boundaries (ITF) is presented.
This model divides the intensity reflected from the system into three compo-
nents: specular, directional-diffuse and uniform diffuse intensity. The formu-
las for the intensity reflected coherently (specular) and incoherently (directional-
diffuse) from the system are derived within the framework of the scalar diffrac-
tion theory. Assuming that the slopes on the boundaries of the film are small, a
first-order expansion of the reflection coefficient is used in the evaluation of the
Helmholtz-Kirchhoff integral which allows to calculate the previous intensities.
The consistency of the model is evaluated numerically and appraised visually by
comparison with classic approximations.

1 Introduction

In the real world all materials are not polished nor perfectly smooth (soap films are an
example of surfaces that can be considered as perfectly smooth [10]): the surfaces are
assumed to be a collection of irregularities which scatters light into various directions,
though certain directions are privileged. A smooth surface will reflect light only in
the specular direction whereas a rough surface (roughness is a non intrinsic property
which depends on wavelength and incidence angle - see e.g. the Rayleigh criterion [2]
p.10) will show a diffuse-like behaviour due to diffraction by these irregularities. The
results of Beckmann and Spizzichino [1] in physical optics, which gave rise to the il-
lumination model of Cook and Torrance [5] and later to the more complete model of
He, Torrance, Sillion and Greenberg [8] in computer graphics deal with calculating the
coherent (specular) and incoherent (directional-diffuse) components of light diffracted
by a single rough surface with uniform reflection coefficient. The problem of rendering
systems consisting of rough thin films or rough multilayers is more complex because the
reflection coefficient of such systems depends on the geometry (and then on the rough-
ness) of eachboundary and cannot be considered as uniform. People already achieved
realistic pictures of rough thin films or multilayers by means of spectral BRDFs [7] or
intuitive approaches (see e.g. [15] and [6]) coupled with classic illumination models.
In 1994, Callet [3] obtained pictures of thin film coatings and metallic paints by means
of the geometric optics model of Cook and Torrance [5] used together with some ap-
proximations. These approximations consist in calculating the bidirectional reflectance
function for eachboundary and using the interference formula valid for smooth films
(see formula (1)) to deduce the total BRDF of the system (see [4] p. 203-205). Within
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the framework of the scalar diffraction theories, it is nevertheless possible to determine
precisely (or at least with a given accuracy) the components of light reflected towards an
observer from a system substrate-thin film under certain assumptions. In this paper, we
first evaluate the coherent and incoherent intensities reflected from a system substrate-
identical thin film towards an observer situated in the Fraunhofer diffraction zone ([2]
p. 343), in a given direction. Then, we deduce the local illumination model as a sum of
three intensities : specular, directional-diffuse and uniform diffuse. These results will
be compared with those obtained by neglecting the spatial dependence of the reflection
coefficient (which amounts to considering the system as an equivalent surface with a
Fresnel coefficient equal to the amplitude reflection coefficient of the corresponding
smooth plate formed by the mean planes of the boundaries). The assumptions entering
into this model are specified in detail as follows:

1. The system consists of an homogeneous and isotropic thin film with complex re-
fractive index and an isotropic substrate. Both ambient-film and film-substrate
boundaries are geometrically identical (identical thin film denoted I.T.F after-
wards) and generated by a stationary isotropic stochastic process.

2. The height-deviation� of the surfaces from their mean planes is characterised by
a Gaussian probability density function involving two parameters : the surface
RMS height�, and the correlation length� .

3. Boundaries are locally smooth (LSRS-type film : see [14] p.254)
4. The incident wave is plane and monochromatic.
5. The dimensions of the irradiated surface (2X, 2Y) are much greater than the

wavelength� of incident light and the surface correlation length� .
6. The point of observation is in the Fraunhofer diffraction zone.

The paper is arranged as follows:

� Section 2 derives the general and simplified expressions of the amplitude reflec-
tion coefficient for a system substrate-identical thin film.

� In Section 3 we evaluate the coherent and incoherent intensities reflected from
the system.

� Section 4 specifies the local illumination model.
� Section 5 provides a numerical and a visual estimation of the error committed on

the directional-diffuse component by assuming a uniform reflection coefficient in
the Helmholtz-Kirchhoff integral.

� Finally, the last section of this contribution presents the conclusions.

2 Amplitude reflection coefficient for a system substrate-identical
thin film

The illumination model described by He, Torrance, Sillion and Greenberg in 1991 [8]
was obtained by applying the scalar form of the Kirchhoff theory to the case of a single
rough surface with uniform reflection coefficient. As it will be shown hereafter, the am-
plitude reflection coefficient of a system substrate-I.T.F. depends on space coordinates
by means of� and thus, using the results of He, Torrance, Sillion and Greenberg for
this kind of system is inappropriate. The model has to be extended to account for a non
uniform reflection coefficient, the expression of which will be derived below.
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2.1 General expression of the reflection coefficient of a system substrate-I.T.F

Consider a plane progressive monochromatic unpolarised wave incident under the angle
�1 on the upper mean plane of the film (see Fig. 1). This wave shall be resolved into
two linearly polarised components, with polarisation planes respectively parallel (==)
and perpendicular (?) to the plane of incidence. The film is assumed to be the LSRS
type, which allows us to make the tangent plane approximation. The I.T.F. is then
represented locally by a plane parallel plate inclined under the angle to the (Ox) axis
(see Fig. 1). Assuming that the transverse dimensions of this plate are much greater
than wavelength, the amplitude of the local electric field can be obtained by summing
the amplitudes of the multiple reflected waves, to infinity, for both components of the
incident wave. The field reflected by the plate,Elsc is then expressed by means of the
following classic equations (see e.g. [9]):

Elsc = RlElincident Rl =
R01l +R12le

j�

1 +R01lR12le
j�

(1)

wherej2 = �1 and subscriptl denotes either the parallel or perpendicular (l = ==or ?)
component with:
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it follows thatRl can also be expressed by means of�
0

x and�
0

y . However, as the general
expression ofRl is difficult to integrate in the Helmholtz-Kirchhoff integral (see Section
3), we will use the small-slope assumption, which allows to limit ourselves to a first
order expansion ofRl in �

0

x and�
0

y [13].

2.2 First order expansion of the reflection coefficient

As locally smooth rough surfaces are characterised by small partial derivatives�
0

x and
�

0

y ,R== andR? (see equations (1) and (2)) can be expanded to the first order in�
0
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These simplified expressions ofR? andR== will be used instead of the full expres-
sions of the reflection coefficient in the Helmholtz-Kirchhoff integral (see next section).

3 Evaluation of the coherent and incoherent intensities

In this section, we derive the expressions of the intensities reflected coherently and
incoherently from the system, which are at the basis of our illumination model.

3.1 Field reflected from an ITF in the Fraunhofer diffraction zone

The scalar form of the Helmholtz-Kirchhoff integral [13] applied to both components
of the incident wave provides an expression of the electric field diffracted at a point P
in the far zone (see Fig. 2), in a direction defined by angles�2 and�3, as a function of
the reflected electric fieldElsc and its normal derivative with respect to the normal on
the surface S:
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Subscriptl denotes either the parallel or perpendicular (l = ==or ?) component,
�!
k2

the wave vector of the scattered wave, the Green function,� the distance between the
origin of the reference frame and point P, and�!r the vector from the origin to a point M
on the upper boundary (see Fig. 1 and Fig. 2). The incident plane wave is represented
by the scalar electric fieldElinc = El0e

j(
�!
k1:�!r �!t) whereEl0 is the amplitude of the

wave,! is its angular frequency and
�!
k1 is the incident wave vector. The time-factor

e�j!t will be omitted subsequently. The reflected electric fieldElsc and its derivative
along the normal�!n at point M then express as:
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After expanding equation (4) to the first order in�
0

x and �
0

y and replacing into the
Helmholtz-Kirchhoff integral, we obtain:
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By analogy with the calculations of Beckmann and Spizzichino, and using the same
assumptions, we find:
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where S is the illuminated part of the surface. Beckmann and Spizzichino label the
term �l(X;Y ) “edge effects”, as it involves values of�!v :�!r at the surface edges and
neglect it in the calculation of the coherent component of the electric field, given that
the dimensions of the surface are much greater than wavelength. It can nevertheless
be shown that despite this assumption, the edge effects are negligible only close to the
specular direction. However, making one further assumption ([12] p.86), it is possible
to evaluate the average of the edge terms. It should be pointed out that if we take� = 0
, equations (5)-(6) amount to the results found by Beckmann et Spizzichino in the case
of a single rough surface ([1] p.28).

3.2 Coherent intensity

From equation (5), we draw the expression of the average intensityIlc of the field co-
herently reflected from the whole surface at point P. If we label�El(P ) the conjugate of
the electric fieldEl(P ) andhEl(P )i the average ofEl(P ) with respect to the statistical
variable, we obtain:

Ilc =
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�
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where�1 is the one-dimensional characteristic function of the rough surface and:

sinc(x) =
sin(x)

x
; x 2 <:

This implies, after some simplifications:

hEl(P )i = jejk�

4��
�lAvz sinc(vxX)sinc(vyY )�1(vz)El0

For a surface with a Gaussian height distribution, characterised by the probability den-
sity functionp(�) = 1

�
p
2�
e��

2=2�2 , we have:

�1(vz) =
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p
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Z 1

�1
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with g = (�vz)
2. The coherent intensity then becomes:

Ilc(�1; �2; �3) =
Aj�lj2

4�2 cos �2
[sinc(vxX) sinc(vyY )]

2
(cos �1 + cos �2)

2e�gIlincd!1

whereIlinc represents the incident intensity for the parallel or perpendicular component
andd!1 the incident solid angle. It should be noted that in the case whenX >> �
andY >> �, the coherent intensity is zero in all directions, excepted in the specular
direction. In this case the coherent intensity will be identified with the specular intensity
of our illumination model (see Section 4). For unidirectional incidence with solid angle
d!1, the specular intensity becomes (see [8] p. 186):

Ilsp(�1; �2) = j�lj2e�g�Ilinc (7)

� is a function which is unity in the specular cone of reflection and zero otherwise. We
have to notice that formula (7) does not involve�l : the specular intensity reflected by
the system substrate-I.T.F. is equal to the specular intensity reflected by an equivalent
surface with a Fresnel factor equal to the reflection coefficient of the corresponding
smooth film (the parallel plate formed by the mean planes of the boundaries).

3.3 Incoherent intensity

The incoherent (or directional-diffuseIldd) intensity is given by the formula:

Ildd =
�2

A cos �2

�

El(P ) �El(P )

�� hEl(P )i 
 �El(P )
��

This expression can be developed using the one-dimensional (�1) and two-dimensional
(�2) characteristic functions of the surface (see [12] p. 17). Assuming that the edge
effects are non stochastic (so that they give no contribution to the incoherent intensity)
we obtain:

Ildd =
�2jKFlj2
A cos �2
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Z Y

�Y

Z X
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Z Y

�Y
ej(vx(x�x

0

)+vy(y�y
0

))�2(vz;�vz; �)dxdydx
0

dy0
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For a Gaussian height distribution, the final formula for the directional-diffuse intensity
is:

Ildd =
��2

4�2 cos �2

?????�l v̂x � �l

�!̂
v :
�!̂
v

v̂z

?????
2

e�g
1X

m=1

gm

mm!
e�

�2�2(v̂2x+v̂
2
y )

m�2 Ilincd!1 (8)

where� is the correlation length of the surface and
�!̂
v = �!v =kvk:

It should be noted that taking�l = 0 in equation (8) leads to the formula of the
directional-diffuse intensity given by He, Torrance, Sillion and Greenberg ([8] p.186)
excepted that the Fresnel factor is replaced by the reflectivityj�lj2 of the plane parallel
plate formed by the mean planes of the surfaces.

4 Local illumination model

Like the model of He, Torrance, Sillion and Greenberg, our illumination model is pre-
sented as a sum of three terms : specular intensity, directional-diffuse intensity and
uniform-diffuse intensity:

Ir(�1; �2; �3) = Iud(�1) + Isp(�1; �2) + Idd(�1; �2; �3) (9)

Isp(�1; �2) is the specular intensity given by formula (7),Idd(�1; �2; �3) is the direc-
tional diffuse (see formula (8)) intensity, andIud(�1) is the uniform diffuse intensity
which results from the multiple surface and subsurface reflections and can be approxi-
mated by the Lambert formula:Iud(�1) = j�lj2 cos �1d!1, where�l is the zero-order
term of the expansion of the reflection coefficient for the parallel or perpendicular com-
ponent (see formula (3)). The local illumination model forN finite solid angle sources,
accounting for both polarisation components is given by:

Ir(�) =

NX
k=1

�
j�kj2 cos �1kd!k + j�kj2e�gkS�

�
Iinck

+
��2S

4�2 cos �2
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k=1

j�kj2e�gk
1X

m=1

gmk
mm!

e�
�2�2(v̂x

2+v̂y
2)k

m�2 Iinckd!k

where subscriptk denotes thekth light source,S is the shadowing function (see [8]
equations (23)-(25)) andIinck is the total (parallel + perpendicular) incident intensity
for light sourcek. The terms inside the brackets respectively correspond to the three
terms in equation (9) and:

j�kj2 =
j�==kj

2
+ j�?kj2
2

j�kj2 =
j�==v̂x � �==(

�!̂
v :
�!̂
v =v̂z)j2k + j�?v̂x � �?(

�!̂
v
�!̂
v =v̂z)j2k

2
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5 Estimation of the error committed on the directional-diffusecom-
ponent by assuming a uniform reflection coefficient

We have just seen that the first order term in the expansion of the reflection coefficient,
�l , only appeared in the directional-diffuse (incoherent) part of the reflected light. Ne-
glecting this term (which amounts to considering the film as an equivalent surface with
a reflection coefficient equal to the amplitude reflection coefficient of the plane parallel
plate formed by the mean planes of the I.T.F.) will thus result in an error only on the
directional-diffuse term. The next section aims at evaluating this error both numerically
and visually according to the angular (�1,�2 and�3) and film (RMS height�, correlation
length� , thicknesse) parameters.

5.1 Directional-diffuse intensity obtained by considering the reflection coefficient
to be uniform

A first approximation consists in using the formula given by He, Torrance, Sillion and
Greenberg for a rough surface to compute the directional-diffuse intensity reflected
in the direction(�2; �3) (see [8] p.186) by replacing the Fresnel coefficientjF j2 by
the reflectivityj�j2 of the plane parallel plate formed by the mean planes of the I.T.F.
(which amounts to taking� = 0 in equation (8)). The directional-diffuse intensity
(without shadowing) is then (see Fig. 1 and Fig. 2 for the notations):

Idd1 =
��2e�g

4�2 cos �2

j�==j2 + j�?j2
2

 �!̂
v
�!̂
v

v̂z

!2 1X
m=1

gm

mm!
e�

�2�2(v̂2x+v̂
2
y)

m�2 Iincd!1 (10)

5.2 Directional-diffuse intensity obtained by means of a first order expansion of
the reflection coefficient.

Using a first order expansion of the reflection coefficient, the total directional-diffuse
intensity was obtained in the form (see equation (8)):

Idd2 =
��2e�g

4�2 cos �2

j�==v̂x � �==(
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v
�!̂
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2
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2

2
:
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e�

�2�2(v̂2x+v̂
2
y)

m�2 Iincd!1

(11)

5.3 Numerical estimation of the error

The relative error committed by usingIdd1 instead ofIdd2 for the directional-diffuse
intensity is evaluated by the functionD which depends on wavelength, incidence angle
�1 and viewing angles�2 and�3:

D(�; �1; �2; �3) =
Idd2 � Idd1

Idd2

D =

???�==v̂x � �==
�!̂
v :
�!̂
v

v̂z

???2+???�? v̂x��?�!̂v :
�!̂
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v̂z

???2�???�==�!̂v :
�!̂
v

v̂z

???� ???�?�!̂v :
�!̂
v

v̂z

??????�==v̂x � �==
�!̂
v :
�!̂
v

v̂z

???2 + ???�?v̂x � �?
�!̂
v :
�!̂
v

v̂z

???2
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It shall be noticed thatD is independent of the surface parameters� and� . In order to

Fig. 3. a) Relative error for�1 = 60�, �3 = 0� and for the four Meyer wavelengths:
631.4 nm 456.4 nm557.7 nm 490.9 nm

b) c) d) Relative error for:b)�3 = 50� c)�3 = 0� d)�3 = 110�

The four polar curves correspond to different values of the angle of incidence:
θ1=30° θ1 =80°=45° θ1=60° θ1

estimate this error, we made a series of numerical simulations. The error was estimated
for an I.T.F. of copper oxide (thicknesse = 800nm) on a copper substrate. Figure 3a-d
are polar representations of the relative errorD as a function of the viewing angle�2
(the polar radius isD and the polar angle�2). Figure 3a displays the variations ofD for
an angle of incidence�1 = 60�, in the plane of incidence (�3 = 0� ), for the four Meyer
wavelengths [11]. It can be noticed that the error on the component with� = 631:4nm
is quite small (D = 18 percent) whereas it is very important for the component with
� = 456:4nm (about73 percent). Similarly, the polar plots on Figures 3b,c,d represent
the variations of the relative error in different viewing planes (characterised by angle
�3) for several values of the angle of incidence�1 and for the red (� = 631:4nm)
component. It can be seen that the maximum value of the error strongly depends on
the value of the incidence angle. For instance, in the plane of incidence (see Fig. 3b)
the maximum of the error is18 percent for�1 = 60� and55 percent for�1 = 80�.
Note that the error is equal to zero for some values of the angle�2, which correspond
to vx = 0. As a conclusion, we can state that for given incidence and viewing angles,
the relative error may be quite important, depending on the wavelength of light, and
for a given wavelength and given viewing angles, the error can become very significant
according to the angle of incidence of light.
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5.4 Visualisation of the error

We have just seen that the relative error on the diffuse component was independent of
the surface parameters (RMS height� and correlation length� ) and could be great for
some values of the angular parameters. The aim of this section is to appraise visu-
ally the difference between pictures rendered by both models according to the surface
parameters.

The following pictures (see Appendix), generated by a spectral ray-tracing algo-
rithm working on the four Meyer [11] wavelengths, display the evolutionof the directional-
diffuse component of light reflected by a system substrate-identical thin filmaccording
to the film parameters (correlation length� , RMS height�, film thickness). The spheres
are made of a thin identical copper oxide film on a copper substrate (excepted for pic-
tures 5c and 5f where the substrate is silver). The materials are characterised by their
complex refractive indices, derived from experimental data for each one of the four
Meyer wavelengths. The film spreading on the spheres was simulated by means of a si-
nusoidal variation of thickness fromemax at the top of the sphere toemin at the bottom.
Pictures 4-6 a, b, c were obtained by the use of formula (10) for the directional-diffuse
intensity, whereas pictures 4-6 d, e, f were rendered by means of formula (11). The
lighting consists of a single spherical light source situated behind the observer. It can
be noticed that the visual differences between pictures rendered by the two models can
be significant or negligible depending on the value of the film parameters. For instance
there is a clear difference between pictures 4a and 4d: Fig. 4d displays a wider dif-
fuse spot and a green fringe of interference which does not appear on figure 4a. As the
correlation length increases with� fixed at100nm (see Fig. 4b and 4d), the surface
becomes smoother with respect to the incident light, and the differences between the
two pictures vanish (it can be noticed that the diffuse patch is smaller than on figures
4a and 4d: the surface becomes less diffuse as�=� decreases). Similarly, as the RMS
height� increases from100nm to 130nm with � fixed at1:6�m (see figures 4c and
4f) the diffuse term spreads out slightly, but the visual differences between the two pic-
tures remain small. Pictures 5a-f show the directional-diffuse term with� and� fixed at
100nm and1�m respectively, for different values of the oxide film thickness, on a cop-
per (5a,5b,5d,5e) or silver (5c,5f) substrate. It can be noted that whatever the thickness
of the oxide film, pictures rendered by both models are quite different for such values
of � and� . If now the ratio�=� is held constant at0:1 (see figures 6a-f), increasing
� tends to attenuate the differences between pictures rendered by both models. As a
conclusion, we can state that the influence of the surface parameters on the visual dif-
ference between the two models is clear: for given illumination and viewing angles, a
visual difference which is not important can become significant for some values of the
surface parameters.

Pictures 7a-d and 8 display scenes rendered by a full semi-global illuminationmodel
obtained by completing the local illumination model (see Section 4) by global reflection
and transmission terms. Pictures 7a, 7b, 7c, 7d represent a piece of oxidised copper (Fig.
7a and 7b) or iron (Fig. 7c and 7d) piping illuminated by two spherical light sources.
The thickness of the oxide film was taken to be a function of the space variables varying
between500 and1000nm. Pictures 7a and 7c were obtained by using formula (11) for
the directional diffuse intensity whereas for pictures 7b and 7d, formula (10) was used.
It can be noticed that on Fig. 7a, the yellow fringe is wider than on Fig. 7b, which
exhibits a bigger green fringe of interference. The difference between Fig. 7c and Fig.
7d is less obvious, but the fringes seem brighter on Fig. 7c and the green interference
fringe wider on Fig. 7d. The global reflection of the walls can be clearly observed on
the iron piping.
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Figure 8 depicts a set of saucepans made of an iron substrate coated with an iron oxide
I.T.F.. The thickness of the oxide film on the discs forming the bottom of each saucepan
is bounded by the valuesemin and emax (different for each saucepan) and increases
irregularly fromemin at the centre of the disc toemax at its edge. The reflection of the
yellow table can be seen in the bottom of the saucepans. Computation times are similar
to those obtained by any classic ray-tracing algorithm and quite identical for the two
models. For instance rendering picture 7.b takes about half an hour for a resolution of
900x600, on a Pentium II 333 Mhz, whereas rendering Fig. 7a only takes 11 per cent
more computation time.

6 Conclusions and future directions

We have presented a new illumination model for substrate-identical thin film-type sys-
tems. Based on scalar diffraction theories, it allows to evaluate with given accuracy
the components of light reflected from a system substrate-identical thin film. We have
shown both numerically and visually the consistency of this model by comparison with
a simple classic approach. Future work consists in expanding this illumination model
to account for systems of the kind substrate-general thin film (film with mutually inde-
pendent rough boundaries) and to rough multilayer systems.
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