
Information Theory Tools
for Scene Discretization

Miquel Feixas�, Esteve del Acebo�, Philippe Bekaerty and Mateu Sbert�
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Abstract. Finding an optimal discretization of a scene is an important but dif-
ficult problem in radiosity. The efficiency of hierarchical radiosity for instance,
depends entirely on the subdivision criterion and strategy that is used. We study
the problem of adaptive scene discretization from the point of view of inform-
ation theory. In previous work, we have introduced the concept of mutual in-
formation, which represents the information transfer or correlation in a scene, as
a complexity measure and presented some intuitive arguments and preliminary
results concerning the relation between mutual information and scene discretiza-
tion. In this paper, we present a more general treatment supporting and extending
our previous findings to the level that the development of practical information
theory-based tools for optimal scene discretization becomes feasible.
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1 Introduction

From the point of view of Information Theory (IT) [4, 7], the discretization of a scene
into patches in the radiosity method can be understood as the encoding or compression
of a continuous signal over a discrete channel with the consequent distortion or inform-
ation loss. The continuous signal corresponds to the (continuous) radiosity function
B(x) on the surfaces of the scene. The discrete channel is represented by a Markov
Chain, with states corresponding to the patches into which the scene is discretized. The
transition probabilities essentially correspond to the form factors.

To each discretization can be associated a quantity,mutual information, which quan-
tifies the information transfer or information gain in a system. From the IT point of
view, the optimal discretization corresponds with the one with minimal loss of inform-
ation, or vice versa, the one with the highest mutual information. The most common
distortion measure is the mean square error (MSE) or equivalently theL2 norm. We
can expect that the optimal discretization should give a minimum MSE.

Mutual information was proposed as a scene complexity measure in [9]. In [9] we
also presented some intuitive arguments and preliminary results concerning the rela-
tion between mutual information and scene discretization. In this paper, we present
a theorem that solidifies this previous work and allows to extend it to the level that
the development of practical IT-based tools for scene discretization becomes feasible.
We derive the optimal discretization for some simple scenes and common patch con-
figurations. A heuristic for the patch-to-patch case is given, which can be used as an
oracle for subdivision. We give also some evidence that the optimal mutual information
discretization corresponds well to an optimal mean square error discretization.

The organisation of the paper is as follows: In section 2 we present a brief overview
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of our previous work [1, 8, 9] on the subject. In section 3 we present a general setting
with its application to visibility, radiosity and importance. In section 4 we develop
heuristics for good discretizations. In section 5 a proposal for a new subdivision oracle
is presented and finally in section 6 we present our conclusions and future work.

2 An IT framework for the analysis of scene complexity

In this section we briefly review some basic concepts introduced in [1, 8, 9].

Complexity. Complexity reflects “the difficulty of describing a system, the difficulty
of reaching a goal, the difficulty of performing a task, and so on” [14]. Over the last
twenty years several complexity measures have been proposed from different fields to
quantify the degree of structure or correlation of a system [10]. We study this concept
of complexity from the point of view of IT [4, 7].

Markov Chains. In general, a Markov Chain is a sequence of random variables (sets
of values or events with associated probabilities)Xk; k = 0 : : :1 in which each
Xk; k � 1 depends only on the previousXk�1 and not on the ones before. A Markov
Chain is often characterized by a set ofstateslabelledi = 1; : : : ; n. The random vari-
ablesXk indicate the probability of finding an imaginary particle in each statei after
k steps from an initial distribution given byX0. In each step, the imaginary particle
makes a transition from its current statei to a new statej with transition probabil-
ity Pij . Under certain conditions (which are fulfilled in the context of this paper), the
probabilities of finding the particle in each statei converge to astationary distribution
w = (w1; : : : ; wn) after a number of steps. The stationary, or equilibrium probabilities
wi fulfil the relationwi =

Pn

j=1 wjPji. For the Markov Chains we deal with in this
paper, the stationary distribution also satisfies another (balance or reciprocity) relation
wiPij = wjPji.

Markov Chains for studying scene visibility complexity. In [9], we studieddiscrete
scene visibilitycomplexity by letting the statesi = 1; : : : ; np correspond to the patches
of a scene and the transition probabilitiesPij with the form factorsFij . np denotes the
number of patches. It can be shown [9] that the stationary probabilities of the resulting
Markov Chain are given bywi = Ai=AT , the relative area of the patchesi of the scene
(Ai is the area of patchi, AT is the total scene surface area).

When the states form a countable set, as above, the Markov Chain is called adiscrete
chain. When the states are not countable, the chain is calledcontinuous. For instance,
when taking infinitesimal areasdx at each pointx on the surfacesS of the scene as the
states and differential form factorsF (x; y) with x; y 2 S as transition probabilities, a
continuous Markov Chain with stationary distributionw(x) = 1=AT results. We have
used this Markov Chain to studycontinuous scene visibilitycomplexity.

Shannon entropy. The Shannon entropy of the stationary distribution(wi) of a dis-
crete Markov Chain is defined asHp = �

Pn

i=1 wi logwi. In the case of discrete scene
visibility:

Hp = �

npX
i=1

Ai

AT

log
Ai

AT

: (1)

The Shannon entropy, which we will call the (discrete)positional entropyin this case,
reflects the uncertainty on the position (patch) of a particle travelling an infinite random
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walk with transition probabilities equal to the form factors. The logarithms are taken in
base 2 and we take0 log 0 = 0.

For a continuous Markov Chain, e.g. for studying continuous visibility complexity,
the sum

Pn

i=1 shall be replaced by an integral over the uncountable set of states.

Entropy rate. The entropy rate of a Markov Chain with transition probability matrix
(Pij) and stationary probability distribution(wi) is defined as
Hs = �

Pn

i=1

Pn

j=1 wiPij logPij . Applied to scene visibility:

Hs = �

npX
i=1

npX
j=1

Ai

AT

Fij logFij : (2)

The scene visibility entropy rate measures the average uncertainty that remains about
the patchj visited next (destinationpatch) when an imaginary particle undergoing an
infinite random walk, with the form factors as transition probabilities, is known to be
on a given patchi (sourcepatch).

Mutual information. Mutual information is defined as the difference of Shannon en-
tropy and entropy rate:Is = Hp�Hs. Thediscrete scene visibility mutual information

Is =

npX
i=1

npX
j=1

AiFij

AT

log
FijAT

Aj

(3)

can be interpreted as the amount of information that the destination patch conveys about
the source patch, and vice versa.Is is a measure of the average information transfer in
a scene[9].

Continuous versus discrete mutual information. By discretizing a scene into patches,
a distortion or error is introduced. In a way, to discretize means to equalize. Obviously,
the maximum accuracy of the discretization is obtained when the number of patches
tends to infinity and the size of the patches tends to zero.

Mutual information between two continuous random variablesX andY is the limit
of the mutual information between their discretized versions [7, 11]. In our case, dis-
crete scene visibility mutual informationIs (3), converges tocontinuous scene visibility
mutual informationIcs when the maximum patch size tends to zero [9]:

Ics =

Z
x2S

Z
y2S

1

AT

F (x; y) log(ATF (x; y))dxdy (4)

Ics expresses with maximum accuracy the information transfer or correlation in a scene.
This is anabsolutemeasure of the complexity of scene visibility. On the other hand,
discrete mutual informationIs expresses the complexity of a discretized scene, which
is always lower than the correspondingIcs .

Scene radiosity complexity. Measures for the complexity of a scene, taking also dif-
fuse illumination into account besides visibility, can be obtained by using a different
pair of discrete and continuous Markov Chains [9] (see alsox3.4 below).
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3 Mutual information and patch subdivision

In [9] we presented intuitive arguments and preliminary results suggesting that between
different discretizations of the same scene the most precise one will be the one that has
the highest mutual informationIs, i.e., the one that best captures information transfer
or has minimum information loss. We presented experiments for scene visibility and
radiosity complexity.

In this section, we present a theorem (x3.1) that supports our preliminary findings
and allows to derive more exact predictions of the gain in mutual information resulting
from subdivision of scene patches. We first study the problem for a general scene
complexity Markov Chain (x3.2) and next consider the application to scene visibility
(x3.3), radiosity (x3.4) and importance (x3.5).

3.1 State refinement and continuous versus discrete mutual information

Theorem 1 Consider a discrete Markov chain over a set of states labelled
i; j=1; : : : ; n, with transition probability matrixP = (Pij) and stationary distribution
w = (w1; w2; : : : ; wn) which satisfies the reciprocity relationwiPij = wjPji 8i; j.
When a statei is refined intom sub-statesik; k = 1; : : : ;m such that

(a) wikPikj = wjPjik 8ik; j (reciprocity relation with the sub-states);
(b) Pji =

Pm

k=1 Pjik 8j (the sub-statesik “cover” i),

mutual information increases (or remains the same). (Proof in appendix A.)

Corollary 1 Continuous mutual informationIc of a scene which fulfils the conditions
of the above theorem is the least upper bound to discrete mutual informationI .

Proof: Continuous mutual information between two continuous random variablesX
andY is the limit of the discrete mutual information between their discretized versions
[7]. The statement thatIc is the least upper bound toI then immediately follows from
the above theorem. 2

3.2 Patch-to-patch increase in mutual information

If we consider a scene with planar patches, the increase in mutual information between
two planar patchesi andj when subdividingi intom sub-patches is

(�I)ij = 2

  
mX
k=1

wikPikj log
Pikj

wj

!
� wiPij log

Pij

wj

!

= 2

  
mX
k=1

wikPikj logPikj

!
� wiPij logPij

!
(5)

This can be obtained from (10) and (11) in appendix A , where the second half of these
formulae is null, and from the conditions of the theorem. For a regular subdivision,
wik = wi

m
, we have

(�I)ij = 2

  
wi

m

mX
k=1

Pikj logPikj

!
� wiPij logPij

!

4



and it can be shown that thetheoreticalmaximum possible increase inI happens when
for all k except onePikj = 0. The one not null can be shown to be equal tomPij . Thus
the maximum possible increase inI is given by

max((�I)ij ) = 2(wiPij logmPij � wiPij logPij) = 2wiPij logm (6)

If we sum overj, we will obtain the maximum possible increase when dividing a given
patchi X

j

max((�I)ij ) =
X
j

2wiPij logm = 2wi logm

Thus a heuristic to pick a patch to subdivide regularly, lacking any other knowledge,
would be to take the one with maximumw.

3.3 Application to visibility

Takingwi = Ai

AT
andPij = Fij , it is easy to see that the hypotheses of theorem 1 are

fulfilled. Thus, from (5), the increment of mutual information is in this case

(�I)ij = 2

  
mX
k=1

Aik

AT

Fikj log
FikjAT

Aj

!
�

Ai

AT

Fij log
FijAT

Aj

!

= 2

  
mX
k=1

Aik

AT

Fikj logFikj

!
�

Ai

AT

Fij logFij

!
(7)

Thus, the maximum increase upon a regular subdivision is

max((�I)ij) = 2
Ai

AT

Fij logm

and the maximum possible increase when dividing a given patchi is 2 Ai

AT
logm.

3.4 Application to radiosity

In the radiosity setting, we consider the following transition probabilities

Pij =

R
Si

R
Sj
F (xi; xj)B(xi)B(xj)dxidxjR
Si
B(xi)

B(xi)�E(xi)

R(xi)
dxi

These are the extension to the continuous case of the discrete null variance probabilities
(see below) and fulfil

P
j Pij = 1 due to the additivity of the integral over its domain

S, whereS = [jSj , and the fact that the radiosities fulfil the diffuse rendering equation

B(xi) = E(xi) +R(xi)

Z
S

F (xi; x)B(x)dx

It can be easily checked that the equilibrium probabilities are

wi =

Z
Si

B(xi)
B(xi)�E(xi)

R(xi)
dxi
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and the reciprocity relation is trivially fulfilled. The normalising factor ofwi is

X
j

Z
Sj

B(xj)
B(xj)�E(xj)

R(xj)
dxj =

Z
S

B(x)
B(x) �E(x)

R(x)
dx

If we divide patchi into i1 andi2 it is easy to prove, due to the additivity of the integ-
rand, that the hypotheses of the theorem 1 are fulfilled. The radiosity case reverts to the
visibility case whenB(x) = k, wherek is a constant, and this happens whenever8x
E(x) = k(1�R(x)).

Now let us suppose radiosities and reflectivities are constant along each patch. In
this casewi = AiBi

(Bi�Ei)

Ri
andPij =

RiFijBj

Bi�Ei
. These quantities can be considered

a kind of generalized area and form factor respectively, by analogy with the visibility
case in section 3.3. ThePij probabilities were found to be the null variance transition
probabilities for a gathering random walk in [17].

3.5 Application to importance

The continuous importanceI(x), given initial importanceV (x), is the solution to the
integral equation for importance on a pointx [16]:

I(x) = V (x) +

Z
S

R(y)F (x; y)I(y)dy

Consider now the transition probability

Pij =

R
Si

R
Sj
F (xi; xj)R(xi)R(xj)I(xi)I(xj)dxidxjR
Si
R(xi)I(xi)(I(xi)� V (xi))dxi

Similarly to the radiosity case, we have
P

j Pij = 1 due to the additivity of the integral
over its domainS, whereS = [jSj , and the fact that importances fulfil the importance
integral equation. The equilibrium probabilitieswi are (without normalising)

wi =

Z
Si

R(xi)I(xi)(I(xi)� V (xi))dxi

and the reciprocity relation is fulfilled. If we divide patchi into i1 andi2, similarly to
radiosity, the hypotheses of the theorem are fulfilled. It can be seen that forR(x)I(x) =
k for all x, that happens when we takeV (x) = k( 1

R(x)
�1), the importance case reverts

to the visibility case.
Now let us suppose importances and reflectivities are constant along each patch. In

this casewi = AiRiIi(Ii � Vi) andPij =
RjFjiIj
Ii�Vi

. WhenVi = Æik we have the null
variance transition probabilities for a shooting random walk [17].

4 Results and discussion

In this section we discuss how mutual information varies for some common patch con-
figurations and some simple scenes (x4.1). We also provide some evidence that an
optimal subdivision obtained by mutual information maximization corresponds well to
an optimal subdivision in terms of mean square error (x4.2).
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4.1 Maximal mutual information subdivision for some common configurations

The following results can be obtained from (7), form factor properties and closed form
formulae for the unoccluded form factors [6, 18, 12]:

Partially occluded pair of patches (figure 1a). Consider the subdivision of patchi
into two sub-patches:

1) Of all subdivisions ofi with one sub-patch totally occluded toj, the maximum
mutual information increase corresponds to the discontinuity mesh (see appendix B.1).

2) When the point-to-point form factorF (x; y) is approximately constant forx
in the unoccluded part ofi andy in j, the maximum increase in mutual information
corresponds to the discontinuity mesh (see appendix B.2).

Two square patches with common edge (figure 2).Consistent with observations in
[5], orthogonal splitting (figure 2(b)) leads to only a small gain in mutual information.
Nothing is gained by orthogonal splitting in the middle. When splitting along a line
parallel with the common edge (figure 2(a)) the maximum gain in mutual information
results when splitting at a 40% relative distance from the edge (figure 2(c)).

Three square patches with common edges (figure 3).The maximum gain is ob-
tained at a distance39% from the edge. The small displacement (from40% to 39%)
towards the edge with respect to the previous case is due to the small positive gradient
of mutual information for the orthogonal subdivision (see figure 2(b), squares).

Empty cube (figures 4 and 5). The resulting maximum mutual information subdivi-
sion is a bit displaced towards the edges with respect to the regular one. Figure 5 shows
an example with more subdivisions.

i

j

l
0

1
i

j

(a) (b)
Figure 1. (a) Partially occluded patch pair. (b) (x4.2) Subdivision of a patch perpendicular to
the radiosity gradient. The position of the cutting line is parametrized by the relative distance
0 � l � 1 to one edge.
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(a) (b) (c)
Figure 2. Mutual information on vertical axis (c) when dividing orthogonal (b,squares) and
parallel (a,diamonds) to the common edge. Horizontal axis represents the displacement from the
common edge (a) or one side edge (b).
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(a) (b)
Figure 3. Mutual information on vertical axis (b) when subdividing a patch in a corner (a).
Horizontal axis represents the distance from the parallel division to one common edge.
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(a) (b) (c) (d)
Figure 4. (d) Mutual information on vertical axis for an empty cube. Horizontal axis represents
the relative displacement of a nearest subdivision to a common edge, ranging from0 to 10. (b)
corresponds to the optimal case, with value near to6, (a) with value2 and (c) with value8.

(a) (b) (c)
Figure 5. An empty cube with (a) optimal (I = 1:3569), (b) regular (I = 1:3331) and (c) “bad”
(I = 1:2554) subdivision.

4.2 Mutual information maximization and mean square error

Consider two square patches,i andj, with the following characteristics:Bj is constant
over j, F (x; y) is approximately constant forx 2 Si, y 2 Sj and the reflectivity is
constant along each patch. Consider now that the radiosity on patchi varies along one
axis parallel to one edge ofi, B(l) = lnB, for B constant andl between 0 and 1
parametrizes the patch (figure 1(b)). The increase in mutual information when dividing
patchi into sub-patchesi1 andi2 is given by (5)

2(wi1Pi1j logPi1j + wi2Pi2j logPi2j � wiPij logPij)

where in the radiosity case quantitiesw andP have to be substituted by the values given
in section 3.4. The maximum increase in mutual information results when splitting
patchi perpendicular to the gradient (this is, across a linel = k). The optimal value for
l is found by optimising the expression:

ln+1 log
1

l
+ (1� ln+1) log

1� ln+1

1� ln+2
:

Forn = 1; 2; 3; 4 the optimal values correspond tol = 0:48; 0:61; 0:68; 0:74.

8



Consider now the subdivision problem from the point of view of minimising theL2
error (or MSE error) on patchi, when assuming constant values for the radiosities on
the sub-patches (equal to the average of the continuous radiosity functionB(x)). After
some algebra again, it can be shown that the optimal solution satisfies:

2nln � ln�1 � : : :� l2 � l � 1 = 0:

Forn = 1; 2; 3; 4 the optimal values arel = 0:5; 0:64; 0:72; 0:77.
We have seen with this example that, in the absence of a form factor gradient, the

subdivision cuts along the radiosity gradient and the optimal value that corresponds to
maximum increase in mutual information is very near to the minimumL2 error.

5 Towards a mutual information based oracle for subdivision

It can be seen that for the constant radiosity case the increase in mutual information is
given by

(�I)ij = 2BiBj((

mX
k=1

(AikFikj logFikj)�AiFij logFij))

Thus, for a regular subdivision and from (6), the maximum possible increase is

max((�I)ij ) = 2BiBj((
Ai

m
mFij log(mFij))�AiFij logFij))

= 2BiBjAiFij logm / BiBjAiFij

Thus the quantityBiBjAiFij expresses the maximum potential gain of mutual inform-
ation between two patches when subdividing one of them. However, this can be really
far from the real gain obtained, when for instance the form factors are fairly equal in the
subdivisions, as could be with two parallel patches at some distance and without occlu-
sions. Thus, the use of this quantity as an oracle for subdividing is not recommended.
Better, the full expression for�I should be used, or at least some information on form
factor gradients along subdivisions should be taken into account, the larger the gradient
the larger the increase in mutual information.

One could also consider which is the patch with more potential gain in mutual in-
formation with respect to all other patches. In this case we sum overj

X
j

BiBjAiFij = AiBi

Bi �Ei

Ri

this is, the one with the larger generalized area. Thus, in lack of any other information,
a heuristic would be to look for the largest generalized area patch to subdivide.

Summarising, an oracle proposal for hierarchical radiosity subdivision is the fol-
lowing:

� A patch of the pair(i; j) will be candidate to subdivide only when the quantity
BiBjAiFij > �1. This discards subdivisions with small potential increment of
mutual information.
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� If a pair (i; j) is considered, we pick from both the one corresponding to

max(AiBi

Bi �Ei

Ri

; AjBj

Bj �Ej

Rj

)

this is, the one with the highest potential mutual information increase.
� A patch of the pair(i; j), sayi, is finally subdivided only if the estimated gradient

in form factors between the subdivisions andj is larger than a given threshold�2.
This intends to guarantee a real increase in mutual information.

As a cheap gradient estimator we could use the differences between point-to-point form
factors from the center of the subdivisions to the center of thej patch.

We remark here that the first step in the oracle is analogous to the power oracle
BjRiAjFji [13, 3], the second step can be seen as an extension to the heuristics of
dividing the patch with larger area, and the third step is analogous to the various gradient
oracles used in hierarchical radiosity literature [5]. Obviously, the last step in the oracle
can be refined to incorporate the exact form of the mutual information function, but at
a much higher cost due to the numerical instabilities of thelog function.

6 Conclusions and future research

In this paper we have taken one step further in our application of information theory to
study the scene complexity. A general theorem on the increase of mutual information
upon subdivision of the scene is presented, with application to visibility, radiosity and
importances. The kind of subdivision driven by mutual information maximization is
analysed, and shown that it has good properties, such as dividing across visibility and
radiosity gradients. Also, evidence has been given on the minimization of MSE error
by mutual information driven subdivision. Finally, a subdivision oracle based on the
maximum mutual information increase has been presented and its potential utility in
hierarchical radiosity justified.

Future research will be directed to analyse more precisely the interplay between
MSE and mutual information. Also, the application to hierarchical radiosity of the
proposed oracle will be undertaken, and the balance between cost and accuracy in sub-
division for oracles reproducing the mutual information function more faithfully will
be studied.
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A Proof of theorem 1

Let us imagine a discrete random walk with discrete mutual information

I =

nX
i=1

nX
j=1

wiPij log
Pij

wj

(8)

We must show that, if any state is discretized intom sub-states, the discrete mutual information
I 0 of the new random walk fulfils�I = I 0 � I � 0. Without loss of generality we divide the
nth state intom sub-statesn1; n2; : : : ; nm. Thus, we have

I
0

=

n�1X
i=1

n�1X
j=1

w
0

iP
0

ij log
P 0

ij

w0

j

+

n�1X
i=1

mX
k=1

w
0

iP
0

ink
log

P 0

ink

wn0

k

+

mX
k=1

n�1X
j=1

w
0

nk
P
0

nkj
log

P 0

nkj

w0

j

+

mX
k=1

mX
l=1

w
0

nk
P
0

nknl
log

P 0

nknl

w0

nl

(9)
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wherewi = w0

i for 1 � i < n, wn =
Pm

k=1
w0

nk
, Pij = P 0

ij for 1 � i; j < n andPin =Pm

k=1
P 0

ink
for 1 � i < n. Because ofwiPij log

Pij

wj
= wjPji log

Pji

wi
; 8i; j, we have

I = 2

n�1X
i=1

nX
j=i+1

wiPij log
Pij

wj

+

nX
i=1

wiPii log
Pii

wi

(10)

Then

I
0 � I = 2

n�1X
i=1

 
mX
k=1

wiPink log
Pink
wnk

� wiPin log
Pin

wn

!

+

mX
k=1

mX
l=1

wnkPnknl log
Pnknl
wnl

� wnPnn log
Pnn

wn

(11)

where the coincident terms inI andI 0 have been deleted. Applying the above hypotheses and
the concavity of the logarithm function for non-negative numbers

nX
i=1

ai log
ai

bi
�

 
nX
i=1

ai

!
log

Pn

i=1
aiPn

i=1
bi

(12)

we can conclude that
�I = I

0 � I � 0

B Discontinuity meshing

B.1 Subdivision in occluded part

Patchi is divided into sub-patchesia and ib, whereib is totally occluded andia has one part
ic unoccluded and one partid occluded. Then, from (7) and takingAT = 1 without loss of
generality,

(�I)ij = 2(AiaFiaj log
Fiaj

Aj

+AibFibj log
Fibj

Aj

�AiFij log
Fij

Aj

)

= 2((AicFicj +AidFidj) log
(Fjic + Fjid)

(Aic +Aid)
�AiFij log

Fij

Aj

)

= 2(AicFicj log
Fjic

(Aic +Aid)
�AiFij log

Fij

Aj

) (13)

The maximum is obtained whenAid = 0, i.e. when subdivision is made according to discon-
tinuity meshing.

B.2 Subdivision in unoccluded part

Patchi is divided into sub-patchesia andib, whereia is totally unoccluded andib has one part
ic occluded and one partid unoccluded. Then, from (7) and takingAT = 1,

(�I)ij = 2(AiaFiaj log
Fiaj

Aj

+AibFibj log
Fibj

Aj

�AiFij log
Fij

Aj

)

= 2(AiaFiaj log
Fiaj

Aj

+AidFidj log
Fjid

(Aid +Aic)
�AiFij log

Fij

Aj

)

� 2(AiaFiaj log
Fiaj

Aj

+AidFidj log
Fjid
Aid

�AiFij log
Fij

Aj

) (14)

where the right hand of the inequality corresponds to the mutual information increase in the
discontinuity meshing case, where we have taken by hypothesisFiaj = Fidj .
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