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Abstract. Photorealistic rendering methods produce accurate solutions to
the rendering equation but are computationally expensive and typically non-
interactive. Some researchers have used graphics hardware to obtain photorealis-
tic effects but not at interactive frame rates. We describe a technique to achieve
near photorealism of simple indoor scenes at interactive rates using both CPUs
and graphics hardware in parallel. This allows the user the ability to interactively
move objects and lights in the scene. Our goal is to introduce as many global
illumination effects as possible while maintaining a high frame rate. We describe
methods to generate soft shadows, approximate one-bounce indirect lighting, and
specular reflection and refraction effects.

1 Introduction and previous work

Research in photorealistic rendering has concentrated on numerically solving the ren-
dering equation[9]. Ray tracers[22] use Monte Carlo methods while radiosity systems[6]
use finite element methods. These give accurate solutions but are computationally ex-
pensive. Classic radiosity methods typically converge faster to a solution to the render-
ing equation than ray tracers but cannot account for specular reflection and refraction.
Moreover, they are mainly used with planar geometry. Ray tracers obviate both these
limitations but require path tracing[9] to get indirect illumination effects which intro-
duces noise and is computationally expensive.

Many interactive environments such as Virtual Building Systems[1] rely on precom-
putation of static environments to form progressive radiosity solutions. These suffer
from large computational overhead and unchangeable geometry. Even in incremental
radiosity solutions[3], geometry changes require significant recomputation time. More-
over these solutions do not account for specular reflection and refraction.

Systems based on ray tracing are mostly non-interactive. Recently Parker et al.[14]
developed an interactive ray tracer. However it does not account for indirect illumi-
nation. Moreover, moving objects must be spatially bounded which implies that all
motion is known a priori.

Hardware-based solutions, which are interactive, are inherently of lower quality
due to the limited feature set of the graphics accelerator. Diefenbach[5] demonstrated
techniques of using graphics hardware to get specular reflection, refraction, caustics
and transparency but not at interactive frame rates.

In this paper, we describe techniques of using both graphics hardware and multiple
CPUs in parallel to achieve near photorealistic rendering of simple indoor scenes1 at

1Up to 10,000 polygons and eight area light sources

1

http://www.eg.org
http://diglib.eg.org


interactive rates of one to ten frames a second. The user has the flexibility to interac-
tively move both lights and scene geometry. We have developed our application on a
SGI Reality Monster with eight Infinite RealityTM graphics pipes and 64 MIPS R10000
processors. Our goal is to make use of all these resources to introduce global illumi-
nation effects while keeping the image generation as interactive as possible. The near
photorealistic effects we have introduced are soft shadows, approximate one bounce
indirect lighting and specular reflection and refraction effects.

1.1 Shadow generation algorithms

Shadows play a key role in the overall realism of computer-generated images because
they provide important visual cues about the 3D arrangement of objects. Today’s graph-
ics hardware supports directional and point lights, Lambertian surfaces, and Gouraud
or Phong shading. However it does not take visibility into account while shading; thus
shadows are not an inherent rendering feature. There are three algorithms which make
use of graphics hardware to calculate visibility: projective texture, shadow buffer and
shadow volume. We give a brief description of these algorithms in the following para-
graphs.

Projective textures. This algorithm has been used to generate soft shadows during
walk-throughs[8]. To find the shadows cast on a particular polygon P , with respect to
a light source L, all other polygons in the scene are projected on to P , with L as the
center of projection. This can be done in hardware by fixing the view point at L and
setting the view frustum so that P is tightly bounded at its base. Then P is rendered
with lighting enabled and all other polygons in the scene are rendered only with ambient
light. The image thus obtained is then texture mapped onto P . Hence for p polygons
and l point light sources, O�lp�� polygons need to be rendered to determine visibility.
This algorithm works well for walk-throughs in static scenes but is unsuitable for scenes
with moving objects.

Shadow map / Shadow buffer algorithm. Shadow maps use the depth buffer and
projective texture mapping to create a screen space method for shadowing objects[15,
16, 23]. The scene is rendered from a light source L and also from the eye. The depth
values of pixels from the eye are transformed to the light-view coordinate system and
then compared to depth values recorded from the light corresponding to the same region
in object space. If the depth value from the light is less, that pixel is inferred to to be
in shadow with respect to L. Hence for l point light sources and p polygons, O�lp�
polygons need to be rendered to determine visibility.

This technique has the advantage that occluders can have arbitrary geometry. How-
ever it suffers from aliasing problems. The number of pixels a particular object occupies
when seen from the light is different from that when seen from the eye. Hence we do
not have a one to one correspondence of pixels in the two images and so aliasing effects
can be seen. This effect is illustrated in Figure 1. Another drawback of this algorithm
is that omni-directional lights require multiple renderings of the scene in order to cover
the entire scene. Also, even if one object in the scene moves, the entire shadow map
needs to be recalculated. Therefore, this algorithm is not suitable for dynamic scenes.

Shadow volume algorithm. The shadow volume algorithm [4] is an object-space
technique for generating shadows. A shadow volume, defined with respect to an oc-
cluder O and a point light source L, is that region in space where L is blocked by O.
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Fig. 1. “Shadow Acne”(aliasing artifacts) caused by shadow map algorithm.

Consider a ray shot from the view point into the scene. If the ray enters a shadow
volume but does not leave it before intersecting with an object in the scene, the corre-
sponding pixel can be concluded to be in shadow.

For l light sources and p polygons, the number of shadow volumes generated is
O�lp� in the worst case. Shadows are generated with object space precision. There are
a few subtleties associated with this algorithm. A solution to these is given in Section 2.

We use multiple pipes and CPUs to implement both the shadow map and the shadow
volume algorithm. The details are in Section 4.1.

1.2 Indirect lighting

As Appel[2] recognized, greater realism requires global illumination models, which ac-
count for inter-reflection of light between surfaces. Studies[19] have shown that indirect
illumination also gives an important visual cue signaling contact between two surfaces.

Radiosity systems give accurate solutions for indirect lighting in diffuse scenes but
not at interactive rates. Several systems use a static, precomputed radiosity solution for
indirect lighting. While this is acceptable for walk-throughs and minor scene geometry
changes, it is unsuitable for scenes in which light sources can move.

Keller[10] suggested a method to get fast solutions for indirect illumination by using
hardware-assisted particle tracing. Particles are shot from the light in software. When
a particle hits a diffuse object in the scene at a point P , the scene is rendered by the
hardware with a virtual light source placed at P . With this technique, a very good
approximation for indirect illumination is obtained in much shorter time compared to
the physically-based ray tracing and radiosity methods. However, this technique did not
run at interactive rates.

We use a similar technique for approximate one-bounce indirect illumination. We
use a hardware-accelerated energy shoot approach as used in progressive radiosity. The
algorithm is described in detail in Section 3.

1.3 Specular effects

In real scenes, we often encounter objects made of specular materials such as glass and
metal. The specular reflection and refraction associated with these materials is view-
dependent.

Diefenbach implemented reflection and refraction using graphics hardware[5]. The
scene is rendered from a virtual view point to get the reflected/refracted image which is
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then projected onto the original image. This gives a good approximation for reflective
surfaces. However for refraction, this approach is an acceptable approximation only
if the rays incident on to the refractive surface are para-axial [7], which requires all
refractive surfaces to be perpendicular to the line of sight vector. This approach cannot
be used for non-planar surfaces. Moreover each reflective/refractive surface visible
from the eye generates a virtual eye point, thus requiring an extra rendering of the
scene. This technique is too computationally expensive for interactive applications.

Ofek et al.[13] demonstrated a technique to render curved, reflective surfaces using
both the CPU and the graphics hardware. A reflection image is generated by creat-
ing and rendering virtual objects corresponding to reflections of scene objects. This
reflection image is then merged into the primary image.

Ray tracing inherently accounts for reflection and refraction. We use multiple CPUs
to ray trace the specular regions in the scene. Graphics hardware is used to speed it up
further. This is described in detail in Section 4.3.

2 Soft shadow generation using shadow volumes

The shadow volume algorithm[4] is well suited for today’s graphics hardware if the
scene is composed of planar geometry. In this case, a shadow volume is a truncated
semi-infinite pyramid and is bounded by what we call shadow quads. This is shown in
Figure 2. A shadow quad is constructed from rays cast from the light source, intersect-
ing the vertices of an edge, then continuing outside the scene.

Light

Occluder

Shadow−quads

Fig. 2. The shaded area shows the shadow volume generated by an occluder due to a light source.
The shadow volume is a semi-infinite pyramid bounded by quadrilaterals (shadow quads).

Consider a ray shot from the eye into the scene. An intersection with a front-facing
shadow quad implies that the ray has entered a shadow volume . Similarly an intersec-
tion with a back-facing shadow quad indicates an exit from a shadow volume. Hence,
for each pixel we need to determine the number of front-facing shadow quads minus
the number of back-facing shadow quads which are closer to the eye than any object
in the scene. We refer to this as s-count. If the s-count of a particular pixel is positive,
we infer that the pixel is in shadow. Heidmann[18] used the stencil buffer to determine
s-count for each pixel. In our implementation we use the red channel in the back buffer
to maintain this count. The scene is rendered in the front buffer and the depth values
copied into the back buffer. The color buffer of the back buffer is cleared. Shadow
quads are assigned a color of (1, 0, 0). All front-facing shadow quads are first rendered
with additive blending enabled and then all back-facing shadow quads are rendered with
subtractive blending enabled. Note that these are rendered with depth-testing enabled
and the depth mask set to FALSE. Consequently, the red channel of a particular pixel is
modified by a shadow quad only if the shadow quad is closer to the view point than any
object in the scene. The stencil buffer is used to resolve the shadow volume straddling
the view plane issue as described in Section 2.1.

This is an object space algorithm and hence independent of the view point. Thus,
shadow quads need not be recalculated when the view point changes. If shadow quads
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are constructed from each edge, the number of shadow quads generated will be very
large. This number can be reduced by constructing shadow quads only from silhouette
edges. However this can be done only with convex geometry as shown in Figure 3.
Also face-edge data needs to be maintained which increases storage requirements.

−
Eye

Light

s−count = 0. Wrongly marked
as not in shadow

Concave object+

−

−
Eye

Light

s−count = 1
In shadow

Split into 2 
convex objects

+

+
−

Fig. 3. Convex geometry needed for shadow volume algorithm. s-count is incremented when ray
intersects with front-facing shadow quads (marked +) and decremented when intersected with
back-facing shadow quads (marked -).

2.1 Shadow volume straddling the view plane

If the entire view plane is inside a shadow volume, then the s-count can be incremented
by one for each pixel. We can determine the number of such shadow volumes with
respect to a light source l by shooting a ray from the view point to l and keeping track
of the number of light-facing objects which the ray intersects. s-count can then be
initialized to this count for all pixels before drawing the shadow quads. However, as
demonstrated in Figure 4, a shadow volume can straddle the view plane and the shadow
quads are clipped at the boundaries of the view frustum. Consequently, not all pixels on
the view plane are inside this shadow volume. The s-count of only those pixels which
lie inside this clipped shadow volume should be corrected. Correcting s-count for all
pixels will not work.

Occluder

Light

Center of 
projection

View plane Portion of the view−
plane not in shadow

Portion of the view−
plane in shadow

View frustum

Fig. 4. A clipped shadow volume may straddle the view plane.

Consider a ray shot from the view point into the scene. The number of intersec-
tions with back-facing shadow quads minus those with front facing shadow quads is the
number of shadow volumes which enclose the corresponding pixel in the view plane.
Note that the ray intersection with scene geometry is ignored. We refer to this as the
pixel’s g-count. Note that both g-count and s-count are non-negatively clamped. In-
crementing s-count by g-count for each pixel increments the s-count by the number of
shadow volumes which enclose that pixel. This has the effect of registering an entry
into these shadow volumes. In our implementation, we maintain g-count in the stencil
buffer. When drawing front-facing shadow quads, the stencil test is set to decrement
regardless of the outcome of the depth test. The stencil test is similarly set to increment
while drawing back-facing shadow quads. Front-facing shadow quads are drawn first
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and then back-facing ones. This is achieved in hardware by rendering the polygons
once with back-face culling enabled and once with front-face culling enabled, i.e. we
need to make two passes over the polygon data, but each shadow quad is rendered only
once. At the end of this process, the red channel has the s-count value and the stencil
buffer has the g-count value for each pixel. The only other method we know of which
addresses this issue requires the shadow quads to be drawn twice[5] (with four passes
made over the polygon data). As shown in Section 5, drawing the shadow quads is
the bottleneck of our implementation. Hence, drawing them twice would deteriorate
performance considerably.

Capping the shadow volumes. The shadow volumes drawn are open at both ends.
This may cause incorrect values of g-count. In Figure 5a, the ray shot from the view
point towards the object O does not intersect any shadow quad and hence O is wrongly
marked as not in shadow. This is because the ray passes through the open end of the
shadow volume near the light. Note that this can occur only if the light is in front of
the view plane. Similarly, the ray passes through the open end of the shadow volume
away from the light in Figure 5b and this can occur only if the light is behind the view
plane. One technique[5] suggested to resolve this issue was to extend the shadow quads
to the light while determining g-count. However this gives incorrect results if the eye
is between the light and the occluder. In this case, all visible objects are marked in
shadow. In fact, even the occluder will be marked as being in its own shadow! This is
illustrated in Figure 6. It also fails to cap the end of the shadow volume away form the
light as shown in Figure 5b.

We cap the shadow volumes by drawing light-facing scene polygons for the case in
which the light is in front of the eye, as shown in Figure 5a, and drawing a perspective
projection with the light as the center, of every light-facing polygon when the light is
behind the eye, as shown in Figure 5b. The rendering of these is done with stencil test
enabled so that g-count is corrected and the color mask set to FALSE so that s-count is
not modified.

Figure 7 shows the shadows generated under a table with and without the shadow
volume correction.

Approximating the shadow volume capping. While the above solution always works,
there is a performance degradation because every light-facing polygon, or its projection,
needs to be drawn once for each light sample. However, note that a shadow volume
needs to be capped only if it encloses at least one pixel of the view plane, i.e. only
shadow volumes constructed by polygons which occlude the light sample from some
region of the view plane need to be capped. We determine these occluding polygons
by sampling the view plane and shooting rays from these samples towards the light
source; all objects intersected are tagged. Only shadow volumes generated from sil-
houette edges of tagged polygons are capped. However, a few occluding objects can
sometimes be missed by the ray tracing which cause incorrect shadows. We decided to
include this feature because it resulted in a large performance gain. The user can toggle
this approximation off if correctness is required at all times.

3 Approximate indirect lighting

On the SGI Infinite RealityTM graphics system, with p graphics pipes, we can have as
many as �p light sources. These can be used to simulate one-bounce reflected light. In
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Projection
of occluder
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 Object O
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Fig. 5. If shadow volume is not capped Object O is wrongly considered to be in shadow(a) Light
is in front of the eye: Occluder can cap the shadow volume (b) Light is behind the eye: projected
occluder will cap shadow volume.

g−count=1

Light

Occluder

Object wrongly 
marked as 
in shadow

Eye

+

g−count = 1
Even occluder marked
as in its own shadow!

Fig. 6. Problem of extending the shadow volumes to the light for capping the shadow volumes.

our implementation, we tessellate polygons in the scene into elements of equal area for
the indirect lighting pass. We approximate the one-bounce reflected light from those
polygon elements which reflect maximum energy. The polygon elements are sorted, by
multiple CPUs in parallel, in descending order of the energy they reflect. The energy
an element P receives directly from a differential area light source dl is directly pro-
portional to the form-factor from dl to P . Therefore, this form-factor multiplied by the
reflectivity of P and the emissivity of dl is a measure of the energy which is received
from dl and reflected by P .

We use a single-plane algorithm[17] to calculate the form-factors. Each polygon
is assigned a weight initialized to zero. A wide-perspective item buffer[21] is rendered
with dl as the center of projection. The form-factor from dl to each pixel in the item
buffer is precomputed in a map with the help of Nusselt Analog. The weight of a
polygon P is the the sum of form-factors of pixels that display P in the item buffer
multiplied by the reflectivity of P and the emissivity of dl. Multiple CPUs are used to
sort the polygon elements based on their assigned weight. We note that a full sort is not
required. We only require the �p polygon elements having the highest weight. Each
pipe approximates the one bounce reflected light of 8 polygon elements by rendering
the scene with light sources placed at the centroids of these elements. The light source
direction is set to that of the normal of the polygon and the intensity is set proportional
to the assigned weight. The scene rendered with these virtual light sources is blended
into the final display image to add in the indirect illumination effect.

We note that OpenGL lighting does not take visibility into account, so the virtual
light sources may light regions in the scene which should not be lit. For example in
Figure 8, object O should not be lit by the virtual light source. However the intensities
of these virtual light sources are low. Thus, the incorrect illumination is not noticeable
for most scenes.
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(a) (b)

Fig. 7. Shadow under a table (a) No shadow volume correction (b) With shadow volume correc-
tion

Light Source
in scene

Virtual Light source

Object O

Fig. 8. Object O wrongly lit by virtual light source

4 Implementation details

We have developed our application on an SGI Reality MonsterTM which has 64 CPUs
and 8 Infinite Reality graphics pipes. The user can select the number of pipes and CPUs
to use with the restriction that the number of pipes should be greater than or equal to
the number of area light sources in the scene. The user can also choose between the
shadow buffer and shadow volume algorithm. The latter is generally faster and gives
more accurate shadows but the former should be used if the model is not convex. If
the user chooses the shadow volume algorithm, the faster approximate shadow volume
capping as described in Section 2.1, can also be selected. The accuracy of soft shadows
depends on how finely the light is sampled. More samples give more accurate shadows
but result in a performance degradation. This can also be specified by the user. The user
also has the option of selecting which global illumination effects are desired among soft
shadows, indirect lighting and reflection/refraction.

Each pipe generates shadows from a few light samples and also contributes to the
indirect lighting with 8 virtual light sources. Figure 10 (see color plate) shows the
different stages in the rendering pipeline and Figure 11 (see color plate) shows the
images generated by the different pipes before compositing. The following sections
give implementation details.

4.1 Shadow generation

The scene is rendered into the front buffer, with one point light source which is a jittered
random sample of the area light source. OpenGL supports only per-vertex lighting
calculation. The polygons in the scene are uniformly tessellated with a threshold on
their area only while doing the direct lighting shading.

Soft shadows are generated by sampling the light source into point light samples.
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The light samples are uniformly distributed between all pipes. A binary image is gen-
erated for each light sample, i.e. the image is divided into regions lit by the point light
sample and those that are not. These binary images are accumulated in the accumu-
lation buffer to generate a gray-level image which is blended onto the front buffer to
give shadows. Typically we sample the light source using 9 point light sources which
produces only ten levels of gray. When the eye zooms into a shadow, discontinuities
and Mach bands can be observed . To alleviate this effect, we convolve the grey level
image with a �� � square average filter before blending into the front buffer. Convolu-
tion is supported by the graphics hardware and therefore does not introduce noticeable
overhead.

Shadow map. The shadow map algorithm has been implemented as an OpenGL ex-
tension on SGI machines and is called the SGIX SHADOW extension. The coordinate
transformation of depth values from eye-view to light-view coordinates, comparison of
the two corresponding depths and filtering are all implemented in hardware.

Theoretically, one rendering of the scene from the eye and one from each light sam-
ple should be enough to generate the shadow map for multiple light samples. However,
the shadow map algorithm implemented by the SGIX SHADOW extension, uses 3D
texture mapping. A texture can be mapped only if geometry is drawn and so the scene
needs to be rendered once from the eye and once from the light for each point light
source sample.

We tried to avoid this cost by implementing the algorithm ourselves. A pure software-
based implementation proved to be too slow. So we attempted to perform the coordinate
transformation in hardware. We first render the scene so that the color at each pixel
represented the object space coordinates at that point. This is done using 3D texture
mapping. Using automatic texture coordinate generation, the texture coordinates are
set proportional to the corresponding object space coordinate and scaled from 0 to 1.
The texture map is then set so that the red channel is proportional to the x coordinate in
object space, the green to y and the blue to the z coordinate. We call the image rendered
using this texture mapping a coordinate buffer.

The scene is then rendered from the point light sample and the depth buffer read
into a memory buffer MD. The color matrix is loaded with the product of the light-
view perspective matrix and the model-view matrix as well as the scaling and biasing
required to convert back to object coordinates and then the coordinate buffer is read
into another memory buffer MB. In this pixel transfer process, we thus perform the
coordinate transformation required. Now the red, green and blue color channels inMB
represent the x, y and z normalized device coordinates respectively. The red and green
channels of each pixel are converted to window coordinates (a scale followed by a bias)
and the green channel is compared with the corresponding value in MD. However, this
technique gave incorrect shadows especially at points of contact. This is because we
only had 10 bits per color channel, which was not enough precision to represent the
object space coordinates accurately in the coordinate buffer and so transformed depth
values had significant errors.

Shadow volume. The CPUs extract the silhouette edges of the scene with respect to
the light samples. This needs to be done only if a light has moved or the object to which
the edge belongs has moved since the last frame. Let n� and n� be the normals to the
two faces bounded by an edge. Let v be a vector from the light source to any point on
the edge. Then the edge is a silhouette if �n��v�� �n��v� is negative. The shadow quads
are calculated for the silhouette edges and stored with the edge data.
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Each pipe is assigned a few samples of one area light source. If approximate shadow
volume capping is enabled, jittered samples from the view plane are determined and
rays are shot from these to the light source. These rays determine which objects need
to be drawn to cap the shadow volumes. Else, all shadow volumes are capped.

The depth buffer is copied from the front to the back buffer and all shadow volumes
generated from the assigned light samples are drawn and capped as described in Sec-
tion 2. The stencil buffer, which stores g-count, is read into memory and then additively
blended into the red channel of the back buffer, which stores s-count. A positive red
channel value for a pixel implies that the pixel is in shadow. This binary image is accu-
mulated in the accumulation buffer. The above process is repeated for all light samples.
The red channel of the accumulation buffer then varies from 0 to the number of samples
assigned to that pipe, say s, with 0 representing totally unoccluded and s representing
totally occluded. We extract a gray-scale image from the accumulation buffer using the
color matrix and then blend onto the front buffer.

The advantage of this algorithm over the shadow map algorithm is that there is load
sharing between CPUs and graphics pipes: CPUs are used for silhouette edge detection
and shadow quad construction while the graphics pipes are used for drawing shadow
quads and determining which areas in the scene are in shadow. Also, shadows are
generated with object space precision.

4.2 Indirect lighting

If there are l lights in the scene, the first l pipes render an item buffer from the point
of view of the centroid of the lth light. These are read into shared memory and the
polygon elements sorted by multiple CPUs as described in Section 3. Then, the graphics
hardware is used to render the scene with virtual light sources to approximate one-
bounce indirect illumination.

4.3 Ray tracing for specular surfaces

The techniques suggested in Section 1.3 are mainly implemented in graphics hardware.
In our implementation the graphics hardware is heavily used for shadow generation and
indirect lighting effects. Therefore, these methods are not suitable. We use hardware-
assisted ray tracing performed by multiple CPUs to get these effects.

An item buffer[21] from the point of view of the eye is rendered by the last pipe
with the specular objects tagged and read into shared memory. The master thread is
then signaled to begin ray tracing. We use a standard master-slave implementation. The
master assigns rows of the item buffer to idle CPUs. Each CPU scans through the row
it is assigned to and spawns rays only for those pixels which are tagged. The first object
that a ray intersects need not be determined since that information is determined from
the item buffer.

If there are not enough CPUs available this ray tracing could become a bottleneck.
In this case, when the hardware has finished the task of drawing shadows and indirect
illumination, the image is read back into a memory buffer MB. Now whenever a ray
hits a point P on a diffuse surface which is visible to the eye, the radiance at P can be
retrieved from MB. Therefore, shadow rays need not be spawned which results in a
performance gain.

The efficiency structure used is a uniform grid. This allows fast update in the event
of geometry changes. After all rows in the image have been processed, the ray traced
image is blended onto the display pipe.
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4.4 Compositing

Each pipe generates a partial image, contributing to both indirect illumination and soft
shadows. When all pipes finish their tasks, their partial images are composited onto the
display pipe. If the ray tracing has not finished before the compositing of these images
is completed, the composited image, which has the direct and indirect illumination
components, is loaded into shared memory to assist the ray tracing, as discussed in
Section 4.3. When ray tracing of specular surfaces is completed, the ray traced image
is blended onto the display pipe.

The partial images rendered in the pipes are read into shared memory. The compo-
sition of these involves just an additive blending. We implemented this in two ways:
hierarchical binary swap[11, 20] which used graphics hardware and software composit-
ing. When enough CPUs are available, the latter results in a higher frame rate. This is
because a few CPUs can be assigned to the task of compositing. If the time taken by
these CPUs for compositing is less than the time taken to render a frame, the composit-
ing time is almost completely hidden. However there is one frame of latency2.

4.5 Usage of resources

We summarize the utilization of resources for each rendering stage in Table 1. Observe
that a combination of CPUs and graphics pipes are used for each rendering stage. Tradi-
tional rendering is done only on graphics hardware or is solely software-based. Hence,
our approach is a better utilization of available resources.

Task CPUs utilized for Graphics pipes utilized for
Direct lighting None Scene rendered from
without visibility the eye with a single light.
Shadow volumes Determining silhouette

edges. Calculating shadow
volume boundaries

Drawing the shadow quads
to generate gray-level shadow-
image

Shadow maps None Rendering the scene twice for
each light sample.

Indirect lighting
effect

Scanning item buffer. As-
signing brightness to each
polygon and sorting them.

Rendering item buffer from
light. Rendering scene with 8
virtual light sources to simu-
late indirect bounce.

Specular surface
rendering

Ray trace specular portions
of the image.

Render item buffer from eye

Table 1. Distribution of tasks between CPUs and graphics pipes

5 Results

We present results of our implementation on three example scenes. The first is an office
scene consisting of 4,083 polygons. The scene has 2 area light sources which were each
sampled into 9 point lights. There were 52,335 shadow quads generated. This scene was

2In our implementation we found that 5 CPUs perform the compositing of a ������� image in less than
.01 seconds.
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SCI office, 512x512 image size, 18 light samples
Pipes Shadow Indirect Direct Specular Compos- HC SC

(%) Light(%) Light(%) (%) ite(%) (secs) (secs)
2 65.38 20.01 6.306 2.692 4.173 0.4061 0.4041
4 46.65 26.63 9.883 3.136 11.34 0.2961 0.2625
8 28.22 28.00 11.39 4.141 25.79 0.2565 0.2093

Classroom, 512x384 image size, 36 light samples
4 80.16 6.336 2.604 2.440 7.447 0.4816 0.4372
8 61.16 10.63 4.490 3.967 18.10 0.2937 0.2490

Cornell Box with glass sphere, 512x512 image size, 25 light samples
1 73.10 17.49 2.945 6.299 0.02277 0.293 0.3175
2 50.98 24.11 4.173 5.731 14.73 0.2093 0.1981
4 29.22 31.17 4.780 6.830 27.73 0.1751 0.1444
8 14.98 31.56 5.158 6.683 41.27 0.1650 0.1322

Table 2. Rendering times for 3 scenes. HC: Total time using hardware-based binary swap.
SC:Total time using software compositing.

rendered at over 4 frames a second using 8 graphics pipes and software composition.
Timings are given in Table 2 and a snapshot shown in Figure 12 (see color plate).

The second is a classroom scene composed of 3,135 rectangles. There are 4 area
light sources each of which were sampled into 9 light samples. The top of the table
is reflective. This scene is the worst case scenario for the shadow volume algorithm
as almost all edges are silhouette edges. There were totally 112,326 shadow quads
generated. Even when using 8 pipes 61% of the time is used for shadow quad rendering!
Results are summarized in Table 2 and the image is shown in Figure 9.

The third scene the Cornell Box. A glass sphere is added into the scene and the top
of the small box is made reflective. The sphere is tessellated into 200 polygons for the
purpose of generating shadow volumes. Note that the sphere is used directly for the ray
tracing pass. The scene has 217 polygons and one area light source sampled into 25
point lights, generating 1,134 shadow quads. Timings are given in Table 2. The image
can be seen in Figure 10 (see color plate).

For all three scenes, the graphics hardware proved to be the bottleneck i.e. the
CPUs would finish their task before the hardware was ready to use it. However, if the
scene is composed of a large number of specular objects, ray tracing could become the
bottleneck. We observe that shadow generation time dominates. Fortunately, this time
scales almost linearly with the number of pipes used. Rendering times for all other
effects are independent of the number of pipes used.

6 Conclusion and future work

We have demonstrated techniques for performing near photorealistic rendering of sim-
ple dynamic indoor scenes at interactive rates. To our knowledge, no other system
achieves these rendering rates for comparable dynamic scenes and with comparable
image quality. We have also identified and given efficient solutions for various sub-
tleties associated with the shadow volume algorithm. We observe that soft shadow
generation has the maximum computational cost among all the photo-realistic effects
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Fig. 9. Classroom scene rendered at 4 frames a second using 8 pipes and software compositing.

we have introduced. This is because area light sources need to be sampled into several
point lights, which generates a large number of shadow volumes. Future work includes
addressing this by using shadow volumes to divide the scene into three regions: to-
tally occluded, partially occluded and totally unoccluded. This can be accomplished
by rendering those shadow volumes which form umbral or penumbral boundaries, as
described in [12]. The number of shadow volumes would be significantly reduced.
However a fast way to render the partially occluded regions of the scene is still an open
question.
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(a) Direct lighting (b) Gray−level shadow(25 light samples)

(c) Indirect lighting (brightened 
for display. 32 virtual light sources

shown in green)

(e) Final blended mage

(d) Raytraced portions

Fig. 10. Images showing different stages of rendering. These images were generated using four
pipes.
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Pipe 0 Pipe 1 Pipe 2 Pipe 3

Composited 
image

Fig. 11. Images rendered by different pipes. Each pipe contributes to both the shadow and
indirect lighting generation.

Fig. 12. Office scene rendered at over four frames a second using 8 pipes and software composit-
ing.

16


