
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Fast Texture Synthesis on Arbitrary Meshes

Sebastian Magda,1† David Kriegman2‡

1 University of Illinois at Urbana-Champaign
2 University of California at San Diego

Abstract
While texture synthesis on surfaces has received much attention in computer graphics, the ideal solution that
quickly produces high-quality textures with little user intervention has remained elusive. The algorithm presented
in this paper brings us closer to that goal by generating high-quality textures on arbitrary meshes in a matter of
seconds. It achieves that by separating texture preprocessing from texture synthesis and accelerating the candidate
search process. The result of this is a mapping of every triangle in a mesh to the original texture sample with
no need for additional texture memory. The whole process is fully automatic, yet still user controllable. It also
places no special restrictions on the mesh or on the texture, and the original mesh is not modified in any way. A
preprocessed texture sample can be used to synthesize a texture map on any number of meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
display algorithms; I.2.10 [Artificial Intelligence]: Vision and Scene Understanding texture

1. Introduction

Texture synthesis is the process of replicating the statistical
and perceptual properties of a user-specified example over
a larger surface. Since the surface can have arbitrary topol-
ogy and the mapping quality is judged using human percep-
tion, it is a difficult process to automate. In the next section
we describe several proposed methods that attempt to solve
that problem. We propose an alternative method that comes
with several advantages, particularly separation of texture
preprocessing from synthesis, automation, and fast synthe-
sis of quality textures. These make it ideal for texturing a
large set of objects (a forest scene containing many trees is
a good example), or for interactive mesh modeling. Once a
texture is preprocessed, the texture synthesis takes only sec-
onds. A library of preprocessed textures can be stored on a
disk and used when needed. Since the algorithm essentially
performs texture mapping, it is also very memory efficient,
and the rendering process is fast.

† e-mail: magda@uiuc.edu
‡ e-mail: kriegman@cs.ucsd.edu

Figure 1: Bunny with synthesized basket texture.

2. Previous Work

There are many ways to generate a texture, and the field of
texture synthesis is very broad. Anything from parametric

c© The Eurographics Association 2003.

82

http://www.eg.org
http://diglib.eg.org


Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

methods such as reaction-diffusion and solid texturing, to
texture-from-sample and tiling can be used depending on the
application. We focus only on a small subset of the texture
synthesis research, where the goal is to synthesize a texture
onto an arbitrary 2-D mesh from a sample texture image.

2.1. Point-based Texturing

Point-based approaches attempt to synthesize textures by
coloring a point at a time. To color the current point, the
sample texture is searched for a pixel whose neighbors have
similar colors to those in the current neighborhood.

Two prime examples of this approach are the works of
Wei and Levoy 16 and Turk 14. These two similar tech-
niques synthesize the texture by vertex coloring. The ap-
pearance of the original texture sample is achieved by as-
signing colors to individual vertices in a densely resampled
mesh. The synthesis algorithm is an adaptation of the multi-
resolution algorithm for flat textures by Wei and Levoy 15.
In their algorithm, the texture is synthesized from coarse
to fine scale using tree-structured vector quantization. This
technique works well mostly for smooth textures with small
features, and this limitation also applies to synthesis on sur-
faces. The surface synthesis generalization is achieved by
creating a multi-resolution mesh pyramid that corresponds
to the texture’s image pyramid. Vertex neighborhoods are
then flattened and resampled into a regular image grid for
candidate search. Texture orientation is obtained from a user-
defined or generated surface vector field.

The Wei and Levoy / Turk method has recently been ex-
tended to synthesize bidirectional texture functions (BTF)
by Tong et al. 13. A BTF is a 6-D function that represents the
images of a surface under variation in viewing direction and
lighting direction 2. By capturing both the mesostructure and
the reflectance variation of a surface, a BTF can be used to
render surfaces with greater realism. Since the dimensional-
ity of BTFs is much larger than 2-D textures, a more com-
pact representation is necessary for synthesis in a reasonable
time. Tong et al. achieve that by representing BTFs with sur-
face textons and synthesizing the surface BTF from a texton
label map. A texton is essentially a fundamental texture el-
ement, and a texture can be defined as being a pattern of a
finite set of such elements. Leung and Malik 6 introduced
the concept of 3-D textons - a generalization of a texton to
viewing and lighting variations. As 3-D textons have a very
large dimensionality, Tong et al. defined surface textons to
be the elements of the inner-product space spanned by the
3-D textons and used them to speed up the neighborhood
comparisons. Our algorithm also makes use of textons with
the goal of accelerating the synthesis process. However, this
is achieved by having a large number of texton clusters and
reducing the average size of each cluster.

A slightly different approach is to synthesize the texture
directly to a texture atlas, rather than coloring vertices. Con-
sider the texturing algorithms of Ying et al. 17 and Gorla et

al. 4. Both algorithms again use a generalized version of Wei
and Levoy’s multi-resolution algorithm 15 (Ying also uses
Ashikhmin’s algorithm 1 as an alternative), but the synthe-
sis is done in the texture atlas space. Although mesh resam-
pling is no longer necessary, both algorithms need a large
amount of texture memory space to store the synthesized
texture maps.

In general, point-based methods can produce high-quality
results for a subset of smooth textures with small feature
sizes (with the exception of Ashikhmin’s variation of Ying’s
algorithm that does a better job on other textures). However,
these methods either require an additional mesh resampling
step or a large surface texture atlas for storing the result.
Running times are measured in minutes.

2.2. Patch-based Texturing

Patch-based methods attempt to synthesize larger textures by
copying selected regions of the sample texture and, in some
way, obscuring region boundaries. By introducing some ran-
domness into the process of patch selection, a high quality
texture can be obtained without obvious repetitiveness. Our
algorithm fits in this category.

One way to achieve a seamless texture with no obvious
periodicity is to use tiling. Neyret and Cani 10 proposed a
technique that uses a small set of triangular tiles to texture a
mesh. The triangles in the tile set must tile seamlessly with
any other triangle for any orientation. This restricts the pos-
sible textures to isotropic patterns. The tile set must be either
created by the user, or possibly generated using procedural
methods. The tiles are randomly assigned to triangles during
the texturing process resulting in a seamless texture. In order
to minimize texture distortion, the mesh is resampled so that
triangles became more uniform.

A solution to patch synthesis of anisotropic textures was
proposed by Praun et al. 11. His method works by randomly
pasting and overlapping large texture patches onto the mesh
and aligning them with the local surface tangential vector
field and the scale. The user-created patches (usually just
one) have irregular shape and should produce no visible
seams when overlapped. Patch edges are alpha-blended to
hide any seams. The resulting texturing can either be syn-
thesized into a texture atlas, or rendered at run time. Un-
fortunately since texture patches are not matched on their
boundary, this method does not do well for more struc-
tured textures with sharp discontinuities or textures with
low-frequency components.

Soler et al. 12 have recently proposed a multi-scale hier-
archical algorithm that texture-maps triangle patches on the
sample texture. This method can be viewed as a generaliza-
tion of the texture quilting algorithm by Efros and Freeman
3. The algorithm works by stitching small texture patches,
while trying to match them on the boundaries. Soler et al.
applied this generic algorithm to surfaces. The algorithm

c© The Eurographics Association 2003.

83



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

starts by first constructing a hierarchy of face clusters for
the mesh. The texturing process begins with the top level
patches and recurses into the mesh hierarchy when it fails
to find a good fit for the current patch. For each patch, the
algorithm searches the sample texture for the best fit with
the neighboring patches in a small region along the patch
edges. The search process is accelerated by converting to
the Fourier space. This reduces the complexity from O(N2)
to O(NlogN), where N is the number of pixels in the tex-
ture. The search must be repeated for different patch ori-
entations, and in practice it is done for a fixed number of
angles. Although the resulting texture often contains some
seams on patch edges, seams can be further reduced by lo-
cally readjusting texture coordinates on patch boundaries.
This method can produce very good results for isotropic and
many anisotropic textures. Very regular textures with sharp
edges (brick wall, for example) tend to expose the underly-
ing patch structure, as the texture orientation is essentially
fixed over the entire patch (even though patch boundary ver-
tices are adjusted through relaxation). In addition, the user
has little control over the texture flow on the surface (other
than the choice of the original patch). The running time is
closely related to the number of resulting patches. That de-
pends both on the mesh geometry and the structure of the
texture sample, and synthesis may require anywhere from a
few minutes to a few tens of minutes.

In general, patch-based methods are much more mem-
ory efficient, since they do not need a texture atlas. They
also tend to do a better job with more complicated tex-
tures, although Neyret’s and Praun’s algorithms pose some
additional restrictions. Our work is most similar to Soler’s
method, as we also use an extension of the texture quilting
algorithm.

3. The Algorithm

The basic idea behind the algorithm is to separate texture
generation into two independent phases: texture preprocess-
ing and texture synthesis. The concept of dividing the texture
generation process into preprocessing and synthesis phases
has been successfully applied before to 2-D textures, but not
to patch-based texture synthesis 18. While texture prepro-
cessing is relatively slow, it only has to be done once per
texture. At the same time, texture preprocessing makes the
actual texture synthesis process fast.

3.1. Texture Preprocessing

The goal of texture preprocessing is to identify sets of pixels
in the sample texture whose neighborhoods have similar ap-
pearance. One way to accomplish this is to characterize the
neighborhood of a pixel as a 2-D texton. In the work of Le-
ung and Malik, the texture is convolved with a stack of N f
carefully chosen filters, resulting in a N f -dimensional fea-
ture vector at each pixel. K-means clustering is performed

Figure 2: Texture used in Fig. 1 and the corresponding tex-
ton texture τ. In the texton texture, the pseudo-colors repre-
sent texton labels, and therefore pixels with the same color
(texton label) have similar neighborhoods in the original
sample. The texture was clustered using 160 textons, and
each texton was 11×11 pixels.

on the N f -D feature vectors, and the cluster centers are taken
as the set of 2-D textons. Pixels, that end up in the same clus-
ter have similar appearance and are assigned the same texton
label.

Although the filter-stack approach can be used, a much
simpler method that uses just a single filter is also sufficient.
At each pixel the feature vector is computed by multiplying
the local n× n neighborhood with a single centered Gaus-
sian kernel resulting in a n2-dimensional feature vector. 2-D
textons are the cluster centers after k-means clustering, just
as before. Although the resulting feature vectors are larger
(for n=11 the vectors are 121-Dimensional versus 48-D in
Leung and Malik (For color textures numbers are per color
channel.)), the longer computation time is still acceptable.
Clustering is only done once per texture during the prepro-
cessing step, and the results can be saved for later use.

The result of texture preprocessing is a set of textons and
a 2-D texton texture τ. Each position in τ contains an index
(texton label) of the texton that best characterizes the pixel’s
local neighborhood (See Fig. 2).

The texton texture is actually stored in a more convenient
representation as a texton bucket array B. Each texton bucket
B[t] stores offsets to all pixels whose neighborhoods are
characterized by the same texton t. B[t][n] refers to the n-th
pixel offset in B[t]. This representation significantly reduces
search time during synthesis, as shown in the next section.
Additionally, we precompute distances between every pair
of textons (using a square difference measure), and store the
results in a lookup table.

3.2. Texture Synthesis

The process of synthesis is essentially an extension of the
generic texture quilting algorithm 7, 3. The basic idea is to
’quilt’ fragments of the original texture to cover a larger sur-
face in a way that avoids any obvious seams on the quilt

c© The Eurographics Association 2003.

84



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

boundaries. All existing 2-D texture quilting methods use
square quilting patches for their simplicity, unfortunately
this will no longer apply to arbitrary 2-D manifolds in a 3-
D space. Since the basic 3-D primitive in computer graphics
is a triangle, it makes sense to use triangles as our quilting
blocks. The difficulty comes from the fact that, unlike fixed
size square patches in 2-D texture quilting, triangles in a typ-
ical mesh have different shapes and sizes. The texture ori-
entation will also be different from one triangle to another.
Therefore, we need to extend the basic quilting approach to
handle arbitrarily shaped patches.

The texture synthesis process takes as input a prepro-
cessed texture sample and a triangular mesh. For each trian-
gle in the mesh, the output is a set of corresponding texture
coordinates for the three vertices. This amounts to finding
a similarity transformation (rotation, translation, and scale)
between each triangle in the mesh and the texture coordi-
nates. For this similarity transformation, the scale is a user
input, and in the current implementation it is a constant over
all patches. The rotation part of the transformation is given
by defining a surface vector field over the mesh, as discussed
in Section 3.2.1. The final part of the rigid transformation is
the 2-D translation; it is determined by searching for a trans-
lation such that the boundaries of the corresponding texture
patch have similar appearance to the textured boundaries of
the neighboring triangles. This later search is the crux of our
synthesis process; it uses the preprocessed texton texture and
is described in Section 3.2.2.

3.2.1. Surface to Texture Mapping

As mentioned previously, the similarity transformation be-
tween a mesh face and the 2-D texture map includes a rota-
tion, and the angle of rotation is given by a surface tangential
vector field over the mesh. The vector field represents the lo-
cal texture orientation. In our implementation we create it by
initially propagating seed vertex directions and then locally
smoothing the surface vector field, but any of the existing
surface vector field synthesis methods 14, 16, 11 can be used as
well.

In addition to the surface vector field orientation (corre-
sponding to the local texture orientation), we define the scale
at which the texture will map onto the surface. We have cho-
sen to define it in terms of the average triangle (patch) size
Zpatch, where the triangle size is defined as the length of its
longest side. The texture scale will be the ratio of Zpatch to
the texture size Ztexture (length of its shortest side, since the
texture can be rectangular):

τscale =
Zpatch

Ztexture
(1)

Since the synthesis algorithm finds a mapping for each
triangular face, we compute the surface vector field for each
face by averaging the orientation vectors of its vertices. The

Figure 3: Texton string generation: Textured neighbors T1
and T3 are first transformed from their local texture coordi-
nates (a) to T0’s frame of reference (b). The texton string ST0

is a list of pairs consisting of texton labels lying on the tex-
tured edges and their corresponding offsets from T0’s origin
vertex (c).

whole surface vector field computation can be fully auto-
mated and is quite fast, taking at most a few seconds for a
large mesh with 100,000 vertices.

3.2.2. Finding the Best Patch

The synthesis process starts from a randomly selected trian-
gle, and the texture is grown on the surface from that initial
face. At each step, we try to select the triangular patch from
our sample texture that best matches along edges with all
textured neighbors in the mesh. We continue until the whole
surface is covered.

Finding a good patch normally involves comparing some
boundary region in the candidate patch to the boundary re-
gion of the neighbors already textured. This is generally a
time-consuming process. Fortunately it can be made much
faster, thanks to the preprocessing step. Since textons al-
ready contain the neighborhood information, we no longer
need to directly compare boundary regions. In fact, we only
need to compare textons lying directly on the edge. The
width of the boundary region is already encapsulated in the
size of the pixel neighborhoods used to compute textons. By
using textons, we automatically reduce the problem from a
2-D region comparison to a 1-D string comparison.

The first step in the texture patch search process is the
construction of a texton string S along the edges bordering
textured triangles. We define S as a list of pairs consisting
of texton labels t and texture offsets o: S{t,o}. For each ad-
jacent textured triangle Tn (where n is 1,2,or 3), we use a
line-drawing algorithm to walk along the edge of our to-be-
textured triangle T0 in its texture space (see Fig. 3). We ran-
domly set one of T0’s vertices as the origin. For each point
on the edge, we add to St the nearest texton label in the tex-
ton texture τ found by transforming the point to the texture
coordinates of Tn. Essentially this process encapsulates a 2-
D transformation (rotation plus translation) of an edge from

c© The Eurographics Association 2003.

85



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

the local texture coordinates of T0 to Tn’s frame of reference.
The corresponding texton offsets (in the T0’s texture space)
are stored in the offset list So. The process continues until we
end up with a texton string S{t,o} containing texton indices
and texture offsets for all edges bordering textured faces.

You may notice that we do not rotate textons around their
center pixels back to T0’s texture space. All textons are pre-
computed for just one texture orientation. This introduces
additional errors when matching edges of two faces with dif-
ferent texture orientations. A possible solution would be to
either compute rotated textons during synthesis (very slow)
or precompute textons for some discrete set of orientations
(would require either an enormous texton distance lookup
table or a slower distance computation during synthesis).
Luckily, the texture orientation for adjacent faces usually
does not vary by much. The only exception are faces near
surface vector field singularities. These, however, are usually
few and, in general, are difficult to texture, even if we try to
do it by hand. In addition, since all textons were weighted
during preprocessing with a symmetric Gaussian function,
the effects of rotation are further diminished.

At this point we could try to search for the best matching
patch to cover T0. A naive way to accomplish that would be
to do 1-D texton string comparisons in the 2-D texton texture
τ. The best-match texture offset x for S would be the one with
the smallest error:

E[x] =
length(S)

∑
k=1

dist(τ[x + So[k]],St [k]) (2)

Notice that we already have precomputed distances between
all texton pairs, so dist(t1, t2) is just a simple lookup.

There is a way to speed up the search process even more
by taking advantage of our texton bucket array B, defined
earlier. Each bucket B[t] contains offsets to pixels with simi-
larly appearing neighborhoods (same texton label t). Essen-
tially, each bucket B[tk] contains best candidates for a texton
tk = St [k]. We can use it to quickly identify a set of good
candidate texture offsets for the texton string S.

Let N[x] be the number of texton matches between the
string S and the texton texture τ, when S’s origin is placed at
the texture offset position x (Fig. 4):

Let N = {0}
For each element k in S

For each texture offset n in B[St [k]]
Increment N[B[St [k]][n]−So[k]]

At the end, the best candidate texture offsets for S will
be at locations for which the values in N are the greatest.
This faster search method is very crude by nature, as it only
considers exact texton matches. We still need to use Eq. 2 to

Figure 4: Searching for the best offset location for the texton
string S (on the right) in the texton texture τ (magnified τ
fragment shown on the left with the corresponding fragment
of the counter array N on the right): For each position k in
S, the algorithm iterates through the list of matching texton
offsets B[St [k]] and increments N at the string’s origin. (The
increment location N[B[St [k]][n]− So[k]] for this example is
marked with a red circle.)

find the best choice among the top m candidates from N by
computing E[x] for each of the top locations. Again, we use
the precomputed texton distance lookup table.

Once the top candidate is selected, we set the texture coor-
dinates for each vertex of T0. Since the texture is mapped di-
rectly onto each triangle using the same texture scale τscale,
the process will not introduce any distortion to the texture.
The only artifacts present will be seams along edges where
the algorithm failed to find a good match.

3.3. Rendering

Displaying the textured mesh is really no different than any
other texture-mapped object. All we need to store in texture
memory is simply the original texture sample. We have as-
signed texture coordinates to vertices of every triangle dur-
ing the texture synthesis process and they map directly into
the sample texture. If the displayed triangles are relatively
small on the screen, either due to a dense mesh, or because
the object is placed far from the viewer in the 3-D view, any
existing edge discontinuities will be hardly noticeable. The
seams will also be less obvious for isotropic textures and
those with less structure. For other cases, where better im-
age quality is desirable, edge discontinuities can be hidden
by edge blending. Figure 5 shows an extreme closeup of a
textured object demonstrating the effects of edge blending.

3.3.1. Edge Blending

The idea behind edge blending is to smoothly blend textures
over edges to the adjacent neighboring triangles. Since each

c© The Eurographics Association 2003.

86



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

Figure 5: Extreme close-up of Fig.1 showing the effects
of edge blending: textured mesh triangles without blending
(left) and with blending (right).

triangle in a complete mesh has three neighbors, this will
require blending its texture with the three neighboring tex-
tures. Blending is accomplished by multiplying the neigh-
boring textures with a smooth blending function that de-
creases toward the corner opposite to the edge (Fig. 6). Dur-
ing the texture synthesis process, we store an additional set
of texture coordinates at each vertex for blending with the
texture across the edge opposite to the vertex. We end up
storing two sets of texture coordinates per vertex for each
triangle.

The blending process is very straightforward, requiring
several texture blending operations and can be easily accom-
plished through multi-texturing. Current off-the-shelf con-
sumer graphics boards still require several rendering passes
to accomplish this (currently between 2-4 passes), but as the
next generation hardware will support more texturing units,
it will become feasible to do it in just one pass. Since run-
time blending currently carries a performance penalty, an al-
ternative solution would be to blend the textures off-line and
store them in a texture atlas. This will of course carry a stor-
age penalty instead.

Figure 6: The blending process across an edge: The texture
from a neighboring triangle is extended over the edge and
modulated with a blending function. The result is then com-
bined with the underlying texture.

3.3.2. Blending Metric

In order to reduce the cost of real-time blending, we can
specify a quality metric to decide whether to blend an edge
or not. The idea is to combine the edge’s visibility measure
with the edge’s texture continuity measure. The edge’s visi-
bility is simply a measure of the projected edge length in the
screen space. The longer the projected edge, the more likely
it will be noticed by the viewer. While the correct thing to
do would be to perform a projective transformation of an
edge to the screen, this approach would require dealing with
projection singularities and is rather computationally expen-
sive. In our case it is sufficient to simply use the Euclidean
distance from the edge’s midpoint m to the viewer v to scale
the edge length d projected to camera coordinates:

dscreen(d,m,v) = λ d
‖v−m‖

(3)

where λ = w
ϕ is ratio of w pixels across the field of view ϕ.

dscreen will give the approximate length of an edge in pixels.
This screen-space metric is commonly used in other appli-
cations, such as 3D terrain visualization 8.

The texture continuity error Et across an edge can be ex-
pressed as a Euclidean distance of color texture values along
the edge for the two adjacent textures. Notice that we do
not want to make neighborhood comparisons here, as we are
only interested in differences directly on the edge. The error
can be precomputed and stored at each edge.

The resulting blending metric can be expressed as the tex-
ture continuity error scaled by the projected edge length:

Φ(d,m,v) = λEt
d

‖v−m‖
(4)

Edge blending will be applied when Φ exceeds a user-
specified threshold for quality.

4. Results

We have tested the algorithm on a variety of textures and
models. Figure 8 shows several examples for different com-
binations of meshes and textures. Each mesh contained be-
tween 5000 and 8200 faces. Texture sizes varied between
64x64 and 256x256. Tables 1 and 2 show sample running
times for preprocessing and for texture map synthesis.

The number of textons used for a particular texture influ-
ences the synthesis quality. Using too few textons does not
capture enough texture variations, while having too many
causes some region similarities to be missed. We have deter-
mined that the number of textons necessary for a particular
texture can be simply related to the texture size. Setting this
number to be about the square-root of the number of pixels

c© The Eurographics Association 2003.

87



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

Table 1: Texture preprocessing timings recorded on a
1.3GHz Athlon for some examples shown in Fig. 8. For all
cases, clustering was stopped when 99% of pixels did not
change cluster during the last iteration.

Texture Textons Texton Preprocessing
size used neighborhood size time

64x64 60 11 7 sec

128x128 100 11 38 sec

200x200 160 11 7 min, 12 sec

256x256 200 11 16 min, 37 sec

Table 2: Texture map synthesis timings recorded on a
1.3GHz Athlon for the bunny model shown in Fig. 8. The
model contains 8192 faces and the running time is linear in
the number of faces.

Texture Textons Synthesis
size used time

64x64 60 <1 sec

128x128 100 2 sec

200x200 160 4 sec

256x256 200 7 sec

(see Tab. 2) produces good results for the vast majority of
textures.

Synthesis quality is quite similar to the quality of the
generic 2-D quilting algorithm 7, 3. In general, it is better for
larger texture samples, since the quilting process is able to
find better candidates in a larger sample. Since the algorithm
cannot introduce any texture distortion, it is also more effec-
tive for textures that are less regular. It is simply impossible
to maintain the structure of a very regular texture (a checker-
board, for example) without introducing distortions. There-
fore there are some noticeable edge discontinuities for the
bunny with the brick texture (Fig. 8). Since the algorithm is
essentially an extension of quilting, it is similarly sensitive
to the average feature size present in the texture. As in the
quilting algorithm, it is desirable for the quilting block size
(average triangle size in our case) to be about the same as the
average feature size. (Although we do not disscuss it here,
it’s quite reasonable to extend the algorithm to quilt patches
of triangles in order to avoid this problem). Despite these,
the results are quite pleasing for the vast majority of com-
mon textures, even in texture areas near singularities (see
Fig. 7).

Figure 7: An example of texture synthesis around a surface
vector field singularity point.

5. Discussion and Future Work

This paper introduced a fast, patch-based method for auto-
matically texturing triangular meshes. The method is fast
because texture samples are preprocessed to characterize
neighborhoods of the sample, to represent a neighborhood
in terms of a finite texton vocabulary, and to compute a
similarity measure between all pairs of textons. Thanks to
the texton representation we are able to reduce the candi-
date patch search to a simple 1D string comparison. At this
point in time, synthesis requires a few seconds for moder-
ately sized meshes, and so real-time synthesis, perhaps on
meshes with deforming geometry and topology, should soon
be achievable in either software or using the forthcoming
generation of graphics boards. As seen by way of example,
meshes are textured with few noticeable seams or artifacts.
Typically these arise when texturing a triangle for which its
three neighbors have already been textured, and no triangular
patch within the texture sample matches well along the three
boundaries. This is a consequence of sacrificing some qual-
ity in favor of a much faster synthesis time, by performing
a greedy search for patches. Alternative search mechanisms
which exploit the preprocessed representations and the sur-
face geometry will possibly improve the synthesis quality.

Finally, we are extending the underlying synthesis method
to other classes of texture data besides color texture images,
particularly polynomial texture maps and bidirectional tex-
ture functions. This will allow the surfaces to be rendered
with textures whose appearance varies with changes of view-
point and lighting (e.g., moss, grass, sponge, pebbles, etc.).
With suitable preprocessing to define a texton vocabulary
and an appropriate means to render the specific class of tex-

c© The Eurographics Association 2003.

88



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

ture data, the method of Section 3.2.2 can be used to deter-
mine a mapping between each mesh triangle and the texture
data.

Acknowledgements

Special thanks to the attendees of the UIUC Graphics Semi-
nar as well as P. Belhumeur and M. Koudelka for their com-
ments and suggestions.

References

1. M. Ashikhmin. Synthesizing natural textures. Proceed-
ings of the 2001 symposium on Interactive 3D graphics,
pp. 217–226, 2001.

2. K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koen-
derink. Reflectance and Texture of Real-World Sur-
faces. ACM Trans. on Graphics, 18:1–34, 1999.

3. A.A. Efros and W.T. Freeman. Image quilting for tex-
ture synthesis and transfer. SIGGRAPH 2001,pp. 341–
346, 2001.

4. G. Gorla, V. Interrante, and G. Sapiro. Growing fitted
textures. SIGGRAPH 2001 Sketches and Applications,
pp. 191, 2001.

5. D. Hochbaum and D. Shmoys. A best possible heuristic
for the k-center problem. Mathematics of Operations
Research, 18(2):180–184, 1985.

6. T. Leung and J. Malik. Representing and recognizing
the visual appearance of materials using 3d textons. In-
ternational Journal of Computer Vision, 43(1):29–44,
2001.

7. L. Liang, C. Liu, Y. Xu, B. Guo, and H. Shum.
Real-time texture synthesis by patch-based sampling.
ACM Transactions on Graphics (TOG), 20(3):127–150,
2001.

8. P. Lindstrom and V. Pascucci. Terrain Simplification
Simplified: A General Framework for View-Dependent
Out-of-Core Visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 8(3):239-254, 2002.

9. X. Liu, Y. Yu, and H. Shum. Synthesizing bidirectional
texture functions for real-world surfaces. SIGGRAPH
2001, pp. 97–106, 2001.

10. F. Neyret and M. Cani. Pattern-based texturing revis-
ited. SIGGRAPH 1999, pp. 235–242, 1999.

11. E. Praun, A. Finkelstein, and H. Hoppe. Lapped tex-
tures. SIGGRAPH 2000, pp. 465–470, 2000.

12. C. Soler, M. Cani, and A. Angelidis. Hierarchical pat-
tern mapping. SIGGRAPH 2002, pp. 673–680, 2002.

13. X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.
Shum. Synthesis of bidirectional texture functions on

arbitrary surfaces. SIGGRAPH 2002, pp. 665–672,
2002.

14. G. Turk. Texture synthesis on surfaces. SIGGRAPH
2001, pp. 347–354, 2001.

15. L. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. SIGGRAPH 2000, pp.
479–488, 2000.

16. L. Wei and M. Levoy. Texture synthesis over arbi-
trary manifold surfaces. SIGGRAPH 2001, pp. 355–
360, 2001.

17. L. Ying, A. Hertzmann, H. Biermann, and D. Zorin.
Texture and Shape Synthesis on Surfaces. Proceedings
of the Eurographics Symposium on Rendering 2001, pp.
301–312, 2001.

18. S. Zelinka and M. Garland. Towards real-time texture
synthesis with the jump map. Proceedings of the Eu-
rographics Symposium on Rendering 2002, pp. 99-104,
2002.

c© The Eurographics Association 2003.

89



Magda, S. and Kriegman, D. / Fast Texture Synthesis on Arbitrary Meshes

Figure 8: Examples of texture synthesis results for various meshes and texture samples. Texture samples shown had different
sizes and were rescaled for the figure.

c© The Eurographics Association 2003.

300




