
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Curve Analogies

Aaron Hertzmann1 Nuria Oliver2 Brian Curless1 Steven M. Seitz1

1University of Washington 2Microsoft Research

Abstract
This paper describes a method for learning statistical models of 2D curves, and shows how these models can be
used to design line art rendering styles by example. A user can create a new style by providing an example of
the style, e.g. by sketching a curve in a drawing program. Our method can then synthesize random new curves in
this style, and modify existing curves to have the same style as the example. This method can incorporate position
constraints on the resulting curves.

1. Introduction

Designing new styles is one of the most difficult tasks in
non-photorealistic rendering (NPR). Typically, one is given a
choice of a few rendering algorithms and the ability to adjust
different parameters to these algorithms. While this gives the
user many options, it may be difficult to find a desired style
in this space. Moreover, it is unlikely that highly sophisti-
cated or personal styles will be available.

In this paper, we present methods for learning line styles
from examples. With this approach, an artist or end-user may
simply draw strokes in the desired style; our system will cap-
ture aspects of their style and can generate new drawings in
that style. For example, to design an outline style for a “ner-
vous” character, one may draw a jittery stroke, and to design
a style for a field of grass, one may draw an example of its
jagged silhouette. In this paper, we adopt the terminology of
Hertzmann et al.13, and call the approach “curve analogies.”

Our work is based on recent algorithms in image texture
synthesis, where a new texture is generated such that every
pixel neighborhood in the new texture looks like some neigh-
borhood in the example texture. More recently, several meth-
ods have been developed that try to learn transformations be-
tween images, based on local neighborhood transformations.
Our goal is to automatically learn how to generate an output
curve from an input curve. This problem is surprisingly dif-
ficult, because neighborhood sampling patterns depend on
the shape of the output curve. This means we must some-
how generate the output curve shape, its neighborhood pa-
rameterizations, and its correspondence to the source curve
simultaneously, even though each one depends on the oth-
ers. Moreover, we must also account for possible rotations
and translations in drawings. Our approach is to fix a curve

correspondence in advance, and then iteratively reestimate
curve shape, neighborhood sampling patterns and transla-
tional/rotational alignments.

This paper has three main contributions: first, We show
how learning curve styles may be formulated as a texture
synthesis problem on a parametric domain. Second, we show
how curve analogies (i.e. transformations from input to out-
put curves) may be learned from data, by learning spe-
cific statistics within curves and relationships between them.
Third, we show how these algorithms can be used to capture
hand-drawn styles of curves. Although we have focused on
2D curve synthesis for non-photorealistic rendering, we ex-
pect that this approach can be extended to other 2D signals,
and even generalized to 3D surfaces.

In this paper, we use the term “curve style” to refer to the
shape variations in a curve. Our work addresses one part of a
larger problem of learning line art styles, including learning
the placement of strokes, as well as the physical appearance
of media (i.e. the buildup of graphite or paint). We focus on
the specific subproblem of curve statistics, and assume that
the input and output curves are continuous.

2. Related Work

There are many different ways to design curve styles
for illustration. One general strategy is to manually pro-
gram curve shape procedures, an approach taken by sev-
eral authors6, 21, 23, 27. This approach gives great control to
the programmer, but can be somewhat unintuitive. An al-
ternative approach that we adopt is to create curve styles
from examples. This approach has the potential to provide
an intuitive interface — since the user is required only to
draw an example of the desired style — but requires an ef-

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org


fective procedure for capturing style. One approach is to
simply warp an example stroke to the desired shape, as
done by Hsu et al.16, or to copy displacements to the tar-
get shape, as done by Finkelstein and Salesin9. These ap-
proaches give high quality results with relatively little effort,
but may give a distorted result when the target shape is very
different from the original shape, or when the base shapes
are noisy. Such noise can be filtered out, at the cost of de-
tail in the source shape. Essentially, such approaches require
that all texture information resides in the high-frequencies
of the texture curve, and all “sweep” information is in the
low-frequencies of the target shape. These methods also pro-
duce noticeable repetition, unless many example curves are
provided. Markosian et al.22 describe a system for placing
copies of small, hand-made strokes on a surface; in contrast,
we focus on creating long, continuous curves. Computer vi-
sion and handwriting recognition researchers have put sub-
stantial effort into shape recognition2, 3, 29; to our knowledge,
these methods have not been applied to modifying shapes
or to line art synthesis. Some service bureaus will create a
personalized typeface from a handwriting sample; our work
generalizes this approach. Freeman et al.11 present perhaps
the first system for synthesizing line art based on example
styles, and provide an inspiration for our work. This method
produces high-quality results, but requires a large training
corpus (e.g. over a hundred strokes), only handles strokes
of roughly the same lengths as the example strokes, and
does not incorporate other constraints (e.g. the method may
change the topology of the drawing in undesirable ways).
Our work addresses all of these problems. In work concur-
rent to our own, Kalnins et al.18 describe a user interface for
designing rendering styles for 3D models. Our work is very
much in this spirit. Their method also includes a curve tex-
ture synthesis procedure, but may suffer the same problems
as copying displacements (as described above). Our method
could be used as a more-powerful curve synthesis procedure
within their framework.

A few authors have described ways to learn stroke ar-
rangements. Salisbury et al.23 create hatchings interactively
by copying from example hatchings. Chen et al.5 describe
a method for learning facial illustration styles from exam-
ple. Their method does not produce very stylized lines; our
method could be used together with theirs to produce styl-
ized line drawings directly from images. Jodoin et al.17 de-
scribe a system for learning hatchings as arrangements of
strokes; our work is complementary, since we focus on the
appearance of individual strokes.

This paper builds on recent work in example-based im-
age texture synthesis. Freeman et al.10 describe an algorithm
for learning scene interpretations from examples, and, sub-
sequently, Efros and Leung8 demonstrated that simple recur-
sive sampling can produce new textures similar to examples.
Wei and Levoy25 demonstrated several accelerations to this
technique, including multiresolution synthesis. Efros and
Freeman7, Harrison12 and Hertzmann et al.13 demonstrated
ways to generalize these synthesis algorithms by constrain-
ing them with source images. As demonstrated by Efros and

p0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

p1
p2 p3 f(t)

p4 p5

p6

p7 p8

p9

Figure 1: We represent each curve as a polyline: a list of
control points pi connected by straight line segments. Each
control point has a corresponding parameter value ti and
specifies that f (ti) = pi. The curve is evaluated at a parame-
ter value t by linear interpolation between the adjacent con-
trol points.

Freeman and Hertzmann et al., such methods can be used
to produce line drawings by example. However, they can be
quite slow, since they must process large amounts of train-
ing data (i.e. the set of image neighborhoods), often blur and
blend curves, and produce resolution-dependent bitmaps (as
opposed to line art in vector form). Furthermore, they do not
capture rotationally invariant aspects of style. We show that
these methods can be transferred to the curve domain, and
that this representation is better suited to learning line styles.
However, it should be pointed out that our method cannot yet
work directly from source images but, rather, requires input
curves in vector form.

Wei and Levoy26 and Ying et al.28 describe methods for
synthesizing 3D shape by synthesizing displacement tex-
tures. These methods model statistics of only the displace-
ments, whereas our method models statistics of the resulting
surface shape. Furthermore, we show how to learn transfor-
mations between shapes.

At a high level, our constrained texture synthesis algo-
rithms are similar to variational curve modeling. For exam-
ple, Kobbelt and Schröder19 describe a subdivision scheme
for fair interpolation of a set of constraints. Instead of using a
predetermined smoothness energy function, we use a learned
energy function; our single-resolution synthesis is analogous
to a blurring filter, and our multiresolution scheme is analo-
gous to variational subdivison.

3. Algorithms

In this section, we introduce a family of curve analogies
problems and corresponding algorithms. The most general
problem statement is as follows: given an example “unfil-
tered” curve A and example “filtered” curve A′, we would
like to “learn” the transformation from A to A′, and apply it
to a new curve B to generate an output curve B′. In short, we
wish to generate B′ to satisfy the relation

A : A′ :: B : B′ (1)

2



B'

A'

B'(ti)

A'(sj)

B'

A'

t'

a'k+t'
 b'k






(a) (b) (c)

Figure 2: Curve synthesis problem statement. (a) Our goal is to produce a curve B′ such that the neighborhood around every
point B′(ti) “looks like” some neighborhood in A′. (b) Each neighborhood can be sampled with arc length spacing to get
samples a′k and b′

k. In order to compare neighborhoods, we estimate a rigid transformation that aligns the samples. Here we
show a translation t′ that maps from the coordinate system of the A′ neighborhood to that of the B′ neighborhood. (c) Once
the transformation is determined, the two neighborhoods can be compared in the same coordinate frame. Each neighborhood
is sampled with arc length spacing, and the corresponding samples a′k + t′ and b′

k are compared.

We begin by describing the simplest problem statement and
algorithm, and then show how to add more features to create
more general algorithms. Specifically, we begin with a curve
synthesis algorithm that randomly generates a B′ curve in
the style of an A′ curve. In this case, there are no A or B
curves and we are just randomly sampling curves from the
distribution implied by A′. Next, we show how to synthesize
a shape according to some constraints. We then show how to
generalize this method to create curve analogies, and, finally,
how multiresolution synthesis can give greater speed, quality
and flexibility.

A 2D curve can be written in parametric form as a map-
ping from a segment on the real line to the plane f :
[tmin, tmax]→ R2. For convenience, we use piecewise linear
curve representations, a.k.a. polylines (Figure 1). Each curve
is represented internally by an ordered list of control points
(ti,pi), where each parameter value ti is unique in the list,
and the maximum and minimum parameter values in the list
define the range [tmin, tmax]. A curve is evaluated at a specific
t value by linear interpolation†, and rendered by drawing line
segments between each control point. The curve is modified
by adding and deleting control points. A curve computed in
this representation can easily be converted to other repre-
sentations, e.g. by resampling or by creating a non-uniform
B-spline from the control points.

3.1. Curve synthesis

Problem statement. The curve texture synthesis problem is
as follows: given an example curve A′, generate a new curve
B′ of a specified arc length LB′ that appears “similar” to the
example curve (Figure 2(a)).

Our single-scale curve texture synthesis algorithm is an
adaptation of Efros and Leung’s image texture synthesis

† f (t) =

{

p if (t,p) is a control point
(t−tlower)pupper+(tupper−t)plower

tupper−tlower
otherwise

where “upper” and “lower” denote the parameter values of the
control points immediately before and after t.

algorithm8 for processing shape. We use the primed symbols
A′ and B′ in anticipation of Section 3.3, when the unprimed
symbols will be introduced in a more general version of the
algorithm.

In particular, we use A′ to define a cost function over pos-
sible curves, and then attempt to generate a new curve B′

with minimal cost:‡

E(B′) = ∑
i

min
j

d(B′, ti,A
′,s j) (2)

This cost function states that we desire curves for which the
neighborhood around each ti location in B′ “looks like” the
neighborhood around some s j in A′ (Figure 2(a)). In other
words, this cost function measures the “difference” between
the local shape of B′ around ti and the local shape of A′

around s j . We restrict the ti and s j samples to be taken from
a finite set of samples in their respective domains.

Of critical importance is the definition of the neigh-
borhood distance metric d(B′, ti,A

′,s j). We represent each
neighborhood as a set of K samples a′k ≡ A′(sk) and
b′

k = B′(tk), k = {1..K}, taken in unit arc length incre-
ments around A′(s j) and B′(ti), respectively. In addition, we
use tangent features ∆b′

k ≡ (b′
k − b′

k−1)/‖b
′
k − b′

k−1‖, and
∆a′k ≡ (a′k− a′k−1)/‖a

′
k− a′k−1‖, in order to better capture

the smoothness properties of the curve. We cannot directly
compare the 2D positions of points on the curves B′ and
A′ (as is typically done for image texture synthesis), since
translating a curve in 2D should not affect this measurement.
More generally, we would like the neighborhood compari-
son to be invariant to rigid transformations. Hence, we use
the distance metric

d(B′, ti,A
′,s j) = min

R′,t′
∑
k

wk(‖R
′a′k + t′−b′

k‖
2 +

w∆‖R
′∆a′k−∆b′

k‖
2)

‡ More formally, we infer a density of curves p(B′) from A′, and
then sample from this density. The density is given by p(B′) =

e−E(B′)/Z, where Z is a normalization constant. In this sense, our
algorithm models the statistics of curves as samples from p(B′).

3



(a)

A' B'

(b)

A'(S(i))

A'(S(i-1))

B'(ti)

B'(ti-1)

Figure 3: Curve coherence. (a) We would like to copy continuous segments of the example curve A′ to B′. We say that a curve
segment is coherent if it was copied from a curve segment in the example curve. (b) For the polyline representation, we can test
for coherence by testing if the line segment between A′(S(i)) and A′(S(i−1)) is identical to the line segment between B′(ti) and
B′(ti−1). We approximate this test by measuring the arc lengths ‖A′(S(i))−A′(S(i−1))‖ and ‖B′(ti)−B′(ti−1)‖.

B'

A'

B'(tmax)

A'(sj)

B'(tnew) B'

A'

t'

a'k+t'

 b'k






pj=A'(sj)+t'

(a) (b) (c)

Figure 4: First pass of the single-scale curve synthesis algorithm. (a) Our goal is to pick a value of B′(tnew) such that the
resulting neighborhood around tnew matches some neighborhood in A′. (b) For each example neighborhood, we find the rigid
translation that best aligns the two neighborhoods. Here we show a translation t′. (c) The neighborhoods are compared in the
transformed coordinate frame, and the candidate p j for B′(tnew) is a copy of A′(s j) in the local coordinate frame.

where the rotation R′ and translation t′ together define a rigid
transformation, and wk and w∆ are user-defined parameter
settings. If only translation invariance is desired, then R′ can
be fixed to be the identity matrix; this choice of whether to
use rotation invariance depends on the texture being mod-
eled.

Several authors have observed that, for image textures,
copying patches of texture gives improved quality1, 7, 13, 20;
we find the same to be true for curves. Hence, in a similar
manner to Hertzmann et al.13, we encourage copying coher-
ent segments from A′ to B′. Recall that B′ is constructed
from control points (ti,pi) so that B′(ti) = pi. Let S(i) be
the source index for each control point in B′, defined as
S(i) = argmin j d(B′, ti,A

′,s j). We say that a control point
(ti,pi) in B′ is coherent with the preceding control point
(ti−1,pi−1) if S(i−1) < S(i) and the curve segment between
A′(S(i− 1)) and A′(S(i)) is identical to the curve segment
between B′(ti−1) and B′(ti) (Figure 3). We can test for this
condition approximately by testing whether the correspond-
ing arc lengths are the same, which, in this case, reduces to
‖A′(S(i))−A′(S(i− 1))‖ = ‖B′(ti)−B′(ti−1)‖. We penal-
ize non-coherent control points by multiplying the distance
d(·) by (1 + κ/D) where D is the approximate control point
spacing in the curve and κ is a parameter setting.

Algorithm. We now describe a single-scale curve synthesis
procedure; pseudocode for the algorithm is given at the end
of this section. Since, at the outset, the start of the curve is
entirely unconstrained, the algorithm first initializes B′(t) to
be an empty curve, and then copies a randomly-chosen seg-

ment of three consecutive control points from the A′ curve
to the B′ curve.

The remainder of the B′ curve is generated by nearest-
neighbor sampling. We generate a new sample after the end
of the curve, at tnew = tmax + ∆t, where tmax is the current
maximum t value in B′, and ∆t is a predetermined spacing
(Figure 4(a)). Our goal now is to choose the value B′(tnew)
that minimizes equation (2), while holding the rest of the
curve shape fixed. As in the texture synthesis algorithms, the
algorithm searches for the value p∗ for B′(tnew) that best
matches the resulting neighborhood of some neighborhood
j∗ in A′, while neglecting the other terms in Equation 2 that
depend on B′(tnew):

(p∗, j∗) = arg min
(B′(tnew), j)

d(B′, tnew,A′,s j) (3)

In order to estimate these values, the algorithm iterates over
each neighborhood (indexed by j) in the example curve
A′. For each j, we compute the new value p j for B′(tnew)

that minimizes d(B′, tnew,A′,s j), and the corresponding cost
d j = argminB′(tnew) d(B′, tnew,A′,s j). We set j∗ to the index
of the neighborhood with the smallest cost d j , and p∗ to the
corresponding position p j . Finally, we set B′(tnew) to the
value p∗ corresponding to that sample, and the source in-
dex S(i) = j∗. We introduce randomness in the choice of the
source location j∗ in the same way as Efros and Leung8,
i.e. we uniformly sample from the set of s values for which
the neighborhood measurement is within a fixed proportion
(1+ ε) of the optimal choice.

We now describe the computation of p j and d j for each
neighborhood j. This search is very similar to the one de-

4



scribed by Efros and Leung8, except that neighborhoods
must be compared under rigid transformations. First, the
method computes the optimal rigid transformation R′

j, t
′
j

that aligns the existing neighborhood samples {ak,∆ak}
to {bk,∆bk} (Figure 4(b)), using standard point-matching
techniques14, 15, 24. This 2D transformation is computed in
closed form. A causal neighborhood is used: the neighbor-
hood points in b′

k after ti are omitted (since they have not yet
been computed), along with their corresponding points in a′k.
Note that if only translation invariance is desired, then R′

j is
set to be an identity matrix. With these values for j,R′

j, and
t′j , the cost function can be written

E(B′) = wnew‖p j− (R′
jA

′(s j)+ t′j)‖
2 +C (4)

where wnew is the weight of B′(tnew) in equation (2), and C
contains terms that do not depend on p j . Hence, the optimal
choice for p j is given by transforming the position of A′(s j)

to the neighborhood in B′: this gives p j = R′
jA

′(s j) + t′j
(Figure 4(c)). Finally, we evaluate the cost d j for this value
p j , and apply the coherence penalty, if any. We determine
whether a candidate is coherent by the approximate test
S(i− 1) < s j and ‖A′(S(i))− A′(S(i− 1))‖ < 3

2‖B
′(ti)−

B′(ti−1)‖.

This process can be accelerated by precomputing the set
of neighborhoods in A′. This sped up our system by a factor
of five.

This method is not strictly optimal because the sampling
pattern and the rigid transformation all depend on the po-
sition of p j , and vice versa. For curve synthesis, we have
not found it necessary to directly account for this interde-
pendence — we first estimate the sampling pattern, then the
rigid transformation, then the value of p j . In later sections,
we will describe cases where multiple passes are necessary.

The entire algorithm can be summarized in pseudocode as
follows:

function SYNTHESIZECURVE(A′):
initialize B′ with a randomly-chosen sequence of

three control points from A′

while ARCLENGTH(B′) < LB′

tnew← tmax +∆t
compute the curve samples b′

k around B′(tmax)
for each s j in a discrete set in the domain of A′, do:

compute the curve samples a′k around A′(s j)
compute R′

j, t
′
j that align {ak,∆ak} to {bk,∆bk}

p j← R′
jA

′(s j)+ t′j
compute d j for the values of p j , R′

j , and t′j
if p j is not coherent, d j← d j(1+κ/D)

dmin←min j d j
compute the set of candidates { j : d j(1+ ε)≤ dmin}
choose j∗ by uniform sampling from the candidates
insert control point (tnew,p j∗) into B′

S(i)← s j∗

return B′

Once an initial shape for this curve has been generated, it
can be refined by making successive passes over the curve.
The algorithm for this is very similar to the first pass: it iter-
ates over every control point in B′, collects the full neighbor-
hood around that control point, and finds the best matching
full neighborhood in the example data.

3.2. Curve synthesis with constraints

Problem statement. We now describe a way to add con-
straints to curve synthesis. We allow two kinds of con-
straints:

• Soft constraints specify that the curve should pass near
specific positions. Each soft constraint adds a term of the
form wc‖B′(tc)−qc‖

2 to the cost function in Equation (2),
where c is the index of the constraint.
•Hard constraints specify that the resulting curve must pass
through specific positions qc. A hard constraint is specified
as B′(tc) = qc and can be viewed as the limit of a soft con-
straint as wc→∞.

We represent a constraint as a tuple 〈tc,qc,wc〉, where
wc = ∞ for hard constraints.

Note that a pair of hard constraints 〈t1,p1,∞〉 and
〈t2,p2,∞〉 specifies only that the curve must pass through
p1 and p2 in that order; the arc length of the curve between
those two points may vary widely depending on the style of
the training data. In practice, the arc length will also depend
on the search procedures used.

Algorithm. The algorithm for curve synthesis with con-
straints is quite similar to that without. In addition to the
example curve A′, a set of constraints 〈tc,pc,wc〉 is also pro-
vided. For this version of the algorithm, we assume that
the first point on B′ is constrained; we use the constraint
to initialize the curve. The more general case can be han-
dled by synthesizing forward from the first constraint, and
then synthesizing backwards from the last constraint. The
single-scale synthesis is not robust to arbitrary arrangements
of constraints (for example, it has little chance of reaching
a constraint that is far from the previous constraint), so we
use the multiscale synthesis algorithm (to be described in
Section 3.4) whenever constraints are present. We only in-
troduce synthesis with constraints in isolation to make the
presentation cleaner.

For each pass of the algorithm, we iterate over the same t
values as before, but also insert control points (and perform
synthesis) at the constraints. Unconstrained control points
are synthesized exactly as in the previous algorithm. Con-
trol points specified by hard constraints are immediately re-
placed with the position of the hard constraint.

For control points with soft constraints, we must modify
the search procedure according to the modified cost function.
In the case of one soft constraint 〈tc,qc,wc〉 when tc = tnew,
equation (4) becomes

E(B′) = wnew‖p j− (R′
jA

′(s j)+ t′j)‖
2 +wc‖p j−qc‖

2 +C

5



B'B

A'
A

B(ti) B'(ti)

A'(sj)

A(sj)

B'B

A'
A

R',t'

R',t
(a) (b)

Figure 5: Curve analogies problem statement. Here we show an example using rotation invariance, where the B curve is rotated
90 degrees from the A curve. (a) Our goal is to generate a B′ curve, such that, for every point ti, there is some point s j such
that: the neighborhood around B′(ti) looks like the neighborhood around A′(s j), the neighborhood around B(ti) looks like the
neighborhood around A(s j), and the offset between B and B′ matches the offset between A and A′. The offsets are measured
between the neighborhood centers-of-mass. (c) These comparisons are performed with respect to the rigid transformation that
best matches the curves. We use the same rotation matrix R′ to map between the different curves, but allow different translations
t (between A and B) and t′ (between A′ and B′). A different rigid transformation will be estimated for each candidate.

where wnew is the weight of the target point; we always use
wnew = 1 in practice. The overall outline of the algorithm is
the same: we compute the set of candidates p j and their asso-
ciated costs d j , and choose the candidate with the least cost.
However, the candidates are now computed by optimizing
the above quadratic equation:

p j =
wnew(R′

jA
′(s j)+ t′j)+wcqc

wnew +wc
(5)

The position of p j is no longer a direct copy of the example
position as in Efros and Leung’s method — the constraint
acts like a spring that “tugs” the value of B′(tnew) toward q j .

For a specific neighborhood and transformation, the cost
in equation (4) acts like a soft constraint of the form
〈

tnew,R′
jA

′(s j)+ t′j,wnew
〉

. It is convenient to view this as
a “virtual constraint;” in subsequent sections, we will add
more terms that can be written as virtual constraints. In
our implementation, we convert all energy terms into vir-
tual constraints, and then compute p j as a weighted com-
bination p j = ∑c wcqc/∑c wc, for each constraint c, real or
virtual. The cost terms ∑c wc‖p j−qc‖

2 are then added to d j .
This unified treatment of constraints makes it easier for one
piece of code to handle the different possible cost functions.
Of course, our technique could be generalized to allow non-
quadratic cost, for example, by computing p j by numerical
optimization.

3.3. Curve analogies

Problem statement. The curve analogies problem is as fol-
lows: given an example “unfiltered” curve A and example
“filtered” curve A′, we would like to “learn” the transforma-
tion from A to A′, and apply it to a new curve B to generate an
output curve B′ (Figure 5(a)). In short, we wish to generate

B′ to satisfy the relation

A : A′ :: B : B′

Of course, there are infinitely many plausible ways to inter-
pret a training pair; in this paper, we pursue a “textural” form
of analogy, similar to the image methods7, 12, 13. However, the
shape and position relationships of 2D curves present some
additional complications.

First, we need some way of representing the correspon-
dence between A and A′, and between B and B′. We do this
by requiring the A,A′ curves to have the same parameter-
ization, and generating B′ with the same parameterization
as B. Hence, a point A(s j) corresponds to the point A′(s j),
and B(ti) corresponds to B′(ti). Note that this places no con-
straint on the relative arc lengths of the curves. If the exam-
ple curves do not have the same parameterization, then they
are first reparameterized.

More importantly, we need some way to measure shape
relationships between input and output curves. For example,
one approach would be to represent the A′ and B′ curves as
displacement vectors from the A and B curves respectively.
However, this representation would be very sensitive to noise
in the shape of the A and B curves — noise in the B curve
would distort the resulting B′.

Intuitively, the problem can be viewed as simultaneously
optimizing for three goals (Figure 5(a)):

• The shape of B′ should “look like” the shape of A′,
• The shape of B′ should have the same relationship to the
shape of B as the shape of A′ has to A, and
• The relative positions and orientations of the B′ curve
should have the same relationship to B as the positions and
orientations of A′ do to A.

6



The first two goals directly correspond to the matching terms
in the Image Analogies algorithms; we optimize these by
using the same point and tangent features for B and B′ as in
Section 3.1. However, the third goal is new, and specific to
shape modeling.

We measure the positional relationships by measuring the
offsets between curves. We use neighborhood centers-of-
mass as a sort of “summary” of the local neighborhood posi-
tion; we experimented with several alternatives (such as us-
ing offsets between corresponding curve points) and found
centers-of-mass to be the most effective. Let ak,a

′
k,bk,b

′
k

be neighborhood samples in the four curves around some ti
and s j sample points, and define the centers-of-mass as a =

∑wkak/∑wk,a
′ = ∑wka′k/∑wk,b = ∑wkbk/∑wk,b

′
=

∑wkb′
k/∑wk, and let R and t be the rigid transformation that

aligns the neighborhood of A to B. As before, these samples
are taken in unit arc length increments around the neighbor-
hood centers; the b′

k values are resampled from the portion
of the B′ curve that has already been generated. We want the
offset from A to A′ to match the offset from B to B′ (Figure
5(b)), which we express as

dOFFSET (B,B′, ti,A,A′,s j) = ‖R′(a′−a)− (b
′
−b)‖2

For example, when R′ is the identity matrix and A′ is above
A, B′ should be above B.

The new cost function for the output curve becomes

E(B′) = ∑
i

min
j

[

d(B′, ti,A
′,s j)+wBd(B, ti,A,s j)+

wOFFSET dOFFSET (B,B′, ti,A,A′,s j)
]

(6)

where the three terms here correspond to the three goals de-
scribed above, with weights wB and wOFFSET . The sum of
the three desires is also multiplied by a coherence term. The
weight wB controls the relative importance of the B and B′

curves in the matching.

As stated, this cost function allows different rotations and
translations for the input and output curves. We have found it
works best to use separate translations t and t′ for matching
A to B and A′ to B′, respectively, but to use the same rotation
from A to B as from A′ to B′.

Constraints may be included in the analogy just as in
curve synthesis; note that the constraint t values correspond
to the t values on the B curve.

In many cases, we are not interested in the shape of the
B curve, only in its overall sweep. In this case, we set wB to
be zero, which corresponds to disabling the “second goal”
described above.

Algorithm. The analogy algorithm is the same as curve
synthesis, but with two important changes to the cost func-
tion in equation (2), due to the two new cost terms.

First, the A/B curve matching term (6) affects the curve
alignment and the computation of d j . For example, when

generating the value of B′(tnew), if the neighborhood of
B(tnew) has a sharp concave curve, then we prefer to choose
an example where A(s j) also has a sharp curve. The optimal
translations t and t′ are computed for each pair of curves
separately, and then a single R′ is computed that aligns the
pairs of curves.

Second, the curve offset term affects both the matching
penalty d j and the computation of the optimal p j . Since p j

is a candidate for B′(tnew), we can rewrite the offset term as

dOFFSET (B,B′, ti,A,A′,s j) =

m2‖p j−
1
m

(

b+R′(a′−a)− ∑k wkb′

k
w j+∑k wk

)

‖2

where we have defined m = w j/(w j + ∑k wk) is the propor-

tion of mass of b
′

due to p j , so that b
′
= mp j + ∑k wkb′

k
w j+∑k wk

.
This is another quadratic error term, and can be converted
into a virtual constraint

〈

ti,
1
m

(

b+R′(a′−a)−
∑k wkb′

k

w j +∑k wk

)

,wOFFSET m2
〉

and included when solving for p j . This also means that we
do not begin the curve with random initialization. For the
first sample in B′, there are no b′ values, and the virtual con-
straint reduces to

〈

ti,b+R′(a′−a),wOFFSET
〉

.

The analogy algorithm terminates when the maximum t
value in B′ is the same as in A′. Multiple passes may be
added to the curve analogy procedure as before, by consid-
ering full neighborhoods in B′, and iterating over all control
points in B′.

The single-scale analogies algorithm can be summarized
in pseudocode as follows:

function SYNTHESIZEANALOGY(A,A′,B,constraints):
initialize B′ as an empty curve
for each constraint {tc,qc,wc}, do:

insert (tc,B(tc)) as a control point into B′

for each control point (ti,pi) ∈ B, do:
compute samples bk and b′

k around B(ti) and B′(ti)
for each s j in a discrete set in the domain of A′, do:

compute samples ak and a′k around A(s j), A′(s j)
compute the R′

j, t j, t
′
j that align {ak,∆ak,a

′
k,∆a′k}

to {bk,∆bk,b
′
k,∆b′

k}
get all constraints {〈ti,wc,qc〉} for ti
p j← ∑c wcqc/∑c wc

d j← ∑c wc‖p j−qc‖
2

if p j is not coherent, d j← d j(1+κ/D)
dmin←min j d j
compute the set of candidates { j : d j(1+ ε)≤ dmin}
choose j∗ by uniform sampling from the candidates
insert control point (ti,p j∗) into B′

S(i)← s j∗

return B′

In addition, we define a function
REFINEANALOGY(A,A′,B, B̂′) that performs the same

7



task as the above procedure, but using B̂′ as the initialization
of B′. This means that full, non-causal neighborhoods are
computed instead of causual neighborhoods. Multipass
refinement can be performed by first synthesizing with
SYNTHESIZEANALOGY and then repeatedly applying
REFINEANALOGY.

3.4. Multiresolution curve synthesis

There are a number of problems with the single-scale al-
gorithms just described. First, we would like to be able to
use large neighborhood sizes, which can be computationally
expensive. Second, we would like to propagate constraints
from the end of the output curve to the beginning, which
may require several passes over the curve. Finally, there is
a dependence on the ∆t step size parameter that can pro-
duce poor results when processing analogies, since the step
size is not directly related to arc length. We address these
problems with a multiresolution synthesis procedure, based
on the work of Wei and Levoy25. The idea is to generate
a Gaussian pyramid of curves with the same statistics as a
Gaussian pyramid of curves corresponding to A′. The Gaus-
sian pyramid of curves is a list of L curves A′

` such that A′
`−1

is a blurred and subsampled version of A′
`, and A′

L = A′. This
definition of curve pyramid is analogous to Gaussian pyra-
mids used for images4.

Problem statement. In multiresolution curve synthesis, we
are given an example A′ curve, and synthesize an output
curve B′. This is done by synthesizing a Gaussian pyramid
of curves from coarse to fine, by sampling from the distribu-
tion implied by the Gaussian pyramid of the A′ curve. The
final output B′ is the finest level of the output pyramid.

The coarsest level of the output pyramid is a single-scale
curve synthesis problem based on the coarsest level of the
input pyramid. For the remaining levels of the pyramid, the
relationships can be expressed as an analogy:

A′
`−1 : A′

` :: B′
`−1 : B′

`

where ` indicates the pyramid level, `−1 is the next coarser
level above `.

Any constraints placed on the output curve must be ap-
plied to the higher levels as well. However, because the
coarser levels are smoothed versions of the finer levels,
maintaining the constraints precisely may distort the texture
in undesirable ways. For example, if the coarsest level of A′

is a straight line, then this texture cannot meet constraints
that the finer level can. The texture would have to bend to
meet non-colinear constraints, which would not be a valid
sample of the texture. We address this problem by softening
the constraints: the weight wc of each constraint 〈tc,qc,wc〉

is replaced with (w−1
c +(L− `)−1)−1 at level `, where we

define∞−1 = 0 for hard constraints.§

§ This softening comes from viewing a constraint as a Gaussian
prior probability density over the position of B′(tc), with variance

Algorithm. These observations lead to the following mul-
tiresolution curve synthesis algorithm. First, compute the
coarsest level of the B′ pyramid by curve synthesis from the
coarsest A′. In order to remove the dependence on the ∆t
for the remaining levels, we resample the curve at unit arc
length intervals after synthesis. We then compute the remain-
ing levels of the pyramid using the analogy algorithm from
Section 3.3. Each finer level of the pyramid is initialized with
the coarser level, and resampled to have a control point den-
sity proportional to the neighborhood sampling density be-
fore applying the analogy refinement. If any constraints are
present, the corresponding blurred versions are used at each
level.

The multiresolution synthesis algorithm can be summa-
rized in pseudocode as follows:

function SYNTHESIZECURVEMULTIRES(A′):
create Gaussian pyramid of A′

B̂′
0← SYNTHESIZECURVE(A′

0)
B′

0← RESAMPLE(B̂′
0,1)

for each remaining level `, from coarest to finest, do:
B̂′

`← RESAMPLE(B′
`−1, .5(1.2)`−L)

B′
`← REFINEANALOGY(A′

`−1,A
′
`,B

′
`−1, B̂

′
`)

return B′
L

The function RESAMPLE resamples a curve to have the
specified arc length between control points.

3.5. Multiresolution curve analogies

The most general version of our algorithm is a direct exten-
sion of the preceding algorithms. In this case, synthesis at the
finer levels of the pyramid can be viewed as a “generalized
analogy:”

A`,A
′
`−1 : A′

` :: B`,B
′
`−1 : B′

`

The new curves simply add the corresponding terms to the
cost function — each curve pair has a matching term, and
there are two offset terms, to ensure that B′

` has consistent
relationships with B` and B′

`−1. Each of these terms creates
corresponding terms in the neighborhood matching and the
virtual constraints; the resulting algorithm is a trivial gener-
alization of the previous algorithms. This involves generaliz-
ing REFINEANALOGY to take multiple pairs of A,B curves
that samples neighborhoods for alignment and comparison
in each corresponding A,B pair.

The multiresolution analogies algorithm can be summa-
rized in pseudocode as follows:

σ2
c = w−1

c . Softening corresponds to convolving the prior with an-
other Gaussian of variance (L−`)−1; the resulting Gaussian density
has variance (w−1

c +(L−`)−1)−1. Hard constraints have zero vari-
ance.

8



function SYNTHESIZEANALOGYMULTIRES(A,A′,B):
create Gaussian pyramids of A, A′ and B
B̂′

0← SYNTHESIZEANALOGY(A0,A
′
0,B0)

B′
0← RESAMPLE(B̂′

0,1)
for each remaining level `, from coarest to finest, do:

B̂′
`← RESAMPLE(B′

`−1, .5(1.2)`−L)
B′

`← REFINEANALOGY({A`,A
′
`−1},A

′
`,

{B0,B
′
`−1}, B̂

′
`)

return B′
L

3.6. Parameter settings

In practice, the parameters must be chosen carefully to yield
good results. However, we found that a single set of param-
eters is effective for a large class of styles — we were able
to use almost the same settings for all of the results shown
in this paper, as described below. All distance measurements
are in units of image-space distance.

When creating Gaussian pyramids, we resample each
level to have a spacing of D = .5(1.2)`−L between sam-
ples. We set the neighborhood sampling spacing (i.e. the
distance between adjacent ak or bk samples) to be D/4
for the level being synthesized. Note that the neighbor-
hood size should be large enough to capture the details
of the style in A′. We typically use neighborhoods of
n = 81 or n = 101 samples wide. The sample weights wk
are approximations to a nonnormalized Gaussian density:

wk =

(

n
k

)

/

(

n
(n−1)/2

)

. Since this weighting de-

pends only on k, the Gaussian has a larger spread at coarser
pyramid levels. The weight of the coarse scale wB′`−1 = 2.
Typical parameter values include wOFFSET = 3.8 for analo-
gies and wOFFSET = 19 for curve synthesis; w∆ = 100 or
w∆ = 100,000; κ = 1/2, ∆t = 2D or ∆t = 4D.

The weight of source B curve is set to wB = 2 or wB = 0
depending on whether the shape of the B curve is important.
If wB = 0, then only the position and orientation information
of B is used.

4. Applications and Experiments

We now show several applications of the curve analogies
framework. We used a simple 2D drawing interface to create
the curves and specify styles and constraints, although our
methods can be applied to any 2D curves (such as object sil-
houettes rendered from a 3D model). Each of the individual
curves here took from a few seconds to about 1 minute to
generate using a 1 GHz Pentium 4, depending on the length
of the B′ curve. This time could probably be substantially
reduced by hand-optimizing the code. We used multireso-
lution synthesis in all experiments. Rotational invariance is
used for all figures except where noted.

Figure 6 illustrates curve synthesis using translation in-
variance — a long, loopy curve is automatically generated
in the style of a short one. Figure 7 shows this texture used

in an analogy to apply this texture to the sweep of another
curve. Since we are only interested in the sweep of the curve,
we set wB to zero.

Figure 9 demonstrates a situation where the curve of A
is used, and thus wB is set to 2. The algorithm generates a
hand-drawn style based on the example, with different fea-
tures at corners, vertical edges, and so on. Translation invari-
ance is also used to capture orientation-dependent behavior.
This means that, for example, the portions of B that were
drawn right-to-left are treated differently from those that
were drawn left-to-right. Both A and B were drawn clock-
wise. This explains the indentations that appear below the
horizontal part of B′: there are no examples of long horizon-
tal, right-to-left lines in A, so the long horizontal, right-to-
left lines are replaced with a series of corners.

Figure 10 illustrates the use of constraints to compose
drawings. Processing each edge separately produces curves
that do not intersect at the endpoints, and thus changes the
topology of the drawing (Figure 10(b)). We created endpoint
constraints for each set of nearby endpoints; processing with
these constraints forces the corners to meet and preserves the
source topology.

Figure 11 shows a larger composition, made by applying
various curve style to elements of a line-drawn composition.
Similar methods could be used to for rendering silhouettes
extracted from 3D models in hand-drawn styles.

Figure 12 shows another example where the shape of the
source curve is used, and thus wB is set to 2. Here, we create
a filter that makes the shape less rigid and more flowing. For
example, the bend at the beginning of the “M” is copied to
the beginning of the “B.”

5. Discussion and Future Work

We have presented a technique for learning transformations
of 2D shapes from examples. This method can be applied
to a wide variety of input shapes, and thus we expect this
method to be useful whenever hand-made stroke styles are
desired, such as in hatching and 3D silhouette rendering.
There are many potential avenues for improvement and en-
hancement:

Learning parameters. Our current system includes an un-
fortunate number of user-tuned parameters. It would be more
desirable to fit a parametric model that automatically learns
all parameters from the data. However, it is not at all clear
what model would be appropriate for representing arbi-
trary styles; in particular, traditional time-series models of-
ten have difficulty representing sharp features without using
a very large number of parameters (and thus requiring a vast
corpus of training data).

Alternative representations. The polyline representation
does not represent smooth curves very efficiently; it should
be straightforward to translate our methods to a smooth
curve representation (e.g. B-splines). Furthermore, such a

9



representation would be much faster, since fewer control
points would be required to represent a curve. However,
such a system would be more complicated to implement,
and might have difficulty capturing sharp features, unless
they are explicitly included in the curve representation. It
would also be interesting to experiment with displacement
vectors9, 18. We speculate that they may give good results in
some cases.

Drawing systems. Our system can be viewed as a first step
toward a larger system that generates many curves or begins
with images or 3D geometry as input, such as in the work of
Kalnins et al.18 and Jodoin et al.17. For example, our system
currently assumes that every input curve produces exactly
one output, and thus cannot learn styles with broken curves,
such as the overdrawing common in sketchy styles. Addi-
tional types of constraints could be added, in the form of
new cost terms. For example, we could specify constraints
on interactions between curves or between a curve and an
image.

Additional features. Additional features of the curve —
such as pressure, thickness, and brush texture — could be
easily added to the synthesis as additional features in the
curves A′,B′ (although more training data may be required in
order to capture greater variability). Closed curves can eas-
ily be modeled by allowing neighborhood sampling to wrap
around the curve.

Animation. Curve analogies can be used for defining line
styles for non-photorealistic animation. If stroke temporal
coherence is desired, then corresponding terms could be
added to the energy functions. However, whereas flickering
in full-frame painting styles may be very distracting, flicker-
ing in line-drawn animation is often acceptable or even desir-
able, since it gives a sense of life to otherwise still characters.
Many classic line-drawn animations did not use temporal co-
herence of the form that has recently become a goal of NPR
research.¶

3D signal processing. We believe that the curve analogies
approach could be extended to learning probability distribu-
tions over 3D surfaces, for recognition and 3D signal pro-
cessing applications.

References

1. Michael Ashikhmin. Synthesizing Natural Textures. 2001
ACM Symposium on Interactive 3D Graphics, pages 217–226,
March 2001. 4

¶ To name a few: “The Big Snit” by Richard Condie, “Special De-
livery” by John Weldon and Eunice Macaulay, “Billy’s Balloon” by
Don Hertzfeldt, the animations of Bill Plympton, “Crac” by Frédéric
Back, and the feature film “My Neighbors, the Yamadas” by Isao
Takahata.

2. Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape
Matching and Object Recognition Using Shape Contexts.
IEEE Trans. Pattern Anal. Machine Intell., 24(2), April 2002.
To appear. 2

3. Andrew Blake and Michael Isard. Active Contours. Springer,
1998. 2

4. P. J. Burt and E. H. Adelson. A multiresolution spline with
application to image mosaics. ACM Transactions on Graphics,
2(4):217–236, October 1983. 8

5. Hong Chen, Ying-Qing Xu, Heung-Yeung Shum, Song-Chun
Zhu, and Nan-Ning Zheng. Example-based Facial Sketch
Generation with Non-parametric Sampling. Proc. Interna-
tional Conference on Computer Vision, 2001. 2

6. Cassidy Curtis. Loose and Sketchy Animation. In SIGGRAPH
98: Conference Abstracts and Applications, page 317, 1998. 1

7. Alexei A. Efros and William T. Freeman. Image Quilting for
Texture Synthesis and Transfer. In Proceedings of SIGGRAPH
2001, pages 341–346, 2001. 2, 4, 6

8. Alexei A. Efros and Thomas K. Leung. Texture Synthesis by
Non-parametric Sampling. In IEEE International Conference
on Computer Vision, pages 1033–1038, September 1999. 2,
3, 4, 5

9. Adam Finkelstein and David H. Salesin. Multiresolution
Curves. Proceedings of SIGGRAPH 94, pages 261–268, July
1994. 2, 10

10. W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing Low-Level Vision. Intl. J. Computer Vision, 40(1):25–47,
2000. 2

11. William T. Freeman, Joshua B. Tenenbaum, and Egon Pasz-
tor. An example-based approach to style translation for line
drawings. Technical Report TR99-11, MERL, February 1999.
2

12. Paul Harrison. A Non-Hierarchical Procedure for Re-
Synthesis of Complex Textures. Proc. WCSG, 2001. 2, 6

13. Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Cur-
less, and David H. Salesin. Image Analogies. Proceedings of
SIGGRAPH 2001, pages 327–340, 2001. 1, 2, 4, 6

14. Berthold K. P. Horn. Closed Form Solution of Absolute Orien-
tation using Unit Quaternions. Journal of the Optical Society
of America, 4(4):629–642, April 1987. 5

15. Berthold K. P. Horn, Hugh M. Hilden, and Shahriar Negah-
daripour. Closed Form Solution of Absolute Orientation us-
ing Orthonormal Matrices. Journal of the Optical Society of
America, 5(7):1127–1135, July 1988. 5

16. Siu Chi Hsu and Irene H. H. Lee. Drawing and Anima-
tion Using Skeletal Strokes. In Proceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics
Proceedings, Annual Conference Series, pages 109–118, July
1994. 2

17. Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Pichi, and
Victor Ostromoukhov. Hatching by Example: a Statistical Ap-
proach. NPAR 2002 : Second International Symposium on Non
Photorealistic Animation and Rendering, June 2002. To ap-
pear. 2, 10

18. Robert D. Kalnins, Lee Markosian, Barbara J. Meier,

10



Michael A. Kowalski, Joseph C. Lee, Philip L. Davidson,
Matthew Webb, John F. Hughes, and Adam Finkelstein.
WYSIWYG NPR: Drawing Strokes Directly on 3D Models.
In Proceedings of SIGGRAPH 2002, July 2002. To appear. 2,
10

19. Leif Kobbelt and Peter Schröder. A multiresolution framework
for variational subdivision. ACM Transactions on Graphics,
17(4):209–237, October 1998. 2

20. Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-
Yeung Shum. Real-time texture synthesis by patch-based sam-
pling. ACM Transactions on Graphics, 20(3):127–150, July
2001. 4

21. Lee Markosian, Michael A. Kowalski, Samuel J. Trychin,
Lubomir D. Bourdev, Daniel Goldstein, and John F. Hughes.
Real-Time Nonphotorealistic Rendering. In SIGGRAPH 97
Conference Proceedings, pages 415–420, August 1997. 1

22. Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Lor-
ing S. Holden, J. D. Northrup, and John F. Hughes. Art-based
Rendering with Continuous Levels of Detail. In NPAR 2000 :
First International Symposium on Non Photorealistic Anima-
tion and Rendering, pages 59–66, June 2000. 2

23. Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and
David H. Salesin. Interactive Pen–And–Ink Illustration. In
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994), pages 101–108, July 1994. 1, 2

24. Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Trans. Pattern
Anal. Machine Intell., 13(4):376–380, 1991. 5

25. Li-Yi Wei and Marc Levoy. Fast Texture Synthesis Using
Tree-Structured Vector Quantization. Proceedings of SIG-
GRAPH 2000, pages 479–488, July 2000. 2, 8

26. Li-Yi Wei and Marc Levoy. Texture Synthesis Over Arbitrary
Manifold Surfaces. Proceedings of SIGGRAPH 2001, pages
355–360, August 2001. 2

27. C. I. Yessios. Computer drafting of stones, wood, plant and
ground materials. In Computer Graphics (Proceedings of SIG-
GRAPH 79), volume 13, pages 190–198, August 1979. 1

28. Lexing Ying, Aaron Hertzmann, Henning Biermann, and De-
nis Zorin. Texture and Shape Synthesis on Surfaces. Proc.
12th Eurographics Workshop on Rendering, pages 301–312,
June 2001. 2

29. Song-Chun Zhu. Embedding Gestalt Laws in Markov Random
Fields. IEEE Trans. Pattern Anal. Machine Intell., 21(11),
November 1999. 2

11



Figure 6: Shape synthesis with translation invariance. The
example shape is shown on the left, and the output shape on
the right.

:

: ::

Figure 7: Shape analogy with rotational invariance. The B′

curve is generated by analogy to the other curves.

Figure 8: Source A and A′ curves used in Figure 11.

:

:

::

A A'

B B'

Figure 9: Shape analogy with translation invariance. The B′

curve is generated by analogy to the other curves.

(a)

(b)

(c)

Figure 10: Shape analogy with constraints. (a) Source A
and A′ pair. (b,Left) Source B curves. (b,Right) Applying
the style to each curve separately produces curves that do
not intersect at their endpoints. (c,Left) Source B curves
with hard constraints. (c,Right) Applying the style with con-
straints forces the curves to meet at their endpoints.

12



Figure 11: Combining shape analogies. The curves in the left image were processed with styles learned from the examples in
Figure 8, and composited manually to produce the right image. The character and texture of the example strokes are transfered
to the source drawing. Rotational invariance was used for all examples.

:: ::

Figure 12: Shape analogy with rotational invariance, applied to handwriting. The output curve is generated by analogy to the
other curves. Here, we create a filter that makes the shape less rigid and more flowing. For example, the bend at the beginning
of the “M” is copied to the beginning of the “B.”

13


