
Hardware-accelerated from-region visibility
using a dual ray space

Vladlen Koltun1, Yiorgos Chrysanthou2, Daniel Cohen-Or1

1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
fvladlen,dcor g@tau.ac.il

2 Department of Computer Science, University College London, London, UK
y.chrysanthou@cs.ucl.ac.uk

Abstract. In this paper a novel from-region visibility algorithm is described. Its
unique properties allow conducting remote walkthroughs in very large virtual en-
vironments, without preprocessing and storing prohibitive amounts of visibility
information. The algorithm retains its speed and accuracy even when applied to
large viewcells. This allows computing from-region visibility on-line, thus elim-
inating the need for visibility preprocessing. The algorithm utilizes a geomet-
ric transform, representing visibility in a two-dimensional space, thedual ray
space. Standard rendering hardware is then used for rapidly performing visibil-
ity computation. The algorithm is robust and easy to implement, and can trade
off between accuracy and speed. We report results from extensive experiments
that were conducted on a virtual environment that accurately depicts 160 square
kilometers of the city of London.

1 Introduction

In a remote walkthrough scenario, a large three-dimensional virtual environment is
stored on a server. The client performs an interactive walkthrough, via a remote net-
work connection, with no a priori information regarding the environment. The client is
assumed to possess the computational resources equivalent to those of a personal work-
station, not being able to render a significant portion of the environment in real time,
nor even fit it into its memory.

This scenario brings about the need forselective transmission, the crux of which is
that the server monitors the client’s (virtual) location during the walkthrough, and trans-
mits the relevant portions of the scene to the client. A selective transmission scheme
must carefully balance between the necessity of not causing errors or visual artifacts on
the client’s side, and the desirability of real-time frame rates.

To keep the client’s frame-rate high, the server has to ensure that the set of objects
displayed by the client is as close to the set of visible objects as possible. Unfortunately,
the ideal situation in which the client always renders only the visible objects is com-
putationally infeasible. However,conservativevisibility algorithms can be employed,
which ensure that the client renders all the visible objects, as well as some occluded
ones. Conservative visibility algorithms that perform well in practice have been the
subject of intensive study for the past decade.

http://www.eg.org
http://diglib.eg.org


Fig. 1. The results of the algorithm for a viewcell of size 50x50x2 meters that partly lies on
London’s Oxford street. The model is shown on the left and the results are visualized on the
right. The algorithm has detected that the whole length of Oxford street is visible (blue) from
the viewcell (green), and was able to mark the immediately surrounding areas as occluded (red).
The tall green wireframe box is drawn in order to mark the viewcell’s location. Results for this
viewcell are shown in Figure 6(a) as well.

From-point visibility algorithms [5, 12, 14, 30] are not suitable for remote walk-
throughs, since they necessitate transmitting visibility changes every frame, giving rise
to unacceptable communication lags, no matter how fast the visibility is computed. To
avoid the problem of lag, from-region visibility [4, 8, 15, 22, 25, 29] can be used. The
idea behind from-region visibility is to partition the space into a grid of viewcells. For
each viewcell, the set of objects visible from at least one point inside the viewcell is con-
servatively estimated, yielding aPotentially Visible Set(PVS) that is associated with the
viewcell.

While the client is in a certain viewcell, the server transmits the PVS of the adja-
cent viewcells. This alleviates lag, since the client does not have to wait every frame
for updates from the server. Rather, the set of objects displayed by the client changes
only when a viewcell boundary is crossed. By the time the client leaves a viewcell, the
PVS of the next viewcell has already been transmitted, and the walkthrough proceeds
smoothly.

This approach does not come without cost. Since the PVS of each viewcell contains
information about the visibility of the whole scene (from that viewcell), and there is a
large number of viewcells, the overall amount of visibility information that has to be
stored on the server is enormous. Although compression schemes have been developed
specifically to tackle this problem [11, 27], it is still very relevant and prohibitive for
large scenes such as urban models.

The space problem is exacerbated by the fact that previous approaches to from-
region visibility computation are efficient primarily when dealing with relatively small
viewcells (with the exception of [9, 25, 26], which are dedicated to in-doors walk-



throughs). This implies that large scenes have to be partitioned into tens of thousands
of viewcells, the Potentially Visible Sets of which have to be computed and stored.

Another bothersome aspect concerning small viewcells is the fact that the time it
takes the client to cross one viewcell is short. If during that time the server cannot com-
plete the transmission of the visibility change required for proceeding into an adjacent
viewcell, visually disturbing errors occur. This is essentially the same problem of lag
that occurs if the server uses from-point visibility computation. Note that the difference
in visibility from two adjacent viewcells can be very significant, even if they are small.

In this paper, we introduce a different approach to computing from-region visibility,
which eliminates the need for preprocessing and storing prohibitive amounts of visibil-
ity information, and does not introduce lag. The speed and accuracy of our from-region
visibility algorithm are retained for very large viewcells. This allows utilizing from-
region visibility computation on-line. While the client traverses one (large) viewcell,
the server computes the visibility information for adjacent viewcells. The speed of the
algorithm allows computing and transmitting this visibility information before the client
reaches the next viewcell, and its accuracy (see Figure 1) ensures that the PVS is small
enough to be displayed by the client in real time.

The next section surveys previous approaches to from-region visibility computation,
and outlines the specific properties of our approach. Section 3 gives an overview of our
algorithm, which is then developed in Sections 4 and 5. Implementation decisions and
experimental results are reported in Section 6, and we conclude in Section 7.

2 From-region visibility

Detecting the objects that are visible from at least one point in a three-dimensional
viewcell is inherently a non-linear four-dimensional problem [7, 24]. Exact solutions
to the from-region visibility determination problem are considered impractical. In fact,
no such solutions have explicitly appeared in computer graphics literature, with the
exception of [7, 24]. Instead, researchers have concentrated on providing practical con-
servative algorithms that overestimate the set of visible objects.

For general scenes, conservative methods were introduced that take into account
only the occlusion of individual large convex occluders [4, 21]. It was shown that such
methods are only effective if the viewcells are smaller than the occluders [18]. For
large viewcells, occlusion may arise out of the combined contribution of several objects.
Often, a “cluster” of small objects occludes a large portion of the scene, while the
individual occlusion of each object is insignificant.

New techniques have recently emerged that attempt to perform occlusion fusion,
that is, capture occlusion caused by groups of objects [8, 15, 22, 29]. Durand et al. [8]
perform from-region visibility computation by placing projection planes behind oc-
cluders, and projecting objects onto these planes. Koltun et al. [15] “slice” the scene
and aggregate occlusion inside each slice to form large virtual occluders. Schaufler et
al. [22] discretize the scene into a hierarchy of voxels and determine occlusion by test-
ing the voxels against the umbrae of the occluders. Wonka et al. [29] prove that after
the occluders are appropriately “shrunk”, sampling the visibility at discrete locations



on the boundary of the viewcell provides a conservative estimate of the visibility from
the viewcell. Further discussion on these recent techniques can be found in [3].

The from-region visibility algorithm presented in this paper utilizes a geometric
transform that maps rays in object-space to points in image-space. This alternative rep-
resentation of visibility allows the problem to be conservatively discretized and solved
rapidly, using standard rendering hardware. The resolution of the discretization can be
adjusted to trade off between accuracy and speed. The algorithm has been successfully
applied to viewcells that are much larger than individual occluders (see Figure 6(b)).
Its accuracy and speed allow computing from-region visibility on-line, eliminating the
need for visibility preprocessing. It thus provides inherent support for dynamic removal
and addition of objects.

3 Overview

The algorithm processes a model that is represented by a hierarchical space subdivision;
we use a kd-tree. Each node of this space subdivision is associated with an axis-aligned
bounding box, and with the objects that are (perhaps partially) contained in this box.
The bounding box associated with a node is completely contained in the bounding box
associated with the node’s parent.

For a given viewcell, our algorithm hierarchically traverses this subdivision in a top-
down fashion. For each subdivision node, the algorithm determines whether the bound-
ing box of the node is visible from the viewcell. When an occluded node is reached,
the recursion terminates, since the children of that node are guaranteed to be occluded.
This early termination strategy contributes to the speed of the algorithm, by allowing
large portions of the scene to be culled after just one visibility determination query.

The cell-to-cell visibility determination algorithm is the core of the system. Denote
the axis-parallel boxes corresponding to the viewcell and to some subdivision node by
A andB, respectively. Denote a collection of occluding objects byS. The algorithm
determines whetherA andB are mutually visible amongS. A andB are said to be
mutually visible if there exists a line segment with one end-point inA and another inB
that is disjoint from all objects ofS. The cell-to-cell visibility determination algorithm
operates by first reducing the problem to planar visibility determination as described in
Section 4, and then solving this planar problem as described in Section 5.

Simplifying assumptions.There is no known rapid from-region visibility algorithm
that is also exact. This does not seem likely to change due to the four-dimensional nature
of the problem, and the complex geometric structure of visibility events [7]. Practical
conservative algorithms [4, 8, 15, 22, 29] necessarily discretize or simplify the problem
in some way. One common strategy, which is adopted here as well, is to assume that the
input scene (more accurately, the set of occluders) is 2.5D [4, 15, 29].

Clearly, one can construct a scene in which this assumption is too restrictive for
any significant occlusion to be detected. Such a scene may be, for example, a randomly
generated “soup” of long and slim triangles. We consider such scenes to be of relatively
little interest to the practical uses of the presented algorithm. A common type of input
scenes for walkthrough systems is urban environments, where the most important oc-
cluders are buildings, large parts of which are 2.5D due to engineering constraints. In



FA FB

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

A B

R

L

(top view)

FA FB

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

B
A

V

T

(side view)

Fig. 2. The construction involved in the reduction to a planar problem. The shaftAB is shown
filled.

architectural scenes, much of the occlusion is also caused by 2.5D objects. Even if a vir-
tual environment is not specifically designed to model a city, a building, or a landscape,
it is rare to come across a commercial virtual environment that is not largely 2.5D.

Moreover, “good” occluders can be synthesized from arbitrary input objects. Syn-
thesis of large convex occluders was studied by Andujar et al. [1], and similar tech-
niques can be applied to synthesize 2.5D occluders.

4 Reduction to a planar problem

The algorithm has to decide whether two axis-parallel boxesA andB are mutually vis-
ible. We now show how this problem can be reduced toplanarvisibility determination.
We start with a simple observation. Denote the edges bounding the upper face ofA (B)
byAi (respectively,Bi), for 1 � i � 4.

Observation 1 A andB are mutually visible with respect toS if and only ifAi andBj
are mutually visible with respect toS, for some1 � i; j � 4. In other words,A andB
are mutually visible if and only if their upper rims are.

Proof. It is obvious thatA andB are visible if their upper rims are. We thus concentrate
on the “only if” part, stating that ifA andB are mutually visible then their upper rims
also are.A andB are mutually visible if and only if there is a visibility segments

between them.s is disjoint fromS and has one end-point in the interior ofA and
another in the interior ofB. Consider the semi-infinite vertical “wall” defined as the
union of upward vertical rays originating froms. Since the occluders are 2.5D and are
disjoint froms, they are also disjoint from this wall. Also, the wall must contain at least
one point belonging to the upper rim ofA and another point belonging to the upper rim
of B. Since it is convex, it also contains the segment connecting these two points. Thus,
there exists a segment connecting the upper rims ofA andB that is disjoint fromS. 2

We now define the termshaft; the definition is illustrated in Figure 2. LetL andR
be the two vertical planes that supportA andB. LetFA andFB be two parallel vertical



planes that separateA andB, such thatFA contains a face ofA andFB contains a face
of B. LetT be a plane that contains two parallel horizontal edges, one ofA and one of
B, and supportsA andB from above. (In general, there are two such planes.) LetV be
the plane that supportsA andB from below. The shaftAB is the area bounded byL,R,
FA, FB , T , andV . (Notice that our definition of a shaft is different from that in [13].)

Observation 1 implies that there exists a visibility ray betweenA andB inside the
shaftAB only if there exists a visibility ray on the “ceiling” ofAB. More precisely, let
a1 denote the pointT \ FA \ L, and leta2 denote the pointT \ FA \ R. Similarly,
T \ FB \ L is denoted byb1, andT \ FB \ R is denoted byb2. Also, denote byST
the collection of intersections of the polygons ofS with T , which is a collection of
segments onT . A andB are mutually visible amongS only if the segments(a1; a2)
and(b1; b2), both lying on the planeT , are mutually visible amongST . We have thus
reduced the problem to planar visibility determination onT .

5 Planar visibility determination

Given two segmentss1 ands2 in the plane, and a collection of occluding segmentsO,
we wish to determine whethers2 is visible froms1. We first provide a simple analytic
algorithm for this problem, which is then converted into a rapid hardware-assisted one.

5.1 Exact analytic algorithm

We define a bounded two-dimensional space, thedual ray space, such that every ray
originating ons1 and intersectings2 corresponds to a point in this space. Our algorithm
“marks” all points in the ray space that represent rays that pass through occluding seg-
ments. Visibility is then detected by checking whether there is at least one point that
has not been “marked”.

More precisely, parameterizes1 ands2 asfs1(t)j 0 � t � 1g andfs2(t)j 0 � t � 1g,
respectively. LetRS be the unit squaref(x; y)j 0 � x; y � 1g, such that a point(x; y)
in RS corresponds to the ray originating ats1(x) and passing throughs2(y).

Define a mappingT :R2!RS that maps each pointp2R2 to the collection of points
inRS that correspond to rays passing throughp. For anyp2R2 , T (p) is a line segment
in RS . For a segmentv2O, parameterized asfv(t)j 0 � t � 1g, T (v) is defined to be
the continuous collection of segmentsfT (v(t))j 0 � t � 1g. This collection is bounded
by the segmentsT (v(0)) andT (v(1)) that correspond to the end-points ofv. In general,
it forms either a trapezoid (Figure 3(a)) or a double-triangle (Figure 3(b)), depending
on whether the line containingv intersects the interior ofs1 or not.

This implies a simple exact algorithm for determining whethers2 is visible froms1:
Map each segmentv2O toRS and compute the union of the resulting trapezoids and
double-triangles (i.e.

S
v2O T (v)). This computation can be performed in worst-case

optimalO(n2) time without employing complex data structures [6]. Ifs1 ands2 are
mutually visible, there is a pointpo 2 RS that is not contained in this union. The point
po corresponds to a visibility ray (see Figures 3(c) and 3(d)).

The dual ray space mappingT bears similarities to other duality transforms, such as
the standard duality transform in computational geometry [6] and the Hough transform,



y

x

RS

s2

s1

T(v)

v

T(v )

T(v )

v0

v1

(1,1)

(0,0) (1,0)

(0,1)

0

1

(a)

y

x

RS

s2

s1

v

T(v)

T(v)

(1,1)(0,1)

(0,0) (1,0)

(b)

y

x

s2

s1

RS

(1,1)(0,1)

(0,0) (1,0)

(c)

s2

s1

x

y

(1,1)(0,1)

(1,0)(0,0)

RS

(d)

Fig. 3. Simple scenes (top) and their dual ray space (bottom). In this figure, each trapezoid in
the ray space has the color of the segment it corresponds to. (a) and (b) each show an occluding
segment.s2 is occluded froms1 in (c) and is visible in (d); the black point in the ray space of (d)
corresponds to the dashed visibility ray.

which is used for line detection in image analysis [16]. However, the dual ray space
is a bounded region (as opposed to the infinite dual planes of the above-mentioned
transforms) that can be efficiently discretized. This is a crucial advantage that served
as the main motivation for the current definition of the dual ray space. In this sense,
the dual ray space is similar to the lumigraph [10] and the light field [17]. (Notice that
Gortler et al. [10] also use the term “ray space”.) In the context of related work in
computational geometry, our exact algorithm corresponds to local computation of one
face of thevisibility complex[20]. The visibility complex has been previously applied
to ray-tracing [2] and radiosity [19].

5.2 Hardware-accelerated algorithm

We wish to determine whether
S
v2O T (v) covers the unit squareRS . This can be ac-

complished conservatively by discretizingRS into a bitmap and rendering allT (v)
onto this bitmap using graphics hardware. AllT (v) are drawn in white, without z-
buffering or shading, onto an initially black background. If a black pixel remains, the
segmentss1 ands2 are reported to be mutually visible. This algorithm avoids the com-
plex analytic computation of the union and alleviates robustness problems common in
geometric algorithms.

The default behavior of OpenGL is to color a pixel if itscenteris inside a drawn
polygon. This may cause inaccuracy, since our algorithm is conservative provided that
only the pixels that arecompletelycovered by

S
v2O T (v) are colored white. This be-

havior is ensured by “shrinking” the double-triangles and trapezoids prior to rendering.
Their edges are moved inward by

p
2a, wherea is half the pixel size (see Figure 4).

The center of a pixel is insideT (v) after shrinking, only if the pixel was completely
covered by it prior to shrinking [28].



�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����
����
����
����
����
����

����
����
����
����
����
����

T (v) is a trapezoid

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���
���
���
���
���

���
���
���
���
���
����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

T (v) is a double-triangle

Fig. 4. The green pixels are properly contained inT (v) (shown dashed), and their centers are
contained in the “shrunk”T (v) (shown solid). The yellow pixels are only partially covered by
T (v), but their centers are contained inT (v); shrinking prevents them from being colored.

The process of checking whether there are any black pixels left after rendering is
accelerated using the OpenGL minmax operation, part of the OpenGL 1.2 standard.
The minmax operation allows a quick determination of the minimal (or maximal) pixel
color in the frame buffer. It can therefore be used for deciding whether the buffer is
fully white or contains a black pixel.

The image-space nature of the described algorithm allows it to be applied hierarchi-
cally, in a manner similar to [30]. We can use a low-resolution bitmap to representRS ,
and rapidly render allT (v) onto it. If the resulting bitmap is not fully white, a bitmap
of higher resolution is used to refine the test, yielding a less conservative PVS.

6 Results

The algorithms described in this paper were implemented, and tested on an IBM A20p
laptop with a 750Mhz Pentium III CPU and an ATI Rage Mobility graphics card. The
exact planar visibility algorithm (Section 5.1) was also implemented, for the sake of
comparison. Our test model accurately depicts 160 sq. km. of London. It was created
using Ordnance Survey data, and comprises of about 1.7 million polygons [23].

One goal of our experiments was to determine an effective resolution for the dis-
cretization of the dual ray space. There is a clear trade-off involved. Higher resolution
yields a less conservative PVS, at the cost of computation speed. Another goal was de-
termining an effective viewcell size. Small viewcells induce lag, but prohibitively large
portions of the scene are visible from viewcells that are too large.

We have tested the algorithm with viewcells of sizes ranging from 50x50 meters to
300x300 meters, and with discretization resolutions ranging from 16x16 to 256x256.
All the viewcells were 2 meters high. The average time to compute the PVS is shown
in Table 1, for a sample of viewcell sizes and discretization resolutions. Table 1 also
shows the impact of the discretization resolution on the overestimation of the PVS. The



Resolution Time (sec.) Overestimation (%)
Viewcell Size Viewcell Size

50x50100x100300x30050x50100x100300x300
16x16 0.4 0.5 1.8 0.391 0.518 1.192
32x32 0.6 0.7 2.7 0.335 0.436 0.901
64x64 0.9 1.1 4.1 0.185 0.240 0.533

128x128 2.1 2.5 7.8 0.012 0.026 0.106
256x256 6.6 7.9 24 0.001 0.005 0.019

Table 1. The effect of the discretization resolution on the speed and overestimation of the algo-
rithm.

overestimation is given by
PE � PC

PE
� 100%;

wherePE is the size of the occluded areas, as computed using the exact planar algo-
rithm, andPC is the size of the occluded areas, as computed using the conservative
planar algorithm. One of the advantages of this measure is its independence from the
depth complexity of the model.

Table 1 shows that the speed of the algorithm directly depends on the discretization
resolution. Hence, using better graphics hardware can further accelerate the visibility
computation. This indicates that we have made the from-region visibility determination
problem hardware intensive.

Based on our experiments, we have chosen to work with viewcells of size 100x100
meters and discretization resolution of 128x128. The PVS of a 100x100 viewcell in the
London model consists of on average 8K polygons (0.5% of the model). This means
that a client using a personal workstation can render the PVS in real time.

Before the walkthrough begins, the server computes and sends the PVS of the initial
viewcell and the eight viewcells adjacent to it. During the walkthrough, the server en-
sures that the client receives the PVS of a viewcell before reaching it. Since the server
does not know in advance which viewcell the client will enter next, this necessitates
computing and transmitting the PVS of up to five adjacent viewcells while the client
traverses a single viewcell, as shown in Figure 5. Assuming average walkthrough speed
of 6km/h, such computation takes 12.5 seconds on average (Table 1), which leaves 47
seconds for transmitting the five visibility changes to the client, considering the fact that
crossing a single 100x100 viewcell at this speed takes about one minute.

Even in the case of a slow network connection, this clearly shows that remote walk-
throughs can be conducted unhindered by network lag. The large size of the viewcells
gives the server enough time to compute and transmit the visibility information. The al-
gorithm’s speed allows performing visibility computation on-line. Finally, the accuracy
of the algorithm ensures that the PVS is small enough to be displayed by the client in
real time.

7 Conclusion

We have presented a novel from-region visibility algorithm. Its central idea is an alter-
native representation of visibility in thedual ray space, which allows utilizing standard



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������������������������������

B C

A

Fig. 5.A client’s path in the model is shown in red. When the client commences the walkthrough
at viewcellA, it has the PVS ofA and the green viewcells. Upon the client’s arrival at viewcell
B, the server starts computing the PVS of the blue viewcells. Experiments show that the client
will receive the PVS of all the blue viewcells before reaching any one of them. In similar
fashion, the server ensures throughout the walkthrough that the client never reaches a viewcell
before its PVS is received by the client.

rendering hardware for visibility determination. The algorithm is simple to implement,
is robust due to working primarily in image-space, and can trade off between accuracy
and speed. It was shown to be efficient even when applied to large viewcells. This al-
lows remote walkthroughs to be conducted without preprocessing and storing a priori
visibility information.

Acknowledgements

This work was supported by grants from the Israeli Academy of Sciences (center of ex-
cellence), and from the Israeli Ministry of Sciences. The London model was generated
by the COVEN ACTS project on the Cities Revealed data from the GeoInformation
Group.

References

1. C. Andujar, C. Saona-Vazquez, and I. Navazo. LOD visibility culling and occluder synthesis.
Computer Aided Design, 32(13):773–783, November 2000.

2. F. S. Cho and D. Forsyth. Interactive ray tracing with the visibility complex.Computer &
Graphics, 23(5):703–717, 1999.

3. D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of visibility for walkthrough applica-
tions. SIGGRAPH 2000 ’Visibility: Problems, Techniques, and Applications’ course notes.

4. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility and strong
occlusion for viewspace partitioning of densely occluded scenes.Computer Graphics Forum,
17(3):243–254, 1998.

5. S. Coorg and S. Teller. Real-time occlusion culling for models with large occluders.1997
Symposium on Interactive 3D Graphics, pages 83–90, April 1997.

6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 1997.



7. F. Durand.3D Visibility: analytical study and applications. PhD thesis, Universit´e Joseph
Fourier, Grenoble I, July 1999.

8. F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility preprocessing using
extended projections.Proceedings of SIGGRAPH 2000, pages 239–248, July 2000.

9. T. Funkhouser. Database management for interactive display of large architectural models.
Graphics Interface, pages 1–8, May 1996.

10. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.Proceedings of
SIGGRAPH 96, pages 43–54, August 1996.

11. C. Gotsman, O. Sudarsky, and J. Fayman. Optimized occlusion culling.Computer & Graph-
ics, 23(5):645–654, 1999.

12. N. Greene and M. Kass. Hierarchical z-buffer visibility.Proceedings of SIGGRAPH 93,
pages 231–240, 1993.

13. A. E. Haines and J. R. Wallace. Shaft culling for efficient ray-traced radiosity.2nd Euro-
graphics Workshop on Rendering, pages 122–138, 1994.

14. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated occlusion
culling using shadow frusta. InProceedings of the 13th Symposium on Computational Ge-
ometry, pages 1–10, June 1997.

15. V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual occluders: An efficient intermediate
PVS representation.11th Eurographics Workshop on Rendering, pages 59–70, 2000.

16. V. F. Leavers. Which Hough transform?Computer Vision and Image Understanding,
58(2):250–264, 1993.

17. M. Levoy and P. Hanrahan. Light field rendering.Proceedings of SIGGRAPH 96, pages
31–42, August 1996.

18. B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-Or. A qualitative and quantitative visi-
bility analysis in urban scenes.Computer & Graphics, 23(5):655–666, 1999.

19. R. Orti, S. Riviére, F. Durand, and C. Puech. Radiosity for dynamic scenes in flatland with
the visibility complex.Computer Graphics Forum, 15(3):237–248, August 1996.

20. M. Pocchiola and G. Vegter. The visibility complex.International Journal on Computational
Geometry and Applications, 6(3):279–308, 1996.

21. C. Saona-Vazquez, I. Navazo, and P. Brunet. The visibility octree: A data structure for 3D
navigation.Computer & Graphics, 23(5):635–644, 1999.

22. G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative volumetric visibility with
occluder fusion.Proceedings of SIGGRAPH 2000, pages 229–238, July 2000.

23. A. Steed, E.Frecon, D. Pemberton, and G. Smith. The london travel demonstrator. InPro-
ceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST-99),
pages 150–157, Dec. 1999.

24. S. J. Teller. Computing the antipenumbra of an area light source.Computer Graphics (Pro-
ceedings of SIGGRAPH 92), 26(2):139–148, July 1992.

25. S. J. Teller. Visibility cmputations in dnsely ocluded plyhedral evironments. PhD thesis,
Dept. of Computer Science, University of California, Berkeley, 1992.

26. S. J. Teller and P. Hanrahan. Global visibility algorithms for illumination computations.
Proceedings of SIGGRAPH 93, pages 239–246, August 1993.

27. M. van de Panne and J. Stewart. Effective compression techniques for precomputed visibility.
10th Eurographics Workshop on Rendering, pages 305–316, 1999.

28. P. Wonka and D. Schmalsteig. Occluder shadows for fast walkthroughs of urban environ-
ments.Computer Graphics Forum, 18(3):51–60, September 1999.

29. P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility preprocessing with occluder fusion
for urban walkthroughs.11th Eurographics Workshop on Rendering, pages 71–82, 2000.

30. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierarchical occlu-
sion maps.Proceedings of SIGGRAPH 97, pages 77–88, August 1997.



(a) A viewcell of size 50x50x2

(b) A viewcell of size 300x300x2

Fig. 6. Results of two experiments. Overviews of 25 square kilometers of the London model
are shown, with outlines of the buildings in white. The algorithm has classified the red areas as
occluded from the green viewcell, which is 50x50x2 meters large in (a), and 300x300x2 meters
large in (b). Discretization resolution of 128x128 was used.


