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Figure 1: The reflectance field of a glass full of gummy bears is captured using two coaxial projector/camera pairs placed 120◦ apart. (a) is the
result of relighting the scene from the front projector, which is coaxial with the presented view, where the (synthetic) illumination consists of
the letters “EGSR”. Note that due to their sub-surface scattering property, even a single beam of light that falls on a gummy bear illuminates it
completely, although unevenly. In (b) we simulate homogeneous backlighting from the second projector combined with the illumination used
in (a). For validation, a ground-truth image (c) was captured by loading the same projector patterns into the real projectors. Our approach is
able to faithfully capture and reconstruct the complex light transport in this scene. (d) shows a typical frame captured during the acquisition
process with the corresponding projector pattern in the inset.

Abstract

We present a novel technique called symmetric photography to capture real world reflectance fields. The technique
models the 8D reflectance field as a transport matrix between the 4D incident light field and the 4D exitant light
field. It is a challenging task to acquire this transport matrix due to its large size. Fortunately, the transport matrix
is symmetric and often data-sparse. Symmetry enables us to measure the light transport from two sides simultane-
ously, from the illumination directions and the view directions. Data-sparseness refers to the fact that sub-blocks of
the matrix can be well approximated using low-rank representations. We introduce the use of hierarchical tensors
as the underlying data structure to capture this data-sparseness, specifically through local rank-1 factorizations
of the transport matrix. Besides providing an efficient representation for storage, it enables fast acquisition of the
approximated transport matrix and fast rendering of images from the captured matrix. Our prototype acquisition
system consists of an array of mirrors and a pair of coaxial projector and camera. We demonstrate the effectiveness
of our system with scenes rendered from reflectance fields that were captured by our system. In these renderings
we can change the viewpoint as well as relight using arbitrary incident light fields.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Digitizing and scanning;
I.3.6 [Computer Graphics]: Graphics data structures and data types; I.3.7 [Computer Graphics]: Color, shading,
shadowing, and texture
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1 Introduction

The most complete image-based description of a scene for
computer graphics applications is its 8D reflectance field
[DHT∗00]. The 8D reflectance field is defined as a transport
matrix that describes the transfer of energy between a light
field [LH96] of incoming rays (the illumination) and a light
field of outgoing rays (the view) in a scene, each of which
are 4D. The rows of this matrix correspond to the view rays
and the columns correspond to the illumination rays. This
representation can be used to render images of the scene
from any viewpoint under arbitrary lighting. The resulting
images capture all global illumination effects such as diffuse
inter-reflections, shadows, caustics and sub-surface scatter-
ing, without the need for an explicit physical simulation.

Treating each light field as a 2D collection of 2D images,
and assuming (for example) 3× 3 images with a resolution
of 100×100 in each image, requires a transport matrix con-
taining about 1010 entries. If constructed by measuring the
transport coefficients between every pair of incoming and
outgoing light rays, it could take days to capture even at
video rate, making this approach intractable.

This paper introduces symmetric photography - a tech-
nique for acquiring 8D reflectance fields efficiently. It relies
on two key observations. First, the reflectance field is data-
sparse in spite of its high dimensionality. Data-sparseness
refers to the fact that sub-blocks of the transport matrix can
be well approximated by low-rank representations. Second,
the transport matrix is symmetric, due to Helmholtz reci-
procity. This symmetry enables simultaneous measurements
from both sides, rows and columns, of the transport matrix.
We use these measurements to develop a hierarchical acqui-
sition algorithm that can exploit the data-sparseness.

To facilitate this, we have built a symmetrical capture
setup, which consists of a coaxial array of projectors and
cameras. In addition, we introduce the use of hierarchical
tensors as an underlying data structure to represent the ma-
trix. The hierarchical tensor representation turns out to be
a natural data structure for the acquisition algorithm, and it
provides a compact factorized representation for storing a
data-sparse transport matrix. Further, hierarchical tensors al-
low fast computation during rendering. Although our cur-
rent capture system allows us to acquire only a sector of
full sphere of incident and reflected directions (37◦× 29◦),
and even then only at modest resolution (3 × 3 images,
each of resolution 130× 200 pixels), this subset is truly 8-
dimensional, and it suffices to demonstrate the validity and
utility of our approach.

2 Related Work

The measurement of reflectance fields is an active area of re-
search in computer graphics. However, most of this research
has focused on capturing various lower dimensional slices
of the reflectance field. For instance, if the illumination is

fixed and the viewer allowed to move, the appearance of the
scene as a function of outgoing ray position and direction
is a 4D slice of the reflectance field. The light field [LH96]
and the lumigraph [GGSC96] effectively describe this exi-
tant reflectance field. By extracting appropriate 2D slices of
the light field, one can virtually fly around a scene but the il-
lumination cannot be changed. If the viewpoint is fixed and
the illumination is provided by a set of point light sources,
one obtains another 4D slice of the 8D reflectance field. Var-
ious researchers [DHT∗00,MGW01,HED05] have acquired
such data sets where a weighted sum of the captured images
can be combined to obtain re-lit images from a fixed view-
point only. Since point light sources radiate light in all direc-
tions, it is impossible to cast sharp shadows onto the scene
with this technique.

If the illumination is provided by an array of video pro-
jectors and the scene is captured as illuminated by each pixel
of each projector, but still as seen from a single viewpoint,
then one obtains a 6D slice of 8D reflectance field. Mas-
selus et al. [MPDW03] capture such data sets using a single
moving projector. More recently, Sen et al. [SCG∗05] have
exploited Helmholtz reciprocity to improve on both the res-
olution and capture times of these data sets in their work on
dual photography. With such a data set it is possible to re-
light the scene with arbitrary 4D incident light fields, but the
viewpoint cannot be changed. Goesele et al. [GLL∗04] use
a scanning laser, a turntable and a moving camera to capture
a reflectance field for the case of translucent objects under a
diffuse sub-surface scattering assumption. Although one can
view the object from any position and relight it with arbi-
trary light fields, the captured data set is still essentially 4D
because of their assumption. All these papers capture some
lower dimensional subset of the 8D reflectance field. An 8D
reflectance field has never been acquired before.

Seitz et al. [SMK05], in their recent work on inverse
light transport, also use transport matrices to model the light
transport. While their work provides a theory for decompos-
ing the transport matrix into individual bounce light trans-
port matrices, our work describes a technique for measuring
it.

Hierarchical data structures have been previously used for
representing reflectance fields. These representations pro-
vide greater efficiency both in terms of storage and capture
time. A typical setup for capturing reflectance fields consists
of a scene under controlled illumination, as imaged by one
or more cameras. Peers and Dutré [PD03] illuminate a scene
with wavelet patterns in order to capture environment mat-
tes (another 4D slice of the reflectance field). A feedback
loop determines the next pattern to use based on knowledge
of previously recorded photographs. The stopping criteria is
based on the error of the current approximation. Although
their scheme adapts to the scene content, it does not try to
parallelize the capture process. Matusik et al. [MLP04] use
a kd-tree based subdivision structure to represent environ-
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ment mattes. They express environment matte extraction as
an optimization problem. Their algorithm progressively re-
fines the approximation of the environment matte with an
increasing number of training images taken under various il-
lumination conditions. However, the choice of their patterns
is independent of the scene content.

In the dual photography work of Sen et al. [SCG∗05], they
also use a hierarchical scheme to capture 6D slices of the re-
flectance field. Their illumination patterns adapt to the scene
content, and the acquisition system tries to parallelize the
capture process, depending on the sparseness of the trans-
port matrix. However, their technique reduces to scanning
if the transport matrix is dense, e.g. in scenes with diffuse
bounces. In this paper, we make the observation that the light
transport in these cases is data-sparse as well as sparse. By
exploiting this data-sparseness, we are able to capture full
8D reflectance fields in reasonable time. In Section 6.1, we
compare our technique to dual photography in more detail.

3 Sparseness, Smoothness and Data-sparseness

To efficiently store large matrices, sparseness and smooth-
ness are two ideas that are typically exploited. The notion of
data-sparseness is more powerful than these two. A sparse
matrix has a small number of non-zero elements in it and
hence can be represented compactly. A data-sparse matrix
on the other hand may have many non-zero elements, but the
actual information content in the matrix is small enough that
it can still be expressed compactly. A simple example will
help convey this concept. Consider taking the cross product
of two vectors, each of length n. Although the resulting ma-
trix (which is rank-1 by construction) could be non-sparse,
we only need two vectors (O(n)) to represent the contents
of the entire (O(n2)) matrix. Such matrices are data-sparse.
More generally, any matrix in which a significant number
of sub-blocks can have a low-rank representation is data-
sparse. Note that a low-rank sub-block of a matrix need not
be smooth and may contain high frequencies. A frequency or
wavelet-based technique would be ineffective in compress-
ing this block. Therefore, the concept of data-sparseness is
more general and powerful than sparseness or smoothness.

Sparseness in light transport has been previously ex-
ploited to accelerate acquisition times in the work of Sen
at al. [SCG∗05]. Ramamoorthi and Hanrahan [RH01] ana-
lyze the smoothness in BRDFs and use it for efficient ren-
dering and compression. A complete frequency space anal-
ysis of light transport has been presented by Durand et al.
[DHS∗05]. The idea of exploiting data-sparseness for fac-
torizing high dimensional datasets into global low-rank ap-
proximations has also been investigated, in the context of
BRDFs [KM99,MAA01,LK02] and also for light fields and
reflectance fields [VT04, WWS∗05]. By contrast to these
global approaches, we use local low-rank factorizations.
We tie in the factorization with a hierarchical subdivision
scheme (see Section 5). This hierarchical subdivision allows
us to exploit the data-sparseness locally.

4 Properties of Light Transport

4.1 Data-Sparseness

The flow of light in a scene can be described by a light field.
Light fields, which were introduced in the seminal work of
Gershun [Ger36], are used to describe the radiance at each
point x and in each direction ω in a scene. This is a 5D func-
tion which we denote by L̃(x,ω). Under this paradigm, the
appearance of a scene can be completely described by an
outgoing radiance distribution function L̃out(x,ω). Similarly,
the illumination incident on the scene can be described by an
incoming radiance distribution function L̃in(x,ω). The rela-
tionship between L̃in(x,ω) and L̃out(x,ω) can be expressed
by an integral equation, the well known rendering equation
[Kaj86]:

L̃out(x,ω) = L̃in(x,ω)+
Z

V

Z

Ω
K(x,ω;x′,ω′)L̃out(x′,ω′)dx′dω′

(1)
The function K(x,ω;x′,ω′) defines the proportion of flux
from (x′,ω′) that gets transported as radiance to (x,ω). It is
a function of the BSSRDF, the relative visibility of (x′,ω′)
and (x,ω) and foreshortening and light attenuation effects.
Eq. (1) can be expressed in discrete form as:

L̃out [i] = L̃in[i]+∑
j

K[i, j]L̃out [ j] (2)

where L̃out and L̃in are discrete representations of outgoing
and incoming light fields respectively. We can rewrite eq. (2)
as a matrix equation:

L̃out = L̃in +KL̃out (3)

Eq. (3) can be directly solved [Kaj86] to yield:

L̃out = (I−K)−1L̃in (4)

The matrix T̃ = (I − K)−1 describes the complete light
transport between the 5D incoming and outgoing light fields
as a linear operator. Heckbert [Hec91] uses a similar ma-
trix in the context of radiosity problems and shows that such
matrices are not sparse. This is also observed by Börm et
al. [BGH03] in the context of linear operators arising from
an integral equation such as eq. (1). They show that even
though the kernel K might be sparse, the resulting matrix
(I−K)−1 is not. However, it is typically data-sparse. In par-
ticular, the kernel is sparse because of occlusions. But due to
multiple scattering events one typically observes light trans-
port between any pair of points in the scene, resulting in a
dense T̃. On the other hand, we observe that a diffuse bounce
off a point on the scene contributes the same energy to large
regions of the scene. Therefore, large portions of the trans-
port matrix, e.g. those resulting from inter-reflections of dif-
fuse and glossy surfaces, are data-sparse. One can exploit
this data-sparseness by using local low-rank approximations
for sub-blocks of T̃. We choose a rank-1 approximation.

Figure 2 illustrates this data-sparseness for a few example
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(I) (II) (III) (IV)

(a)

(b)

(c)

(d)

(e)

Figure 2: Understanding the transport matrix. To explain the intrinsic structure of reflectance fields we capture the transport
matrix for 4 real scenes shown in row (a) with a coaxial projector/camera pair. The scenes in different columns are: (I) a diffuse
textured plane, (II) two diffuse white planes facing each other at an angle, (III) a diffuse white plane facing a diffuse textured
plane at an angle, and (IV) two diffuse textured planes facing each other at an angle. Row (b) shows the images rendered
from the captured transport matrices under floodlit illumination. A 2D slice of the transport matrix for each configuration is
shown in row (c). This slice describes the light transport between every pair of rays that hits the brightened line in row (b).
Note that the transport matrix is symmetric in all 4 cases. Since (I) is a flat diffuse plane, there are no secondary bounces and
the matrix is diagonal. In (II), (III) and (IV) the diagonal corresponds to the first bounce light and is therefore much brighter
than the rest of the matrix. The top-right and bottom-left sub-blocks describe the diffuse-diffuse light transport from pixels on
one plane to the other. Note that this is smoothly varying for (II). In case of (III) and (IV), the textured surface introduces high
frequencies but these sub-blocks are still data-sparse and can be represented using rank-1 factors. The top-left and bottom-right
sub-blocks correspond to the energy from 3rd-order bounces in our scenes. Because this energy is around the noise threshold
in our measurements we get noisy readings for these sub-blocks. Row (d) is a visualization of the level in the hierarchy when
a block is classified as rank-1. White blocks are leaf nodes, while darker shades of gray progressively represent lower levels in
the hierarchy. Finally, row (e) shows the result of relighting the transport matrix with a vertical bar. Note the result of indirect
illumination on the right plane in (II), (III) and (IV). Since the left plane is textured in (IV) the indirect illumination is dimmer
than in (III). Note that the matrix for a line crossing diagonally through the scene would look similar.
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transport matrices that we have measured, and also demon-
strates the local rank-1 approximation. To gain some intu-
ition, let us look at the light transport between two homoge-
neous untextured planar patches. The light transport between
the two is smooth and can be easily factorized. It can be seen
in the top-right and bottom-left sub-blocks of the transport
matrix for scene (II). Even if the surfaces are textured, it
only results in appropriate scaling of either the columns or
rows of the transport matrix as shown in (III) and (IV). This
will not change the factorization. If a blocker was present be-
tween the two patches, it will introduce additional diagonal
elements in the matrix sub-blocks. This can only be handled
by subdividing the blocks and factorizing at a finer level, as
explained in Section 5.

4.2 Symmetry of the Transport Matrix

Capturing full transport matrix is a daunting task. However,
T̃ is highly redundant, since the radiance along a ray is con-
stant unless the line is blocked. So, if one is willing to stay
outside the convex hull of the scene to view it or to illu-
minate it, then the 5D representation of the light field can
be reduced to 4D [LH96, GGSC96, MPDW03]. We will be
working with this representation for the rest of the paper.
Let us represent the 4D incoming light field by Lin(θ) and
the 4D outgoing light field by Lout(θ) where θ parameter-
izes the space of all possible incoming or outgoing direc-
tions on a sphere [MPDW03]. The light transport can then
be described as:

Lout = TLin (5)

T[i, j] represents the amount of light received along outgoing
direction θi when unit radiance is emitted along incoming di-
rection θ j . Helmholtz reciprocity [vH56, Ray00] states that
the light transport between θi and θ j is equal in both direc-
tions, i.e. T[i, j] = T[ j, i]. Therefore, T is a symmetric matrix.
We use a coaxial projector/camera setup to ensure symmetry
during our acquisitions. Also, note that since we are looking
at a subset of rays (4D from 5D), T is just a sub-block of T̃.
Therefore, T is also data-sparse.

5 Data Acquisition

In order to measure T, we use projectors to provide the in-
coming light field and cameras to measure the outgoing light
field. Thus, the full T matrix can be extremely large, depend-
ing on the number of pixels in our acquisition hardware. A
naive acquisition scheme would involve scanning through
individual projector pixels and concatenating the captured
camera images to construct T. This could take days or even
months to complete. Therefore, to achieve faster acquisition,
we would like to illuminate multiple projector pixels at the
same time.

In order to understand how we can illuminate multiple
projector pixels at the same time, let us assume that the trans-

port matrix is:
[ U1 M

MT U2

]
=

[
U1 0
0 U2

]
+

[ 0 M
MT 0

]
(6)

where U1 and U2 have not been measured yet. Sen et al.
[SCG∗05] utilized the fact that if M = 0, then the unknown
blocks U1 and U2 are radiometrically isolated, i.e. the pro-
jector pixels corresponding to U1 do not affect the camera
pixels corresponding to U2 and vice versa. Thus, they can
illuminate the projector pixels corresponding to U1 and U2
in parallel in such cases. In this work, we observe that if the
contents of M are known but not necessarily 0, we can still
radiometrically isolate U1 and U2 by subtracting the contri-
bution of known M from the captured images. The RHS of
eq. (6) should make this clear. We use this fact to illuminate
the projector pixels corresponding to U1 and U2 in parallel
when M is known.

Now, consider a sub-block M of the transport matrix that
is data-sparse and can be approximated by a rank-1 factor-
ization. We can obtain this rank-1 factorization by just cap-
turing two images. An image captured by the camera is the
sum of the columns in the transport matrix corresponding to
the pixels illuminated by the projector. Because of the sym-
metry of the transport matrix, the image is also the sum of
corresponding rows in the matrix. Therefore, by just shin-
ing two projector patterns, pc and pr, we can capture images
such that one provides the sum of the columns, c and the
other provides the sum of the rows, r of M (c = Mpc and
r = MTpr). A tensor product of c and r directly provides a
rank-1 factorization for M. Thus the whole sub-block can be
constructed using just two illumination patterns. This is the
key idea behind our algorithm. The algorithm tries to find
sub-blocks in T that can be represented as a rank-1 approx-
imation by a hierarchical subdivision strategy. Once mea-
sured, these sub-blocks can be used to parallelize the acqui-
sition as described above. For an effective hierarchical ac-
quisition we need an efficient data structure to represent T.
We will describe our data structure now.

5.1 Hierarchical Tensors for Representing T

We introduce a new data structure called hierarchical tensors
to represent data-sparse light transport. Hierarchical tensors
are a generalization of hierarchical matrices (or H-matrices),
which have been introduced by Hackbush [Hac99] in the
applied mathematics community to represent arbitrary data-
sparse matrices. The key idea behind H-matrices is that a
data-sparse matrix can be represented by an adaptive subdi-
vision structure and a low-rank approximation for each node.
At each level of the hierarchy, sub-blocks in the matrix are
uniformly subdivided into 4 children (as in a quadtree). If
a sub-block at any level in the tree can be represented by a
low-rank approximation, then it is not subdivided any fur-
ther. Thus, a leaf node in the tree contains a low-rank ap-
proximation for the corresponding sub-block, which reduces
to just a scalar value at the finest level in the hierarchy.
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Bi and Bj cannot be scheduled together iff

(Tik is unknown ∧ Tjk is unknown) ∃ Bk∈

i

B :

Bi
B

B

Projector Pattern

j

i jk

Tik Tjk

Tjk
Tik

k

Figure 3: Determining block scheduling. Two blocks Bi and
B j cannot be scheduled in the same frame if and only if,
∃Bk ∈ B, such that the light transports Tik and Tjk are both
unknown. This is because upon illuminating Bi and B j simul-
taneously, the block Bk in the camera will measure the com-
bined contribution of both Tik and Tjk. Since both of these
are unknown at this point there is no way to separate them
out.

Consider the 4D reflectance field that describes the light
transport for a single projector/camera pair. We have a 2D
image representing the illumination pattern and a resulting
2D image captured by the camera. The connecting light
transport can therefore be represented by a 4th-order tensor.
One can alternatively flatten out the 2D image into a vector,
but that would destroy the spatial coherency present in a 2D
image [WWS∗05]. To preserve coherency we represent the
light transport by a 4th-order hierarchical tensor. A node in
the 4th-order hierarchical tensor is divided into 16 children
at each level of the hierarchy. Thus, we call the hierarchi-
cal representation for a 4th-order tensor, a sedectree (derived
from sedecim, Latin equivalent of 16). Additionally, we use a
rank-1 approximation for representing data-sparseness in the
leaf nodes of the hierarchical tensor. This means that a leaf
node is represented by a tensor product of two 2D images,
one from the camera side and the other from the projector
side.

5.2 Hierarchical Acquisition Scheme

Our acquisition algorithm follows the structure of the hierar-
chical tensor described in the previous section. At each level
of the hierarchy we illuminate the scene with a few projector
patterns. We use the captured images to decide which nodes
of the tensor in the previous level of hierarchy are rank-1.
Once a node has been determined to be rank-1, we do not
subdivide it any further as its entries are known. The nodes
which fail the rank-1 test are subdivided and scheduled for
investigation during the next iteration. The whole process is
repeated until we reach the pixel level. We initiate the acqui-
sition by illuminating with a floodlit projector pattern. The
captured floodlit image provides a possible rank-1 factoriza-

projector
camera

beamsplitter

scene

Figure 4: Schematic of symmetric photography setup. A
coaxial array of projectors and cameras provides an ideal
setup for symmetric photography. The projector array illu-
minates the scene with an incoming light field. Since the
setup is coaxial, the camera array measures the correspond-
ing outgoing light field.

tion of the root node of the hierarchical tensor. The root node
is scheduled for investigation in the first iteration.

For each level, the first step is to decide what illumina-
tion patterns to use. In order to speed-up our acquisition, we
need to minimize the number of these patterns. To achieve
this, our algorithm must determine the set of projector blocks
which can be illuminated in the same pattern. To determine
this, we divide each scheduled node into 16 children and
the 4 blocks in the projector corresponding to this subdivi-
sion are accumulated in a list B = {B1,B2, ...,Bn}. Figure 3
describes the condition when two blocks Bi and B j cannot
be scheduled in parallel. It can be written as the following
lemma:

Lemma: Two blocks Bi and B j cannot be scheduled to-
gether if and only if, ∃Bk ∈ B, such that both Tik and Tjk are
not known.

Since the direct light transport Tii is not known until the
bottom level in the hierarchy, any two blocks Bi and B j for
which Ti j is not known cannot be scheduled in parallel. For
all such possible block pairs for which the light transport has
not been measured yet, let us construct a set C = {(Bi,B j) :
Bi,B j ∈ B}. Given these two sets, we define an undirected
graph G = (B,C), where B is the set of vertices in the graph
and C is the set of edges. Thus, the vertices in the graph
have an edge between them if the light transport between
the corresponding blocks is not known. In this graph, any
two vertices Bi and B j which do not have an edge between
them but have a direct edge with a common block Bk (as
shown in Figure 3) also satisfy the lemma. Therefore, we
cannot schedule them in parallel. Such blocks correspond to
vertices at a distance two from each other in our graph G. In
order to capture these blocks as direct edges in a graph, we
construct another graph G2 which is the square of graph G
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Figure 5: Coaxial setup for capturing 8D reflectance fields.
A pattern loaded into projector at A illuminates a 4× 4 ar-
ray of planar mirrors at B. This provides us with 16 virtual
projectors which illuminate our scene at C. The light that
returns from the scene is diverted by a beam-splitter at D
towards a camera at E. Any stray light reflected from the
beam-splitter lands in a light trap at F. The camera used is
an Imperx IPX-1M48-L (984× 1000 pixels) and the projec-
tor is a Mitsubishi XD60U (1024× 768 pixels). The setup
is computer controlled, and we capture HDR images every
2 seconds.

[Har01]. The square of a graph contains an edge between any
two vertices which are at most distance two away from each
other in the original graph. Thus, in the graph G2, any two
vertices which are not connected can be scheduled together.
We use a graph coloring algorithm on G2 to obtain subsets
of B which can be illuminated in parallel. Once the images
have been acquired, the known intra-block light transport is
subtracted out for the blocks that were scheduled in the same
frame.

In the next step, we use these measurements to test if the
tensor nodes in the previous level of the hierarchy can be
factorized using rank-1 approximation. We have a current
rank-1 approximation for each node from the previous level
in the hierarchy. The 8 measured images, corresponding to 4
blocks from the projector side and 4 blocks from the cam-
era side of a node, are used as test cases to validate the
current approximation. This is done by rendering estimate
images for these blocks using the current rank-1 approxima-
tion. The estimated images are compared against the corre-
sponding measured images and an RMS error is calculated
for the node. A low RMS error indicates our estimates are
as good as our measurements and we declare the node as
rank-1 and stop any further subdivision on this node. If on
the other hand the RMS error is high, the 16 children we
have measured become the new nodes. The 4 images from
the projector side and the 4 images from the camera side are
used to construct the 16 (4 × 4) rank-1 estimates for them.

29˚

37˚

3x130 px

3x200 px

Illumination Viewing

Figure 6: Region of the sphere sampled by our setup. Our
setup spans an angular resolution of 37◦×29◦ on the sphere
both for the illumination and view directions. The spatial
resolution in each view is 130× 200 pixels. This accounts
for about 2% of the total rays in the light field.

These nodes are scheduled for investigation in the next iter-
ation.

A tensor node containing just a scalar value is trivially
rank-1. Therefore, the whole process terminates when the
size of the projector block reduces to a single pixel. Upon
finishing, the scheme directly returns the hierarchical tensor
for the reflectance field of the scene.

5.3 Setup and Pre-processing

In order to experimentally validate our ideas we need an ac-
quisition system that is capable of simultaneously emitting
and capturing along each ray in the light field. This suggests
having a coaxial array of cameras and projectors. Figure 4
shows the schematic of such a setup. Our actual physical im-
plementation is built using a single projector, a single cam-
era, a beam-splitter and an array of planar mirrors. The pro-
jector and the camera are mounted coaxially using the beam
splitter on an optical bench as shown in Figure 5, and the
mirror array divides the projector/camera pixels into 9 coax-
ial pairs. Once the optical system has been mounted it needs
to be calibrated. First, the center of projection of the camera
and projector is aligned. The next task is to find the per pixel
mapping between the projector and camera pixels. We use
a calibration scheme similar to that used by Han and Per-
lin [HP03] and Levoy et al. [LCV∗04] in their setup to find
this mapping. Figure 6 illustrates the angular and spatial res-
olution of reflectance fields captured using out setup.

The dynamic range of the scenes that we capture can be
very high. This is because the light transport contains not
only the high energy direct bounce effects but also very
low energy secondary bounce effects. In order to capture
this range completely, we take multiple images of the scene
and combine them into a single high dynamic range image
[DM97,RBS99]. Additionally, before combining the images
for HDR, we subtract the black level of the projector from
our images. This accounts for the stray light coming from the
projector even when it is shining a completely black image.
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(a) Fixed view point / Different light source positions (b) Fixed light source position / Different view points

Figure 7: 8D reflectance field of an example scene. This reflectance field was captured using the setup described in Figure 5.
A 3× 3 grid of mirrors was used. In (a) we see images rendered from the viewpoint at the center of the grid with illumination
coming from 9 different locations on the grid. Note that the shadows move appropriately depending upon the direction of
incident light. (b) shows the images rendered from 9 different viewpoints on the grid with the illumination coming from the
center. In this case one can notice the change in parallax with the viewpoint. Note that none of these images were directly
captured during our acquisition. The center image in each set looks slightly brighter because the viewpoint and lighting are
coincident in this case.
Also, upon illuminating the scene with individual projector
pixels, we notice that the captured images appear darker and
have a significantly reduced contrast. This is because an indi-
vidual projector pixel would be illuminating very few pixels
on the Bayer mosaiced sensor of the camera, leading to an
error upon interpolation during demosaicing. This problem
was also noticed by Sen et al. [SCG∗05]. To remove these
artifacts, we employ a solution similar to theirs, i.e. the final
images are renormalized by forcing the captured images to
sum up to the floodlit image.
6 Results

We capture reflectance fields of several scenes. For refer-
ence, Table 1 provides statistics (size, time and number of
patterns required for acquisition) for each of these datasets.

In Figure 2, we present the results of our measurement for
four simple scenes consisting of planes. This experiment has
been designed to elucidate the structure of the T matrix. A
coaxial projector/camera pair is directly aimed at the scene
in this case. The image resolution is 310× 350 pixels. Note
the storage, time and number of patterns required for the four

scenes (listed in Table 1). A brute-force scan, in which each
projector pixel is illuminated individually, to acquire these
T matrices would take at least 100 times more images. Also,
since the energy in the light after an indirect bounce is low,
the camera would have to be exposed for a longer time in-
terval to achieve good SNR during brute-force scanning. On
the other hand, in our scheme the indirect bounce light trans-
port is resolved earlier in the hierarchy, see rows (c) and (d)
in Figure 2. At higher levels of the hierarchy, we are illu-
minating with bigger projector blocks (and hence throwing
more light into the scene than just from a single pixel), there-
fore we are able to get good SNR even with small exposure
times. Also, note that the high frequency of the textures does
not affect the data-sparseness of reflectance fields. The hi-
erarchical subdivision follows almost the same strategy in
all four cases as visualized in row (d). In row (e), we show
the results of relighting the scene with a vertical bar. The
smooth glow from one plane to the other in column (II), (III)
and (IV) shows that we have measured the indirect bounce
correctly.

Figure 1 demonstrates that our technique works well for
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Symmetric photography Brute-force
SCENE SIZE TIME PATTERNS PATTERNS
Fig. (MB) (min) (#) (#)
1 337 151 2,417 91,176
2(I) 255 44 809 108,500
2(II) 371 70 1,085 108,500
2(III) 334 65 1,081 108,500
2(IV) 274 46 841 108,500
7 1,470 484 3,368 233,657

Table 1: Table of relevant data (size, time and number of pat-
terns) for different example scenes captured using our tech-
nique. Note that our algorithm requires about 2 orders of
magnitude fewer patterns than the brute-force scan.

acquiring the reflectance fields of highly sub-surface scat-
tering objects. The image (240× 340 pixels) reconstructed
from relighting with a spatially varying illumination pattern
(see Figure 1(b)) is validated against the ground-truth image
(see Figure 1(c)). We also demonstrate the result of recon-
structing at different levels of the hierarchical tensor for this
scene in Figure 11. This figure also explains the difference
between our hierarchical tensor representation and a wavelet
based representation.

Figure 7 shows the result of an 8D reflectance field ac-
quired using our setup. The captured reflectance field can
be used to view the scene from multiple positions (see Fig-
ure 7(b)) and also to relight the scene from multiple direc-
tions (see Figure 7(a)). The resolution of the reflectance field
for this example is about 3×3×130×200×3×3×130×
200. The total size of this dataset would be 610 GB if three
32-bit floats were used for each entry in the transport matrix.
Our hierarchical tensor representation compresses it to 1.47
GB. A brute force approach would require 233,657 images
to capture it. Our algorithm only needs 3,368 HDR images
and takes around 8 hours to complete. In our current imple-
mentation, the processing time is comparable to the actual
image capture time. We believe that the acquisition times
can be reduced even further by implementing a parallelized
version of our algorithm. Rendering a relit image from our
datasets is efficient and takes less than a second on a typical
workstation.

6.1 Symmetric vs. Dual Photography

It is instructive to compare the symmetric photography tech-
nique against dual photography [SCG∗05]. Dual photogra-
phy reduces the acquisition time by exploiting only sparse-
ness (the fact that there are regions in a scene that are ra-
diometrically independent of each other). These regions are
detected and measured in parallel in dual photography. How-
ever, for a scene with many inter-reflections or sub-surface
scattering, such regions are few and the technique performs
poorly. In order to resolve the transport at full resolution,
the technique would reduce to brute-force scanning for such
scenes. Illuminating with single pixel for observing multiple
scattering events has inherent SNR problems because indi-

(a) Symmetric (b) Dual

Figure 8: Symmetric vs. Dual Photography. The figure il-
lustrates the strength of symmetric photography technique
(a) when compared against the dual photography technique
(b) of Sen et al. [SCG∗05]. The setup is similar to the book
example of Figure 2 (IV). In both cases, the right half of the
book is synthetically relit using the transport matrices cap-
tured by the respective techniques. Note that in the case of
symmetric photography (a), the high frequencies in the left
half of the book are faithfully resolved while in dual pho-
tography (b), the frequencies cannot be resolved and just
appear as a blur. The light transport for (a) was acquired
using 841 images while that for (b) was acquired using 7382
images.

rect bounce light transport coefficients could be extremely
low. The measurement system, which is limited by the black
level of the projector and dark noise of the camera cannot
pick up such low values. The scheme therefore stops refin-
ing at a higher level in the hierarchy and measures only a
coarse approximation of the indirect bounce light transport.
This essentially results in a low-frequency approximation for
indirect bounce light transport. The comparison of the two
techniques in Figure 8 confirms this behavior. Since sym-
metric photography is probing the matrix from both sides,
the high frequencies in indirect bounce light transport are
still resolved whereas dual photography can only produce
a low frequency approximation of the same. Furthermore,
while symmetric photography took just 841 HDR images for
this scene, dual photography required 7382 HDR images.

Finally, Figure 9 illustrates the relative percentage of
rank-1 vs empty leaf nodes at various levels of the hierarchy
for the transport matrices that we have captured. The empty
leaf nodes correspond to sparse regions of the matrix while
the rank-1 leaf nodes correspond to data-sparse regions of
the matrix. While dual photography only exploits sparseness
and hence culls away only empty leaf nodes at a particular
level, symmetric photography exploits both data-sparseness
and sparseness and culls away both rank-1 and empty leaf
nodes. Note that between levels 4 and 9, there is a significant
fraction of rank-1 nodes which are culled away by symmet-
ric photography in addition to empty leaf nodes. This results
in large reduction of nodes that still have to be investigated
and results in a significantly faster acquisition as compared
to dual photography.
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Figure 9: Comparison of rank-1 vs empty leaf nodes. The figure empirically compares the percentage of rank-1 vs. empty leaf
nodes in the hierarchical tensor at different levels of the hierarchy for various scenes captured using our acquisition scheme.
The blue area in each bar represents the percentage of rank-1 nodes while the gray area corresponds to the percentage of empty
nodes. The white area represents the nodes which are subdivided at next level. Note that at levels 4, 5, 6, 7, 8 and 9 a significant
fraction of leaf nodes are rank-1. Also note that for Figures 2(I) and 2(II), at levels 6, 7, and 8, there are far more empty nodes
in 2(I) than in 2(II). This is what we expected as the transport matrix for 2(I) is sparser than that for 2(II).

7 Discussion and Conclusions

In this paper we have presented a framework for acquir-
ing 8D reflectance fields. The method is based on the ob-
servation that reflectance fields are data-sparse. We exploit
the data-sparseness to represent the transport matrix by lo-
cal rank-1 approximations. The symmetry of the light trans-
port allows us to measure these local rank-1 factorizations
efficiently, as we can obtain measurements corresponding to
both rows and columns of the transport matrix simultane-
ously. We have also introduced a new data structure called
a hierarchical tensor that can represent these local low-rank
approximations efficiently. Based on these observations we
have developed a hierarchical acquisition algorithm, which
looks for regions of data-sparseness in the matrix. Once a
data-sparse region has been measured we can use it to paral-
lelize our acquisition resulting in tremendous speedup.

There are limitations in our current acquisition setup (Fig-
ure 5) that can corrupt our measurements. To get a coax-
ial setup we use a beam-splitter. Although we use a 1mm
thin plate beam-splitter, it produces the slight double im-
ages inherent to plate beam-splitters. This, along with the
light reflected back off the light trap, reduces the SNR in our
measurements. The symmetry of our approach requires pro-
jector and camera to be pixel aligned. Any slight misalign-
ment adds to the measurement noise. Cameras and projectors
can also have different optical properties. This can introduce
non-symmetries such as lens flare, resulting in artifacts in
our reconstructed images (see Figure 10).

By way of improvements, in order to keep our implemen-
tation simple, we use a 4th order hierarchical tensor. This

Figure 10: Artifacts due to non-symmetry in measurement.
The lens flare around the highlights (right image) is caused
by the aperture in the camera. Since this effect does not oc-
cur in the incident illumination from the projector, the mea-
surements are non-symmetric. Applying a strong threshold
for the rank-1 test subdivides the region very finely and pro-
duces a corrupted result in the area of the highlights (left
image). If the inconsistencies in measurement are stored at
a higher subdivision level by choosing a looser threshold for
rank-1 test, these artifacts are less noticeable (right image) .

means that we are flattening out 2 of the 4 dimensions of the
light field, thereby not exploiting the full coherency in the
data. An implementation based on 8th order tensor should
be able to exploit it and make the acquisition more efficient.

Since we use a 3× 3 array of planar mirrors, the resolu-
tion of our incoming and outgoing light fields is low. There-
fore, the reflectance fields that we can capture are sparse
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and incomplete. Regarding sparseness, techniques have been
proposed for interpolating slices of the reflectance fields,
both from the view direction [CW93] and from the illumi-
nation direction [CL05], but the problem of interpolating re-
flectance fields is still open. By applying flow-based tech-
niques to the transport matrix, one should be able to create
more densely sampled reflectance fields. One can also imag-
ine directly sampling incoming and outgoing light fields
more densely by replacing the small number of planar mir-
rors with an array of lenslets or mirrorlets [UWH∗03]. This
will increase the number of viewpoints in the light field but
at the cost of image resolution.

Regarding completeness, if the setup used for capturing
Figure 7 is replicated to cover the whole sphere, then ex-
trapolating from the numbers in Table 1, we would expect
the transport matrix to be around 75 GB in size. Acquisition
would currently take roughly 2 weeks. Note that although it
is not practical to build such a setup now, faster processing
and the use of an HDR video camera could reduce this time
significantly in the future.

Finally, although we introduce the hierarchical tensor as a
data structure for storing reflectance fields, the concept may
have implications for other high dimensional data-sparse
datasets as well. The hierarchical representation also has
some other benefits. It provides constant time access to the
data during evaluation or rendering. At the same time it
maintains the spatial coherency in the data, making it attrac-
tive for parallel computation.
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Figure 11: Reconstruction results for different levels of hierarchy. This example illustrates the relighting of the reflectance
field of gummy bears scene (Figure 1) with illumination pattern used in Figure 1(a), if the acquisition was stopped at different
levels of the hierarchy. Note that at every level, we still get a full resolution image. This is because we are approximating a
node in the hierarchy as a tensor product of two 2-D images. Therefore, we sill have a measurement for each pixel in the image,
though scaled incorrectly. This is different from wavelet based approaches where a single scalar value is assigned for a node in
the hierarchy implying lower resolution in the image at lower levels. Note that at any level, the energy of the projected pattern
is distributed over the whole block that it is illuminating. This is clear from the intensity variation among blocks, especially in
the images at levels 3, 4, and 5.
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