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Abstract
The anisotropic filtering offered by current graphics hardware can be employed to apply motion blur to textures.
The solution proposed here uses a standard texture together with a vertex and a pixel shader acting on a mesh
with augmented vertex data. Our method generalizes the usual spatial anisotropic MIP mapping to also include
temporal effects. It automatically processes any time series of affine 3D transformations of an object. The applica-
tion fields include animations containing 2D lettering as well as objects such as spoke wheels that are cookie-cut
from large polygons using an alpha channel. We present two different implementations of the technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Motion blur often affects less the shape of 3D objects than
rather their texture. This is true for instance for the ground in
driving or flight simulator software, for rotating wheels and
globes, and for “flying” 2D logos. On top of that, texture-
based motion blur can be applied to flat geometry cookie-cut
from larger polygons using a texture with an alpha channel.
This applies to air-screws, spoke wheels, and even to sword
blades. Another application of texture motion blur is to sup-
press crawling pixel staircases that occur when a texture with
hard edges moves over the screen.

The contribution of this paper is a method to employ stan-
dard anisotropic filtering hardware to subject textures to mo-
tion blur in real time by vertex and pixel shaders, see Fig-
ures 1, 2 and 3. We make use of the tex2D(s, t, ddx,
ddy) function of HLSL, which allows to specify two vec-
tors ddx, ddy that span a parallelogram in uv space to be
used for texture averaging.

This novel use of anisotropic filtering is combined with its
original use for spatial antialiasing. As opposed to temporal
supersampling, the proposed method does not employ mul-
tiple rendering. Thus, there are no issues with transparency
(such as rendering order) and depth buffering. In addition,
no further buffers are needed, in particular none with ex-
tended range such as an accumulation buffer. The method
leverages today’s specialized hardware to retrieve up to 16
trilinear texture samples efficiently.

Figure 1: Motion blur is applied to the texture of a wheel
rolling on the ground at different speeds. The alpha channel
of the texture cookie-cuts the wheel from a quadrangle.

Figure 2: The presented method prevents “strobe” artifacts
in situations such as this flight over uneven terrain (pre-
sented at three different speeds).

This paper is structured as follows: Section 2 gives an
overview over related work. In Section 3 we derive how
motion blur can be expressed in texture coordinates. How
one can combine motion blur with spatial level of detail and
the corresponding anisotropy is described in Section 4. Sec-
tion 5 details our implementations: The first one is heavily
pixel-based. It can work with coarsely tessellated geometry.
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The second is mostly vertex-based. The third is a fast im-
plementation of multiple rendering, to be used as reference.
Section 6 presents and discusses the results. Section 7 sum-
marizes the paper and outlines future work.

Figure 3: Tumbling billboards and other typographic ani-
mations profit from motion blur of the textures. The geometry
to which the textures are applied extends beyond the bill-
boards, which are formed by the texture’s alpha channel.

2. Related work

Historically, motion blur—which can also be regarded as
temporal antialiasing—has been generated in a variety of
ways, including multiple rendering (temporal supersam-
pling) [KB83], integration along motion paths, possibly in
Fourier space [PC83], and distribution ray tracing [CPC84].
Recently, Sung et al. [SPW02] have proposed a framework
for spatial-temporal antialiasing in an offline renderer using
an adaptive Monte-Carlo approach that treats visibility and
shading separately.

A standard approach to rendering motion blur at inter-
active speed is multiple rendering into an accumulation
buffer [HA90]. Floating-point buffers offered by some cur-
rent graphics cards can be employed in the same fash-
ion [Nvi04]. Jones and Keyser [JK04] use a partially CPU-
based method to construct polygonal models that describe
the volumes the objects sweep in their motion.

Several authors address real-time motion blur by extrud-
ing the objects in the direction of their motion and adding an
alpha gradient. The basic idea has been proposed by Wloka
and Zeleznik [WZ96]. Arce et al. [AW02] present a GPU-
based implementation that also addresses sort-order issues
of transparent rendering by using six ordered index lists for
the triangles. Textures are not treated; furthermore, the algo-
rithm has to render a sharp image in addition. This is more
appropriate for still images.

Recent work introduces texture blurring to this deforma-
tion method: Tatarchuk et al. [TBI03] use MIP map bias with
no precise computation of strength and anisotropy. Green
[Gre03] improves on the basic idea by adding motion blur
to the textures through temporal multisampling.

To create motion blur for the ground texture of a driving
simulation, Hargreaves [Har04] computes different versions
of a texture offline, all blurred in different amounts and pos-
sibly along different directions. On runtime, a pixel shader
combines them according to the current global motion. To
cover an arbitrary motion in good quality would require a
huge set of precomputed blurred versions of the texture.

Anisotropic filtering is a basic problem in the rendering
of textures. A classic approach is elliptical weighted averag-
ing [GH86], where the footprint of a pixel in texture space
is approximated by an ellipse. Many authors have proposed
more efficient methods to form anisotropic averages, among
them Feline [MPFJ99] and SPAF [SLK01].

Current graphics chips assemble an anisotropic footprint
by up to 16 trilinear texture samples per pixel, correspond-
ing to a blend of up to 128 texels at different MIP map
levels. The manufacturers employ non-disclosed optimiza-
tion strategies to limit the actual number of requests adap-
tively. Such strategies are for instance part of ATI Smoothvi-
sion HD [ATI04] and Nvidia Intellisample [Nvi03].

3. Motion blur in texture coordinates

Given a triangle moving in 3D space and given a single
screen pixel, we want to study the time dependence of the
uv texture coordinates that correspond to the pixel, see Fig-
ure 4. Assume that the triangle has the vertices a, b, c ∈ R3

with uv coordinates
(

ua
va

)
,
(

ub
vb

)
, and

(
uc
vc

)
, respectively.

The normalized vector

n := ((b−a)× (c−a))0 (1)

is perpendicular to the triangle.

The triangle is subjected to an affine mapping p 7→Mp+v
where M is a 3× 3 matrix and v is translation vector. From
one instance of time to the next, M and v change by small
amounts ∆M and ∆v. We assume that these quantities are
small and ignore terms of quadratic or higher order.

Let a fixed screen position correspond to a point p of the
triangle under p 7→Mp+v. After perturbing the mapping by
∆M and ∆v, a possibly different point p + ∆p is mapped to
the same position on screen.

We assume that the mapping from view space to screen
space is a perspective projection with the origin as center.
This means that Mp+v and (M +∆M)(p+∆p)+v+∆v lie
on the same ray through the origin. Taking differentiability
into account, we see that there exists a small ∆d such that

Mp+v = (1+∆d)
(
(M +∆M)(p+∆p)+v+∆v

)
. (2)
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Figure 4: Let the point p in object space be at the center
of a screen pixel in a given frame. Then in the next frame a
possibly different point p + ∆p will be mapped to the same
screen position.

In general, M is invertible, so that by deleting higher orders
we find:

∆p =−M−1
(

∆Mp+∆v+∆d(Mp+v)
)
. (3)

To determine ∆d, we can observe that ∆p connects two
points of the triangle and thus must be perpendicular to n.
Therefore, Equation 3 results in

∆d =−n ·M−1(∆Mp+∆v)
n ·M−1(Mp+v)

. (4)

Inserted into Equation 3, this allows to find ∆p.

The final step is to convert ∆p into the corresponding

change
(

∆u
∆v

)
of texture coordinates. Given a point p on the

triangle, we can compute its uv coordinates as(
u
v

)
=
(

ua
va

)
+

(p−a) · (n× (c−a))
(b−a) · (n× (c−a))

(
ub−ua
vb− va

)
+

(p−a) · (n× (b−a))
(c−a) · (n× (b−a))

(
uc−ua
vc− va

)
.

This formula can easily be verified by inserting a, b, c for p
and noting that it is linear in p. Taking differences, we finally

find
(

∆u
∆v

)
= U∆p, where U is the 2×3 matrix defined by

U :=
(

ub−ua
vb− va

)
⊗
(

n× (c−a)
(b−a) · (n× (c−a))

)T

(5)

+
(

uc−ua
vc− va

)
⊗
(

n× (b−a)
(c−a) · (n× (b−a))

)T

.

4. Combining spatial and temporal anisotropy

Standard anisotropic MIP mapping determines the partial
derivatives of the texture coordinates u and v with respect
to the screen coordinates x and y. These derivatives are used
to control which part of the texture map is averaged to com-
pute the color of a pixel at (x,y), see Figure 5.

∆u
∆v(  )

Texture
Space

u
v

∂y( )∂x( )
u
v

v

u

Figure 5: Spatial anisotropic filtering defines the area of
the texture mapped to a single screen pixel (dark gray) using
spatial derivatives. For additional temporal filtering (light
gray) this footprint has to extend along the motion, too.

The temporal adjustments have to be combined with these
computations. To this end, we use a mixture of Gaussian ran-

dom variables. For a given pixel at
(

u
v

)
, we want to average

over the texture values at(
u
v

)
+α∂x

(
u
v

)
+β∂y

(
u
v

)
+ γ

(
∆u
∆v

)
, (6)

where α, β, γ are independent identically distributed
Gaussian random variables with zero mean and standard
deviation σ. We want to use the tex2D(s, t, ddx,

ddy) function of HLSL. Thus, we seek ddx =:
(

e
f

)
and

ddy =:
(

g
h

)
such that the expression

(
u
v

)
+ α

(
e
f

)
+

β

(
g
h

)
possesses the same probability distribution as does

expression 6.

Equality of the probability distributions is equivalent to
equality of the characteristic functions. Thus we demand for
all p, q ∈ R:

E
[

exp
{

i
(

p
q

)(
α∂x

(
u
v

)
+β∂y

(
u
v

)
+ γ

(
∆u
∆v

))}]
= E

[
exp
{

i
(

p
q

)
·
(

α

(
e
f

)
+β

(
g
h

))}]
.

Evaluating these expected values and separately collecting
the coefficients of p2, 2pq, and q2 we find that the equality
of the characteristic functions is equivalent to the following:

e2 +g2 = A := (∂xu)2 +(∂yu)2 +(∆u)2,
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e f +gh = B := ∂xu∂xv+∂yu∂yv+∆u∆v,

f 2 +h2 = C := (∂xv)2 +(∂yv)2 +(∆v)2.

These are three equations for the four unknowns e, f , g, h.
To compute a solution in a numerically stable way, we test
whether A > C. If so, we set

e =
√

A, f = B/e, g = 0, h =
√

C− f 2, (7)

else

h =
√

C, g = B/h, f = 0, e =
√

A−g2. (8)

5. Shader-based implementation

5.1. General approach

Implementation prototypes have been built in C# using
Microsoft R©’s Managed DirectX R© programming interface;
shaders were developed in HLSL and stored in an .fx file for
Microsoft R©’s Effect framework. A standard texture with no
special preparation is used. To ensure a gamma-correct map-
ping of the averaged colors to the screen, we set the Srgb-
WriteEnable property of the DirectX R© device to true.

The mesh data has to be changed to store additional static
data to be computed upfront: Every vertex is equipped with
the following data:

• its 3D position p in object space,
• a normal vector n in object space,
• its texture coordinates u and v,
• a matrix U according to Equation 5 as a pair of three-

component vectors.

Inside the vertex shader, we transform the position p to
camera space by forming r := Mp + v using the 4× 4 ma-
trix WorldView offered by the Effect framework. Further-
more, the frame-to-frame difference of this matrix is formed
to compute s := ∆Mp+∆v. According to Equations 3, 4, and
5, we eventually have to determine(

∆u
∆v

)
= U∆p =−UM−1s+

(M−1Tn) · s
(M−1Tn) · r

UM−1r.

To allow the user to control the amount of motion blur ap-

plied, we multiply
(

∆u
∆v

)
by a parameter representing expo-

sure time.

5.2. Pixel-based implementation

In the first implementation, we aim at a computation that
remains precise for large triangles. The original 3D mesh is
converted into a triangle list. For every triangle we store all
three vertices, even though vertices with equal positions in
3D space may already have been stored for other triangles.
This allows to store triangle normals (see Equation 1) instead
of averaged normals. The matrix U is treated similarly.

In the vertex shader, we only compute terms that vary lin-
early, thus making efficient and precise use of the automatic
bilinear interpolation taking place between vertex shader
and pixel shader. These terms are: −UM−1s, (M−1Tn) · s,
(M−1Tn) · r, and UM−1r. The pixel shader only needs to
combine these quantities using one floating-point division
and one multiply-and-add operation on vectors.

In the pixel shader, we apply the standard HLSL functions
ddx and ddy to find the partial derivatives of u and v. The
area over which to form the anisotropic average can now be
found using Equations 7 and 8. e, f , g, h are directly inserted
as parameters into the tex2D call of HLSL.

The vertex shader compiles to 29 assembly language in-
structions, the pixel shader to 30. The larger part of the pixel
shader is devoted to the blending of spatial and temporal
anisotropy. Temporal anisotropy alone could be dealt with
in as few as five assembly language instructions.

5.3. Vertex-based implementation

The second implementation places as few as possible in-
structions in the pixel shader, relying on a fine tessellation.
Here, we use the original structure of the mesh with vertices
shared among adjacent triangles. The per-vertex normal n
and the per-vertex matrix U are formed by averaging over
their values for the adjacent triangles.

On first sight, it may appear natural to compute e, f , g,
h in the vertex shader. However, there is one open degree
of freedom in the computation of these quantities, see Sec-
tion 4. We have to prescribe a rule that fixes this, such as
requiring g = 0. It seems hard if not impossible to give a
rule that leads to a meaningful linear interpolation applied
to the vertices by the graphics chip. For instance, false near-
zero results of the linear interpolation may result if the sign
of a value changes one from vertex to a neighbor.

Therefore, we compute quantities in the vertex shader that
are better suited for linear interpolation:

a :=
√

A, c :=
√

C, b := B/(ac), d :=
√

1−b2.

From these, the pixel shader derives e, f , g, h. For numerical
stability, we again distinguish two cases according. If A > C,
we set e = a, f = bc, g = 0, h = cd, else e = ad, f = 0,
g = ab, h = c.

Vertex shaders cannot use the HLSL functions ddx and
ddy. To compute the screen-space partial derivatives of u
and v we have to resort to matrix computations: A derivation
similar to Equations 3, 4, and 5 leads to

∂x

(
u
v

)
= UM−1

(
rzex−

(M−1Tn) · ex

(M−1Tn) · r
r

)
,

where rz is the z component of r, the vector ex is defined by
( 2

fW ,0,0)T with W being the screen width in pixels and f
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denoting focal length, which can be read off from the Pro-
jection matrix. A similar formula applies to the partial
derivative with respect to screen-space y.

The remaining computations are similar to the first imple-
mentation. In total, the vertex shader compiles to 53 assem-
bly language instructions, the pixel shader to 7.

5.4. Reference implementation of multiple rendering

To have a standard for comparisons, we also implemented
motion blur based on temporal supersampling: Images that
correspond to N different instants of time are blended.

A way to re-render geometry without costly state changes
is “instancing” as offered by Shader Model 3.0. The vertex
buffer of the original 3D mesh forms the instanced stream.
Here we employ the original, indexed mesh with shared ver-
tices, not the augmented one constructed for the other im-
plementations. The instancing stream contains one floating
point value t for each of the N instances. It ranges from
− 1

2 to 1
2 in uniform increments. The vertex shader computes

p 7→Mp+v+ t
(

∆Mp+∆v
)

to apply a gradually changing
transformation to the different instances of the mesh.

To keep the reference implementation fast, we assume that
the 3D model can be rendered without help of the depth
buffer, for instance by using backface culling. Thus, we
switch off writing to the depth buffer and rely fully on addi-
tive alpha blending. The rendering is done on a black back-
ground; colors are multiplied by 1

N .

6. Results. Discussion

We used a PC equipped with an Intel R© Pentium R©-4 CPU
running at 2.5 GHz and an NVIDIA R© GeForceTM 6800 GT
graphics card to evaluate speed and quality. In the graphics
driver, we switched on the optimization for trilinear map-
ping, which led to a speedup by up to 20 % without objec-
tionable losses in image quality. The additional switch for
optimization of anisotropic filtering did not show any notice-
able effect. For the multiple rendering method, we employed
a maximum anisotropy degree of 4 throughout.

The artifacts generated by the novel method look differ-
ent from those of multiple rendering: Where the latter starts
to reveal multiple exposures, the former starts to blur exces-
sively. As the streaks of motion blur get longer, the foot-
print to average over in the texture tends toward an increas-
ingly long line in uv space. When this footprint can no longer
be assembled from a reasonable number of MIP texture re-
quests, the graphics chip resorts to coarser MIP levels. On
top of that, the locally linear approximation of the motion
can smear texels to screen pixels they never reach in reality.

Visually, the amount of artifacts of both implementations
of the novel method with a maximum anisotropy degree of
8 corresponded to the artifacts produced by 16-fold multiple

rendering, see Figure 6. This can be attributed to an intelli-
gent assembling of the filter footprint by the graphics chip.

Figure 6 also shows that—as expected—the pixel-based
implementation works well with large triangles, whereas the
vertex-based implementation does not. On the other hand,
the latter is better suited for fast motion of non-planar geom-
etry due to the following: The pixel-based implementation
treats each triangle on its own, assuming that the triangle is
part of a plane with correspondingly continued uv parame-
trization. A fast motion can reveal that this assumption is
not true: It leads to motion blur that extends far beyond the
current triangle in uv space.

Speed benchmarks, see Figure 7, were done fullscreen on
1280×1024 pixels using no vertical synchronization. Natu-
rally, the rendering is strongly fillrate-limited, as can be seen
from the fact that the two models used differ by a factor
of 40 in their triangle count, but only by a factor of less
than 2 in rendering speed. The exposure time has a major
impact on speed: Long exposure leads to a large degree of
anisotropy. This increases the number of texture requests the
graphics chip must issue to approximate the footprint. Thus,
the tex2D call in the shader becomes the limiting step.

In total, the vertex-based and the multiple-rendering im-
plementation yield similar speed and quality if the tessel-
lation is fine enough for the linear interpolation used in
the vertex-based method. Multiple rendering in the efficient
form employed here reduces the number of colors, what
shows as blotches. This is due to the division of the color
by the number of passes. To overcome this, one would have
to use an intermediate buffer of extended color range.

Figure 6: A rotating billboard is used to illustrate the ar-
tifacts introduced by the different approaches. a, b: pixel-
based method with a maximum anisotropy degree of 8 and
16; c, d: 16- and 32-fold multiple rendering. Whereas the
vertex-based method works well with a tessellation of 800
triangles (e), it cannot handle a tessellation of only 2 trian-
gles (f), in contrast to the pixel-based method (g).

7. Summary. Outlook

We have presented a method to generate motion blur with
help of filtered textures, leveraging the anisotropic filter-
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Pixel-Based 4:1
8:1

16:1
Vertex-Based 8:1

16:1
Mult. Rendering 16x

32x
Frames per Second 0 40 80 120 160

Figure 7: To evaluate the speed, we used a flight over a
landscape of 20,000 triangles (light gray) and a spinning
sphere of 528 triangles (dark gray). The numbers refer to the
maximum degree of anisotropy and to the count of multiple
renderings. For details, see text.

ing offered by current hardware. The method achieves re-
sults that can be compared in terms of quality and speed
to a very efficient, non-general implementation of multi-
ple rendering. Neither the texture-based motion blur intro-
duced here nor the fast implementation of multiple render-
ing can handle occlusion in full generality. In that, they re-
semble most other methods for real-time motion blur such
as [AW02] and [Gre03].

At the same time, the novel method avoids some issues
of multiple rendering and other methods described in the lit-
erature. For instance, there is only one rendering pass. This
avoids back-to-front sorting problems and drastically speeds
up lighting and shading computations, which may be done in
addition to motion blur. On top of that, there is no need and
no time expense for an additional buffer with extended range
or floating-point blending capabilities. The novel method
will strongly profit from future progress in hardware support
for adaptive anisotropic filtering.

The presented technique works well for a range of ob-
jects including billboards as well as terrains that do not
contain strongly peaked mountains. In general, silhouettes
will not be subjected to motion blur. However, objects that
are cookie-cut from large polygons by alpha-blending show
physically correct blurring of the silhouettes. Complex ob-
jects could be handled by combining a geometric approach
with the texture-based motion blur, comparable to [Gre03].
On top of that, deforming meshes could be handled by inte-
grating the intrinsic motion into Equation 2.
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