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Figure 1: From left to right. A hand model shaded using only one sample at the center. The middle image shows the same model shaded
using one sample and the analytical gradient. The last image shows a reference rendering where the incident radiance field is sampled
per-vertex.

Abstract
Spherical harmonics are often used for compact description of incident radiance in low-frequency but distant
lighting environments. For interaction with nearby emitters, computing the incident radiance at the center of an
object only is not sufficient. Previous techniques then require expensive sampling of the incident radiance field at
many points distributed over the object. Our technique alleviates this costly requirement using a first-order Taylor
expansion of the spherical-harmonic lighting coefficients around a point. We propose an interpolation scheme
based on these gradients requiring far fewer samples (one is often sufficient). We show that the gradient of the
incident-radiance spherical harmonics can be computed for little additional cost compared to the coefficients
alone. We introduce a semi-analytical formula to calculate this gradient at run-time and describe how a simple
vertex shader can interpolate the shading. The interpolated representation of the incident radiance can be used
with any low-frequency light-transfer technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Color, Shading, Shadow-
ing and Texture

1. Introduction

In recent years, several methods have been proposed that
permit the usage of global incident lighting in real-time ren-
dering [SKS02, NRH03, SHHS03]. These approaches rep-
resent the incident radiance in spherical harmonics (SH).
They, however, assume distant lighting. As a result, they are
incapable of rendering scenes with mid-range lighting ef-
fects without visual error (Figure 1).

To alleviate this problem, Sloan et al. [SKS02] sample the
incident light field at multiple points over the object. While

this was shown to be a possible solution, the high compu-
tational cost of multiple sampling leaves room for improve-
ment.

In this paper, we propose to compute a first-order Tay-
lor expansion of the spherical harmonic coefficients around
a sampling point. We show how the gradient of the inci-
dent radiance (represented in SH) can be computed for lit-
tle additional cost compared to the coefficients alone. A
semi-analytical formula is introduced to calculate this gra-
dient at run-time. The incident radiance can now be extrap-
olated to different positions around the original sample lo-
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cation. In case of multiple samples, the interpolation quality
is greatly improved, thus requiring less samples. Extrapola-
tion/interpolation can be easily performed in a vertex shader
on the GPU. The extrapolated/interpolated incident radiance
can then used together with any radiance transfer technique,
e.g. [RH01, SKS02].

2. Previous Work

Our work uses the same framework as the recent pre-
computed radiance transfer technique [SKS02]. This ap-
proach permits the illumination of objects with low-
frequency incident lighting represented in spherical har-
monics [Edm60]. The object can either be diffuse [SKS02]
or glossy [KSS02, SHHS03, LK03]. Rendering can be per-
formed in real-time, but requires precomputing the transfer
for self-shadowing and other global illumination effects.

Precomputed radiance transfer is limited to distant illumi-
nation, unless multiple incident radiance samples are taken
and interpolated [SKS02]. We improve on this by computing
the gradient of the spherical harmonics coefficients around a
sample point. This enables extrapolation of the incident ra-
diance to other points in space, which in turn can be used to
improve interpolation of multiple samples.

Our technique is similar in spirit to the irradiance gradi-
ents for ray-tracing by Ward and Heckbert [WH92]. They
propose to compute gradients of the view-independent irra-
diance at various sample points in order to improve interpo-
lation. This involves a translational gradient (for the change
of position) as well as rotational gradient (for the change
of relative surface orientation). In contrast to their work, we
choose to compute a gradient for the whole sphere of in-
cident radiance (given in SH), independent of any incident
surface orientation. Therefore we only need a translational
gradient, but not the rotational gradient. However, our gradi-
ent is higher-dimensional, as we encode the directional radi-
ance information through the vector of lighting coefficients.
Essentially, we trade dependencies on the receiver orienta-
tion for a more comprehensive directional treatment of inci-
dent radiance. Furthermore, we focus on real-time rendering,
whereas their application area was offline rendering.

Irradiance gradients were generalized by Arvo [Arv94],
who additionally accounted for occlusions. As Ward and
Heckbert, we have to decided to neglect occlusion changes.
This is motivated by implementation robustness and simplic-
ity goals, and is justified by the use of low-frequency inci-
dent illumination, which is not very susceptible to visibility
changes.

3. Review: Shading with Spherical Harmonics

Computing exit radiance at a diffuse surface is usually com-
puted by the following integral:

Lp =
∫

Ω

Ip(ω) ·V∗
p (ω) dω, (1)
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Figure 2: At a point p, we see point x in direction s := x−p.
The point x has a differential solid area dA(x). When we
move from p to p′ along d, the direction s changes, as well
as the angle between s and n.

V∗
p (ω) = Vp(ω)(np ·ω), (2)

where Lp is the exitant radiance at point p, Ip is the inci-
dent radiance at p, Vp is the visibility function at p, V∗

p is the
cosine-weighted visbility, and np is the normal at p. Integra-
tion is performed over all directions ω.

This is an expensive integral, and it needs to be com-
puted at every point p on an object. Recently, techniques
[SKS02, SHHS03] were introduced to speed up the com-
putation of this integral under the following assumptions:
Lighting is assumed to be low-frequency, the object is static,
and the illumination is distant (i.e., Ip(ω) = I(ω) is the same
for all p).

If we now project I(ω) and V∗
p (ω) into the spherical har-

monics (SH) basis yi, we get two coefficient vectors I =
(c0,c1, . . .)T and V∗

p , and exitant radiance can then be easily
computed with a dot-product [SKS02]:

Lp = I ·V∗
p. (3)

Multiple Samples. For close- and mid-range illumination,
the incident radiance does change at every p. Hence, the
above distant-illumination assumption is not valid.

To alleviate this problem, Sloan et al. [SKS02] propose
to take multiple incident radiance samples at several p j and
interpolate between the Ip j . We also propose to use multi-
ple samples in these cases, but increase interpolation quality
using our gradient-based technique.

4. Spherical Harmonic Gradients

Consider the configuration visualized in Figure 2. A single
sample of incident radiance is taken at point p. We want to
estimate the incident radiance Ip′(ω) at a new point p′ = p+
d, where d is simply the translation vector. More precisely,
we want the coefficient vector Ip′ .

We approximate the coefficients Ip′ = (c′0,c
′
1, . . .)

T at
point p′ with a first-order Taylor expansion:

c′i = ci +(∇ci ·d). (4)
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As we will show in the next section, the gradients ∇ci can
be computed efficiently and allows for fast rendering.

Assumptions. Before we derive the gradient formulation,
we introduce the assumptions we make. We neglect specular
surfaces in the environment and assume that exitant radiance
at a 3D point is independent of direction. This assumption is
made only for the environment contribution, and the illumi-
nated object can be specular.

Furthermore, we assume that visibility does not change
when we move away from p. That is, the set of visible
points remains unchanged. Although this assumption almost
never holds for real scenes, artifacts are likely to be negli-
gible, since we consider only low-frequency incident illumi-
nation. If visibility changes are dramatic and artifacts might
occur, multiple samples and gradient-based interpolation can
be used to circumvent potential problems (see Section 6).

4.1. Gradient

We need to compute the gradient of the coefficients ci. Pro-
jecting the incident radiance into spherical harmonics is
done by integrating it against the SH basis functions:

ci =
∫

Ω

yi(ω) I(ω) dω. (5)

Similar to the rendering equation, this formula can be
written as an integral over the sphere of directions Ω or
over visible scene surfaces S. For gradient computation, this
choice will influence which terms of the integrand need to
be derived and which ones are constant. Both approaches
yield similar algebraic complexity, but different numerical
integration. In the surface-based case, differential surface el-
ements are assumed fixed and we need to derive the various
angular terms (see Figure 2). In contrast, in the angle integra-
tion, we assume that angles are fixed but the derivatives of
radiance over the scene surfaces needs to be computed. The
former approach is simpler because it makes a direct use of
the environment-map-sampled representation of the surface
elements and because the angular terms are simple to derive,
as shown below.

We thus rewrite this integral so that integration is per-
formed over visible surfaces S. We first define the non-unit
vector s = (x− p), where x is a point on a visible surface,
substituting it into Equation 5:

ci =
∫
S

yi(
s
||s|| ) I(x) ds. (6)

The main difference is that the incident radiance now de-
pends on the points x of the visible surfaces S. This is useful
for taking the gradient, since the radiance leaving x remains
the same, even when the sample location p moves to p′.

The measure ds can be rewritten as the differential surface
area dA at x weighted by the squared distance to that surface

point and by the angle between the surface normal n(x) and
the direction s towards p [CW93]:

ds = dA
n(x) · (s/||s||)

||s||2
. (7)

We explain how to compute dA in practice in the next sec-
tion. We then write the gradient of ci:

∇ci =−
∫
S
∇

(
yi(

s
||s|| )

n(x) · (s/||s||)
||s||2

)
I(x) dA (8)

Note, that we take the gradient in s instead of p, since it is
easier to write. The only difference between the two gradi-
ents is the sign (when p moves along d, then s moves along
−d). Note also, that because we use the integration on sur-
faces, the incident radiance I(x) does not vary under transla-
tion of the incident point.

To simplify notations we define the geometric term

g(s) =
n(x) · (s/||s||)

||s||2
(9)

and Equation 8 becomes

∇ci =−
∫
S
∇

(
yi(

s
||s|| ) ·g(s)

)
I(x) dA, (10)

which we expand using the derivative of a product to

∇ci =−
∫
S

(
∇yi(

s
||s|| ) ·g(s)+ yi(

s
||s|| ) ·∇g(s)

)
I(x) dA.

(11)
The gradients of the geometric term is simply:

∇g(s) =
n(x)
||s||3

−3s (n(x) · s)
||s||5

. (12)

The gradient of the spherical harmonics yi can be eas-
ily derived analytically. It is convenient to use the Cartesian
formulation [VMK88], as we compute the translational gra-
dient in Cartesian coordinates. The recursion on Legendre
polynomials can also be exploited. We provide C code for
these terms online.

Note, that the integrand of Equation 11 is analytical. The
actual integration is performed numerically, as some quan-
tities (I(x), the normal n(x), and dA) come from sampled
representations (cube maps in our case).

4.2. Discussion

The gradient formulation in Equation 11 has the additional
advantage that one can tabulate the translational gradient of
the spherical harmonics for each texel location. By applying
the chain-rule and factoring 1/||s||2 outside this term, the
integrand can be precomputed for unit directions ω and does
not need to be recomputed.

In this paper we only show examples of objects with dif-
fuse surfaces and precomputed radiance transfer. Glossy sur-
faces [SKS02, SHHS03] as well as non-shadowed objects
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[RH01] can be incorporated the same way. Just the final dot-
product (Equation 3) is replaced with a different operation.

5. SH Coefficient Extrapolation using the Gradient

Rendering an object using the SH gradient, involves the fol-
lowing steps.

First, we pick a single sample location (usually the cen-
troid of an object) and render a cube map containing exit ra-
diances I(x) of the surrounding objects/emitters. Addition-
ally, we read back the depth-buffer, as we need to know
the distance r from p to x for each texel. In a separate pass
we render the emitters again but with color-coded normals,
which we also read back yielding n(x).

We go over each texel t of the cube maps and analyti-
cally evaluate the integrand. The numerical integration over
all texels provides the gradients ∇ci. The term dA can be
computed from the read-back data as follows:

dA = dωt
r2

n(x) ·ω , (13)

where dωt is the solid angle of the texel t, ω is the unit di-
rection from p towards x, and r is the distance from p to x.

At each vertex of the object, we now compute the esti-
mated coefficients:

c′i = ci +(∇ci ·d). (14)

These coefficients are then used to compute the final exitant
radiance using the dot-product between the coefficients c′i
and the cosine-weighted visibility coefficient vector V∗

p (see
Equation 3).

We currently compute the gradients on the CPU. The new
coefficients c′i as well as the final dot-product are computed
in a vertex shader on the GPU.

6. SH Coefficient Interpolation using the Gradient

If light is emitted from nearby or overlapping sources, a
single extrapolated sample might not be sufficient due to
parallax changes. Such a scenario is sketched in Figure 3.
If SH coefficients are computed only at object Oi’s center,
then vertex v would not be shaded properly, because object
Oi+2 is becomes visible from this v. Shading for objects with
larger extend requires interpolation between multiple sample
points in order to achieve faithful results [WH92].

In such a case, we choose N sample points p j over the
object (using Sloan et al.’s method [SKS02]). The incident
radiance coefficients c j

i as well as the gradient ∇c j
i is com-

puted for each sample point p j.

At each vertex of the object, we compute the estimated
coefficients as a weighted sum of all extrapolated samples:

c′i = ∑
j

w j

(
c j

i +∇c j
i ·d j

)
, (15)

Oi

Oi+2

v

Object Oi+1
occludes Oi+2

Object Oi+2 is visible
from vertex v

Object Oi exhibits shading
artifacts due to occlusion

Oi+2

Oi+1

Figure 3: Due to visibility changes, a previously hidden ob-
ject becomes visible.

where w j is a weight based on the distance between the ver-
tex position v and the sample point position p j . We use a
simplified version of Ward and Heckbert’s formula [WH92],
which was also employed by Sloan et al. [SKS02]:

w j =
(1/

∥∥v−p j
∥∥)b

∑i(1/‖v−pi‖)b . (16)

If only a few samples are used, then rendering can be done
in a shader on the GPU.

Note, that the gradient-based interpolation scheme could
also be used to improve interpolation of the irradiance vol-
umes technique of Greger et al. [GSHG98].

7. Results

For all the results, presented in this section we have used a 3
GHz PC, equipped with 2 GB RAM and an NVIDIA Quadro
FX 3000 (NV35) graphics board. The viewport size for all
renderings was 512× 512. The size of a single cube map
face, into which we read back the necessary data from the
frame buffer, was 64×64.

The strength of the gradient method can be illustrated by
moving an object below a small and local area light, see
Figure 4. In this example, we compute the original incident
lighting sample and the gradient only once at the center of
the head in the middle image. We then move the head from
left to right underneath the light. Shading is computed with
our gradient method based on the single sample. Shading re-
sponds correctly to the change of location.

Figure 5 shows a bird model lit by three different col-
ored area light sources. It compares a single sample with the
gradient-based technique and ground truth. The same com-
parison is made in Figure 1. These comparisons highlights
the quality improvement due to our method. One can see
that our gradient method produces results very similar to the
actual ground truth.

In Figure 6, we show three cube maps: cube map (a) is the
original sample; cube map (b) shows extrapolated incident

c© The Eurographics Association 2004.

334



T. Annen, J. Kautz, F. Durand, and H.-P. Seidel / Spherical Harmonic Gradients

Figure 4: Max-Planck model moved underneath a local emitter from left to right. The incident lighting is only sampled once at
the center of the head (middle image).

Figure 5: Bird model rendered with only a single sample (no
gradient), single sample with gradient, and ground truth.

lighting using the gradient method; cube map (c) is ground
truth. As can be seen, maps (b) and (c) are very similar.

(a)

(b)

(c)

Figure 6: Reconstruction of incident radiance at a vertex
v of the bird model. (a) original incident radiance sample
at center of the bird, (b) reconstructed sample at v (origi-
nal sample plus the gradient) (c) reference incident radiance
rendered v.

In Table 1, we list the rendering times for the previous
technique (no gradient) and our proposed technique (with
gradient). Performance is very similar for both methods, but
quality is increased by using our method.

In Figure 7, a tooth model is illuminated by partially over-
lapping emitters. Different renderings compare extrapolation
of a single sample against interpolation of eight samples.

single with
Model #vertices sample gradient

Planck 25K 23.8 19.7

Bird 32K 8.4 7.9

Tooth 2.5K 40.3 34.5

Table 1: Rendering times in frames per second for different
models and different techniques.

Rendering (b) uses a single sample with a gradient. It does
similarly well as eight samples without gradients (see (e)).
The only noticeable difference is the top of the tooth. Here
visibility changes should make it mainly blueish, but the
extrapolated single sample is purple. Interpolation of eight
samples with gradients (f) produces virtually the same result
as the reference image.

7.1. Discussion

In our experience, a single sample using the gradient is often
sufficient. Only for very nearby emitters—where “nearby”
means closer than the distance from the sample position
to the object’s bounding box (empirically determined)—we
have found that one needs multiple samples. In these cases
the 1/r2 falloff is very important and cannot be modeled by
our first-order approximation.

In the case of overlapping emitters and occlusion changes,
multiple samples are needed as well. We have only experi-
mented with a fixed number of samples for now. For all the
cases we have tried, up to 8 samples seem to be sufficient.

Figure 8 depicts the RMS error between ground truth and
extrapolated incident radiance from a single sample (tooth
example, see Figure 7). The error is shown for the red color
channel only. The red error curve includes the blue emit-
ter as a blocker, whereas the green error curve is computed
with the blue emitter removed from the scene (no occlusion
changes). As expected, the error is higher when occlusion
changes occur, but not significantly.
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(a) single sample (b) single gradient (c) ground truth

(d) eight samples (e) eight samples (f) eight gradients

Figure 7: Comparison of a single sample versus multiple
samples and gradients versus no gradients: (a) A single sam-
ple without gradient, (b) A single sample with gradient, (c)
Reference model, (d) Eight sample locations, (e) Interpola-
tion of eight samples without gradient, (f) Interpolation of
eight samples using the gradients.
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Figure 8: RMS error of extrapolated radiance for the tooth
example. The red curve includes occlusion changes, the
green curve does not (blue blocker removed from scene).

8. Conclusions

We have presented a method for efficient shading of ob-
jects that are lit with nearby area sources. We extrapo-
late/interpolate incident radiance based on a first-order ap-
proximation. To this end, we have derived an analytic for-
mula for the gradient, which can be efficiently computed at
run-time.

Using this additional information, we achieve results
close to a per-vertex reference while the additional cost is
small. Simple extrapolation has limitations in terms of accu-
racy, namely when extrapolation is done at locations far from
the initial sample position. Interpolation of multiple samples
maintains good image quality in these cases.

We would like to implement a robust and automatic
scheme for selecting sample positions in dynamic scenes.
New samples should be generated or removed based on the
spatial relationship between objects.

Furthermore, we would like to experiment with higher-
order Taylor expansions. This should allow even better qual-
ity without taking multiple samples of the incident radiance.
It would be interesting to find out at which order the compu-
tation of the Taylor expansion becomes more expensive than
taking multiple samples.
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