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Figure 1: A simulated piece of cloth is rendered at 15 FPS with soft shadows cast by a dynamic lighting environment. Images of an
animated hand are shown without shadows, with shadows using a diffuse BRDF (6.1 FPS), and using a glossy BRDF (6.0 FPS).

Abstract

We present a method for interactive rendering of dynamic models with self-shadows due to time-varying, low-
frequency lighting environments. In contrast to previous techniques, the method is not limited to static or pre-
animated models. Our main contribution is a hemispherical rasterizer, which rapidly computes visibility by ren-
dering blocker geometry into a 2D occlusion mask with correct occluder fusion. The response of an object to the
lighting is found by integrating the visibility function at each of the vertices against the spherical harmonic func-
tions and the BRDF. This yields transfer coefficients that are then multiplied by the lighting coefficients to obtain
the final, shadowed exitant radiance. No precomputation is necessary and memory requirements are modest. The
method supports both diffuse and glossy BRDFs.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and frame buffer
operations I.3.7 [Computer Graphics]: Color, Shading, Shadowing and Texture

1. Introduction

Lighting from area sources or from environment maps gen-
erate complex, soft shadows that are important for realistic
image synthesis. Shadows convey important information of
the configuration of the scene and contribute much to the
perceived quality of synthetic images. Unfortunately, most
shadow techniques [HLHS03] are limited to point-like or
small area light sources. In contrast, recent methods of pre-
computed radiance transfer (e.g., [SKS02]) are able to render
complex lighting effects due to dynamic lighting environ-
ments at interactive or even real-time rates. The techniques
are applicable only to rigid objects or pre-stored animations
due to long precomputation times.

Contributions. We present a method for interactive ren-
dering of self-shadowed, animated objects lit by dynamic,
low-frequency lighting environments. Our method requires
no precomputation, has modest memory requirements, and
is capable of rendering both diffuse and other BRDFs. In
particular, no prior knowledge of the animation is required.
Lighting environments are specified by environment maps,
and lighting is evaluated at the vertices of the model.

We introduce a hemispherical rasterizer for efficient com-
putation of visibility. We rasterize occluding geometry in a
small bitmap that contains binary visibility information. Our
technique rasterizes spherical blocker triangles, i.e., their
edges are curves in the planar visibility mask. Rasterized vis-
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ibility information is then used for computing transfer vec-
tors [SKS02] that are used to determine final shading val-
ues for vertices. While our method does not support inter-
reflections, our results show that it is possible to render self-
shadowed, animated models of a few thousand polygons at
interactive rates.

2. Related Work

There is a vast amount of literature on shadowing algo-
rithms. Most techniques are restricted to point-like or area
lights and cannot efficiently render shadows cast by arbi-
trary lighting environments. See the survey by Hasenfratz et
al. [HLHS03] and the references therein for an introduction.

Several techniques to speed up visibility com-
putation in off-line rendering have been proposed,
e.g. [HDG99, ARBJ03]. These do not easily lend to an
interactive implementation.

Environment mapping [BN76] and its derivatives render
reflections of dynamic, spherical incident lighting, but do
not account for shadowing. Modern methods can handle ar-
bitrary BRDFs.

Gibson et al. [GCHH03] present a method to place new
objects interactively into an acquired scene so that the new
objects correctly cast shadows onto the existing scene. The
incident lighting can be arbitrary as long as it remains static.

Wald et al. [WBS03] demonstrate a parallel ray-tracer that
is capable of rendering globally illuminated scenes at inter-
active rates, running on a cluster of computers. The key as-
pects are parallelism and optimal acceleration data structures
for ray-tracing. As building such structures takes up to a few
seconds even for small models, the method is too expensive
to be applied to interactively animated geometry.

2.1. Radiance Transfer

Here we briefly review precomputed radiance transfer,
which is the basis for our work. Assume that an object is
illuminated by distant illumination Lin(s), represented by an
environment map. The exitant radiance Lout,p(v) into direc-
tion v from a point p on the object is computed by

Lout,p(v) =
∫

Ω

Lin(s)Vp(s) fr(s→ v) max(0,np · s) ds,

=
∫

Ω

Lin(s)V∗
p (s,v) ds, with (1)

V∗
p (s,v) := Vp(s) fr(s→ v) max(0,np · s),

where Lin(s) is the incident radiance, Vp(s) is the visibility
function that has zero value for directions where the envi-
ronment cannot be seen due to self-shadowing and one oth-
erwise, fr(s→ v) is the BRDF, and np is the surface normal.
V∗

p (s,v) is the transfer function. Note that since the lighting
is distant, it is assumed to be independent of p.

Now we project the incident lighting and the transfer func-
tion into the orthonormal basis B with basis functions bi(s),

which yields coefficient vectors Lin and V∗
p(v). Sloan et

al. [SKS02] showed that computing the exitant radiance then
simplifies to the inner product of the two coefficient vectors:

Lout,p(v) = Lin ·V∗
p(v). (2)

We call V∗
p the transfer vector. Assuming static models and

a diffuse BRDF the transfer vectors are constants that can
be precomputed. The lighting is projected into the basis B
at run-time and exitant radiances are evaluated as above.
This enables shading static objects by time-varying, spher-
ical lighting environments, with soft shadows and even in-
terreflections using a more elaborate preprocess. Also non-
diffuse BRDFs are possible, but then transfer needs to be
captured by a transfer matrix instead of a vector. This neces-
sitates offline data reduction [SHHS03] for achieving real-
time framerates. A special case that avoids these problems is
rendering with a fixed viewpoint [NRH03].

Sloan et al. used the spherical harmonics (SH) as the basis
B, while Ng et al. used Haar wavelets. Spherical harmonics
are good for representing low-frequency lighting environ-
ments, since only a few coefficients are needed. See Sloan et
al. [SKS02] for an introduction. Wavelets are preferable for
higher-frequency lighting, since most of the energy of ordi-
nary environment maps is captured by a small number of co-
efficients. However, which coefficients carry most energy is
unknown at preprocessing time and thus the offline transfer
simulation needs to account for all basis functions.

James and Fatahalian [JF03] compute transfer vectors for
a sparse set of frames from a given set of animations. They
perform principal component analysis (PCA) on the data,
and interpolate solutions for intermediate frames in the low-
dimensional PCA basis. While the algorithm is able to ren-
der preanimated models in dynamic lighting conditions in
real-time, the precomputation times are prohibitively long.

3. Dynamic Radiance Transfer

We propose to compute the transfer coefficients on the fly.
In order to determine the coefficients V∗

p(v) for vertex p, the
hemispherical integral

V∗
p,i(v) =

∫
Ω

bi(s) (Vp(s) fr(s→ v) max(0,np · s)) ds (3)

needs to be evaluated. Evaluating the visibility function is
challenging, while the other terms are straightforward. Our
approach is to represent Vp(s) as a discrete binary image,
the visibility mask, where blocking geometry is rendered us-
ing a spherical rasterizer. After the rasterization is complete,
evaluation of V∗

p(v) is simple. We use 4th-order (25-term)
spherical harmonics as the basis B for all results in this pa-
per.

Our visibility rasterizer can also be used to integrate the
lighting directly, instead of integrating against the SH ba-
sis functions. Direct integration requires a higher-resolution
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visibility mask to suppress aliasing artifacts, and our tests in-
dicate that more computation is required to achieve compa-
rable quality. Another argument in favor of using SH trans-
fer coefficients is that if a model that has a diffuse BRDF is
static in some frames, the coefficients from previous frames
can be reused.

Rendering. For each vertex, we clear the visibility mask and
rasterize all blocking triangles into it. Then the transfer co-
efficients for the vertex are computed according to Equa-
tion 3, with the visibility term Vp(s) fetched from the vis-
ibility mask. After transfer coefficients have been evaluated
for all vertices that belong to front-facing triangles, exitant
radiances are determined according to Equation 2 and then
passed on to the GPU for rendering the image. The following
sections describe this process in detail.

3.1. Visibility Rasterization
Our visibility mask is a regular grid inside the unit disk. The
unit hemisphere, the domain of the visibility function, is pro-
jected down onto the disk by dropping the z coordinate. We
work in a local tangent frame of the vertex, so that the ver-
tex normal coincides with the z axis. This parameterization
amounts to a simple change of variables in the hemispherical
integral in Equation 3, and it is easy to show that it perfectly
importance samples the hemisphere according to the cosine
distribution. This parameterization directly implements the
well-known Nusselt analog.

Our method bears close resemblance to the hemicube al-
gorithm [CG85] for computing form factors. In fact, the
hemicube could be used for computation of the visibility
masks. The downside is that all blocker geometry would
need to be rendered five times (once for each face of
the hemicube), whereas our method produces a perfectly
importance-sampled result in a single pass. The single-plane
method for form factor computation [SP89] also requires
only one pass over the blocking geometry. However, uni-
form sampling of the projection plane would lead to poor
sampling on the hemisphere, since much of the area projects
to near the equator and occluders near the horizon will be
missed. Sillion and Puech circumvent these problems by us-
ing a more complicated hidden-surface removal algorithm.

Since the visibility function is binary and we do not need
knowledge of which surface is closest, a 1-bit frame buffer
is sufficient, and no depth sorting is required. We may thus
iterate through all blocker triangles in any order.

3.1.1. Rasterization of Blocker Triangles
When a blocker triangle has been determined to lie above
the tangent plane, the image of its spherical projection is ras-
terized into the visibility mask as follows (see Figure 2 for
illustration).

To determine which pixels belong to the image, we first
note that each edge of the triangle, together with the origin,
defines a plane. Now, a pixel of the visibility mask is inside

(a) (b)

(c) (d)

Figure 2: Principle of spherical rasterization. (a)-(c): Each
edge of the triangle defines a plane with the origin. For a
discrete set of planes, the pixels in the visibility mask that are
above the plane have been stored in a look-up table. (d): The
final image of the spherically projected triangle is obtained
from a bit-wise AND of the three masks from the look-up
table that most closely match the planes defined by the edges.

the image of the triangle if the point on the hemisphere that
corresponds to the pixel is above all three planes defined by
the edges.

Because of the low resolution of the visibility mask (32×
32), a lookup table of bitmasks can be precomputed for a
discrete set of planes. Each set bit in these masks indicates
that the corresponding point on the hemisphere is above the
plane. To determine the rasterized image of the triangle, bit-
masks that correspond to the three planes defined by the
edges are fetched from the table, and a bit-wise AND is per-
formed between them. The result is a coverage mask that has
set bits for the pixels inside the triangle. See Figure 2(d) for
an example. A similar algorithm using coverage masks for
conventional rasterization with straight edges has been de-
scribed earlier [FFR83]. Multiple occluder triangles are ras-
terized correctly by ORing the resulting masks of each tri-
angle to the visibility mask. This results in proper occluder
fusion.

For indexing the look-up table, we use a cube map pa-
rameterization of the normal vectors that uniquely define the
planes. With a 32× 32 bitmask and a 6× 128× 128 cube
map, the table consumes 12 MB of memory. Quantizing the
planes naturally decreases the accuracy of the rasterization.
We have found that these values give results that are visually
correct when used for computing transfer coefficients with
the 25-term SH basis.

3.2. Optimizations

This section describes a method for optimizing transfer co-
efficient evaluation and several techniques that we use for
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reducing the amount of geometry that has to be processed
by the rasterizer.

Downsampling the Visibility Mask. To reduce the num-
ber of samples when evaluating the transfer coefficients by
Equation 3 we first downsample the visibility masks in 4×4
blocks, so that we obtain a grayscale occlusion term from
the binary values.

Mesh Hierarchy. Naïve application of the visibility raster-
izer results in complexity proportional to the number of ver-
tices times the number of triangles, i.e. using all triangles
of the full resolution mesh is expensive. Fortunately, this is
not necessary since in smooth lighting environments block-
ers cast soft shadows unless they are close to the receiver.
Hence, more distant blockers do not need to be represented
accurately.

We use a simple two-level mesh hierarchy. In the vicin-
ity of a vertex we use triangles from the high-resolution
mesh, usually the one- or two-ring. For the remaining parts
of the model we use a coarser mesh. See Figure 3 for an il-
lustration. Triangles of the two meshes will often overlap,
which poses no problem, as the rasterization fully supports
occluder fusion. Mismatches between the hierarchies may
produce shading artifacts in regions where small features un-
dergo such deformations that the lower-resolution mesh can-
not faithfully represent the surface. The use of more complex
mesh hierarchies would help to avoid these rare cases.

Figure 3: A simple two-level mesh hierarchy. In the local
neighborhood of a vertex we use the high-resolution mesh.
More distant blockers are approximated by a low-resolution
version.

Hierarchical Culling. As an optional method for speeding
up the culling of triangles that cannot contribute to the visi-
bility masks, we cluster the geometry into a small number of
groups that consist of static sets of triangles. The bounding
boxes of the groups are updated as the animation progresses.
When rendering the visibility masks, the boxes are tested
against the horizon plane, and if a box is below the horizon,
none of the triangles in the group need to be rasterized.

In typical applications, e.g., characters in computer
games, the depth complexity of the animated models is so
low that using more sophisticated visibility culling methods

[COCSD03] is not expected to provide significant perfor-
mance improvements.

PVS. If prior knowledge of the animation is available, it is
possible to construct a potentially visible set (PVS) for each
vertex. This is done by analyzing the geometry visible to a
vertex in the animation frames in an offline preprocess. Such
PVSs, which may be static or time-dependent, are easily in-
corporated into the visibility rasterizer. As an example, we
have computed static PVSs for some test scenes. See Sec-
tion 4 for a comparison of rendering performance with and
without PVSs.

4. Results

First we present images of animated models rendered with
our technique. All tests were run on a dual 3.06GHz Intel P4-
Xeon. In all cases, changing the incident lighting does not in-
cur performance loss. Table 1 summarizes performance fig-
ures and the triangle and vertex counts of the models. In the
table, the average number of triangles denotes the number
of triangles that have to be rasterized when computing vis-
ibility for a single vertex. This number is greater than the
number of low-resolution triangles, since we also render a
small neighborhood of the high-resolution mesh.

Model Cloth Fight Chess Hand

#Vertices 1378 2978 1897 8636

#Triangles 2560 4806 3704 15854

#Lowres-Triangles 160 444 382 378

Avg. #Tris 236.4 448.8 378.8 414.1

Avg. #Tris (with PVS) – 99.5 73.9 49.7

FPS 15.5 4.9 7.8 2.6

FPS with PVS – 9.5 15.1 6.1

Average L2 error in V∗ 2.47% 7.93% 2.89% 3.82%

Table 1: Comparison of all models, timings, and errors in
the transfer coefficients.

Figure 1 shows three frames of a realtime cloth simula-
tion. Note how the wrinkles cause soft self-shadowing, and
how the cloth casts a soft shadow on the floor. The figure also
compares three renderings of a hand, the first without shad-
owing [RH01], the second with a purely diffuse BRDF and
the third with a slightly glossy Phong BRDF. Performance
loss due to the more complicated BRDF is negligible, since
evaluation of the SH functions dominates BRDF evaluation
in the integration.

A frame from the Fighting Man animation is shown in
Figure 4(a)-(b). The image produced by our method is com-
pared to a rendering where transfer coefficients are evaluated
by Monte-Carlo integration. Visible differences between our
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Figure 4: Images rendered with our method. (a) A frame rendered using our method. (b) The same model rendered using
ray-traced per-vertex visibility. (c)-(d) A chess scene in two different lighting environments.

Rasterization Integration Transform Other

Cloth 48.0% 23.5% 26.5% 2.0%

Fight 54.4% 19.4% 24.4% 1.8%

Chess 52.0% 23.8% 21.9% 2.3%

Hand 42.3% 35.2% 19.4% 3.1%

Table 2: Distribution of CPU time inside the shadow loop
(transform includes backface culling and view transforma-
tion of blockers).

technique and the accurate rendering are negligible. The er-
ror in the transfer coefficients is fairly small, as shown in Ta-
ble 1. The error is measured by average relative L2 error over
all vertices and many animation frames. This example also
shows that utilizing prior information of the animation yields
better framerates. Here, the number of blocker triangles pro-
cessed by the visibility rasterizer was reduced by roughly
75% by using a PVS computed from the animation.

Finally, in Figure 4(c)-(d), a simple scene with moving
chess pieces is illuminated with different environment maps.
In this scene the error in the coefficients is low and there is
no noticeable visual difference to the accurate rendering.

4.1. Discussion

In the following, we will discuss some properties and issues
of our method.

Scalability. The complexity of our algorithm is always pro-
portional to the average number of blocker triangles ×
number of vertices (see Table 1), i.e., assuming our low-
resolution mesh stays fixed, we can increase the resolution
of the high-resolution mesh at linear cost.

Our algorithm is mainly targeted for self-shadowing. If
multiple objects are required to cast shadows onto each
other, the complexity is increased. This quadratic increase
of computation can be avoided by processing one object

at a time, and by casting approximate inter-object shadows
by projecting coarse approximations of the other shadow-
casting objects onto the lighting environment used by the
object receiving the shadow. This leaves per-object compu-
tational complexity unchanged.

Per-Vertex Sampling. As we sample visibility on a per-
vertex basis, artifacts may occur as a result of undersam-
pling, e.g., contact shadows will “creep” from underneath
the areas in contact (see Figure 5). We point out that this
is an inherent limitation associated with sampling visibility
only at the vertices; the method of Sloan et al. [SKS02] and
per-vertex Monte-Carlo integration suffer from exactly the
same problem. By only computing lighting at the vertices,
we have deliberately chosen to sacrifice quality for speed.

Figure 5: Two frames of an animation showing undersam-
pling artifacts in a coarse mesh.

Distribution of CPU Time. As can be seen in Table 2,
roughly half of the CPU time is spent on rasterization. In-
tegration against the basis functions takes up about 30% of
the time. In all cases, the shadow rendering loop consumes
approximately 95% of total frame time. The rest of the time
is spent on dotting the transfer vectors against the lighting,
updating the vertex arrays and on GPU communication.

Granularity of Coverage Mask Table. The discretization
granularity of the plane equations depends on the resolution
of the visibility mask – the better the resolution, the more
densely we have to sample the plane space. Given that we
use a 32×32 mask, our 128×128×6 parameterization has
been chosen specifically as one that still gives results that are
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still visually indistinguishable from a finer granularity. Too
low a granularity results in noticeable artifacts. The granu-
larity has to be kept as low as possible, since increasing the
size of the plane LUT will slow execution down because of
more cache trashing.

Accuracy of Local Geometry. Theoretically, shadow fi-
delity may be compromised in configurations where the 3D
distance between triangles is small, but the corresponding
distance along the surface of the mesh is larger than the
one- or two-ring used for the vicinity of a vertex. However,
the choice of one- or two-ring seems to be a good and fast
heuristic, at least for the types of models and animations in
our tests. For more complex models, it should be possible
to avoid this problem altogether by using more complicated
spatial data structures. This is an interesting line of future
work.

Comparison to Hardware Rendering. To compare the
speed of our method against a possible GPU implementa-
tion of visibility rasterization, we rendered 32×32 visibility
masks as seen from each of the 2978 vertices of the Fighting
Man scene on an ATI Radeon 9800XT with depth buffer-
ing disabled. Using a vertex shader, the vertices were pro-
jected onto the unit disk in a fashion similar to our raster-
izer. Since GPUs do not support hemispherical rasterization,
we approximate the curved edges by subdividing the geom-
etry to contain 16 times as many triangles as in the origi-
nal low-resolution geometry. Performance with rasterization
only (no integration) was just 0.76 FPS. Even though the
result of this performance test does not seem to support at-
tempting a GPU implementation of our method, integrating
the transfer coefficients on the GPU would certainly be pos-
sible, if visibility information was readily available.

5. Conclusions and Future Work

We have presented a method for rendering dynamic objects
with self-shadows in time-varying lighting environments.
The method has interactive or even real-time performance
on models with some thousands of polygons, and supports
both diffuse and glossy BRDFs. No prior information of the
animation of the model is required, although such informa-
tion, if available, can be used for optimization. No previous
method has demonstrated such performance without prior
information on the animation. A new visibility rasterizer is
the key to interactive framerates.

Future work includes looking into ways of distributing the
computation between the CPU and the GPU, so that the GPU
could be utilized more efficiently. Of course, in scenarios
such as computer games the GPU would be used for ren-
dering background geometry while the CPU computes self-
shadowing using our method.
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