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Abstract
Models for animating the eyes of virtual characters often focus on making the face appear natural and believ-
able. There has been relatively little work in computer graphics that investigates the relevance of the objects of
interest (gaze targets). In this paper, a gaze animation model has been constructed that allocates visual attention
to relevant targets from objects that are within the virtual character’s field of view in an immersive 3D virtual
environment. Relevance is determined by proximity, eccentricity, changes in orientation and velocity of objects in
the virtual character’s environment. In this paper, two tasks were designed to test the relevance of the objects se-
lected by the gaze animation model during the tasks. Eye tracking data obtained from six human subjects provided
benchmark data for measuring the efficiency of the model in picking relevant objects. The gaze animation model
largely outperformed a random selection algorithm in predicting the real targets/objects of users’ interests within
the virtual environment.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Virtual Reality; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—
Animation; Simulation and Modeling [I.6.8]: Types of Simulation—Animation

1. Introduction

Autonomous Virtual Characters (AVCs) have to know when
and how to interact with the objects and other characters in
the virtual environment around them. The contents of their
surrounding environment should compete for the AVC’s vi-
sual attention, just as happens for humans in the real world.
Gaze animation models have been developed for the gener-
ation of naturalistic eye movement for virtual characters but
models are needed that allocate eye targets to relevant ob-
jects/characters within the virtual environment. In order to
build autonomous virtual characters, we must better under-
stand how the eyes perceive and react to stimuli in its envi-
ronment.

Itti et al uses machine vision to locate targets of interest
in virtual or real scenes [IDP03]. They developed a compu-
tational model that predicts the spatiotemporal deployment
of gaze onto any incoming visual scene. The avatar anima-
tion model is based on the neurobiology of attention but the
use of image processing algorithms to determine regions of
interest makes it computationally expensive. To avoid such
computational expense, we extract readily available infor-
mation in computer graphics environments (i.e. position and

orientation) and propose four top-down and bottom-up com-
ponents of visual attention (proximity, eccentricity, velocity
and orientation) to determine objects of interest, as opposed
to regions of interest. Grillon et al [GT09] used similar cri-
teria to simulate gaze behaviours for crowds but the model
lacked experimental validation.

The evaluation of previous gaze models [LBB02,
QBM08, MD09, MH07] have been on believability and re-
alism while object relevance has been largely ignored. This
research addresses that drawback by comparing the objects
of interest computed by the gaze animation model with ac-
tual human gaze data collected with an eye tracker. Crucially,
our model was constructed and evaluated in an immersive
3D virtual environment enabling a more naturalistic body
control. Lee et al [LKC08] and Hillaire et al [HLRC∗10]
used a similar evaluation method to evaluate their respective
models in a desktop virtual environment.

Yarbus’ work [Yar67] demonstrated that scan-path char-
acteristics such as their order of progression can be task de-
pendent. Therefore this paper concerns itself with compar-
ing human gaze behaviours with a gaze animation model
[OSS09] during free-viewing and goal-oriented tasks. The
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task has been designed to test the ability of the gaze anima-
tion model in detecting relevant objects within an immersive
3D virtual environment. To achieve this, a strategy was em-
ployed which allowed the effectiveness of the model to be
explored further by comparing with a simple random selec-
tion algorithm. This strategy provided a performance base-
line which a more intelligent approach would need to ex-
ceed. Section 2 describes the algorithms used in the paper.
Section 3 presents the experimental evaluation of the model,
while sections 4 presents the results and discussion. Finally,
section 5 presents the conclusion.

2. Background Work

2.1. Gaze Animation Model

The gaze animation model is designed to adapt to the com-
plex interaction within the scene. It considers varying avatar
behaviour and components of visual attention (i.e. proper-
ties of objects within the scene) to compute saliency scores
for all items within the field of view. The main input to this
model is the virtual reality database, which stores all the ob-
jects within the scene. The model determines the target ob-
ject by examining four criteria of the objects within a field of
view. The horizontal field of view (fov) is set to 70◦ for the
eye (i.e. a maximum angle of 35◦ towards the left or right)
while the vertical fov is set to 50◦ (i.e. a maximum angle of
25◦ upwards or downwards).

1. Given the user’s eye, E = (ex,ey,ez), and the object,
Oi = (ox,oy,oz), the proximity, p is computed from the
euclidean distance between the two 3D points as:

p =
√

(ex−ox)2 +(ey−oy)2 +(ez−oz)2, (1)

A gaussian curve fit of the proximity is computed from:

y = f (x) =
n

∑
i=1

aie

[
−
(

x−bi
ci

)2
]
, (2)

The Gaussian model is used for fitting peak and was gen-
erated from eye tracking data of twelve users [OSS09].
It is given by the equation 2 where ai are the peak am-
plitudes, bi are the peak centroids (locations), and ci are
related to the peak widths, n is the number of peaks to
fit, and 1 ≤ n ≤ 8. Proximity, p is fitted with the values
a1 = 19.11, a2 = 6.68, b1 = 1.83, b2 = 3.27, c1 = 0.87
and c2 = 1.7. The saliency score, Sp of the object’s prox-
imity is also computed from equation 2 where x = p and
is normalised by dividing by a1 (i.e. peak amplitude) to
keep the range between 0 and 1.

2. The eccentricity, θ defined as the magnitude of the dot
product is computed as:

θ = arccos
(

u · v
|u||v|

)
, (3)

where u = (ux,uy,uz) is the head-centric vector and v =
(vx,vy,vz) is the direction vector of the eye to the object,

(ex,ey,ez)− (ox,oy,oz). A gaussian curve fit of the ec-
centricity is computed from equation 2. Eccentricity, θ is
fitted with the values a1 = 40.13, a2 = 8.09, b1 = 14.39,
b2 = −14.05, c1 = 4.18 and c2 = 40.5. The saliency
score, Sθ of the object’s eccentricity is computed from
equation 2 where x = θ and is normalised by dividing by
a1 (i.e. peak amplitude).

3. velocity, v is defined as the rate of change of the object’s
location and is computed as:

v =
∆Oi

∆t
, (4)

where ∆Oi is the euclidean distance between an object’s
location at time t1 and its location at time t2, and ∆t is
the time interval of the frame duration. The normalised
saliency score, Sv of the object’s velocity is given by v/20
(i.e. a reasonable maximum speed of 20 feet per second).

4. orientation, ∆q defined as the change in object’s angular
position over time and is computed as:

∆q = 2 arccos(q1
−1.q2) (5)

where quaternions q1 and q2 represent two orientations at
time t1 and t2 respectively. The normalised saliency score,
S∆q of the object’s orientation is given by ∆q/180 (i.e. a
reasonable maximum change in orientation of 180◦).

The saliency of each object within the field of view is
computed from a summation of the normalised saliency
scores.

SO = Sθ +Sp +Sv +S∆q, (6)

The summation SO is then used to guide attention, as the se-
lected target in each frame will become the object with the
highest overall saliency score. A fixation towards the par-
ticular object will then occur. The fixation duration for the
eye is limited to 300ms as long as the target object remains
within the field of view (according to Henderson’s average
duration during scene viewing [HH99]).

The eyeball is interpolated over 6 frames by fitting to
an exponential velocity curve as presented in Lee et al
[LBB02], [VGSS04]

y = 14e[−π/4(x−3)2], (7)

where x = f rame{1,2,3,4,5,6}. The eye is moved to inter-
mediate positions within each frame to produce a smooth
movement during saccades.

In order to decrease the probability of the model contin-
ually choosing centered objects, the random selection algo-
rithm described in section 2.2 computes the target object on
25% of the time while the gaze animation model computes
the target object on 75% of occasions. It also means that
the eye is animated even when the virtual character is idle.
However this introduces a level of unpredictability into the
model, necessitating further scrutiny of the model’s predic-
tive capabilities in this paper.
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2.2. Random Selection Algorithm

The random algorithm determines the target object by pick-
ing randomly from the objects within the field of view (same
as above). Saccades and fixations are randomly distributed
between objects within the current field of view. Thus, as
users move their heads, potential targets enter and exit the
field of view, and new saccades and fixations will be gener-
ated. Fixation duration on the objects of interest are deter-
mined by a random sampling method which is varied by the
head motion.

3. Experiment

In order to determine the accuracy of the eye-gaze model
in picking relevant objects, the gaze model and the random
selection algorithm are compared to a benchmark data gath-
ered from tracked gaze.

1. Tracked gaze: head mounted mobile eye trackers were
worn by each participant as they performed the task.

2. Gaze Model: as described in section 2.1.
3. Random Selection Algorithm: as described in section 2.2.

We hypothesize that the tracked gaze data will match
more closely with the discriminatory gaze model data when
compared to the non-discriminatory random data. Perfor-
mance was measured in two scenarios (Figure 1):

1. Goal-oriented task: An object manipulation task (i.e.
solving a cubes puzzle) was designed. In this scenario,
participants were instructed to solve a puzzle on their own
involving eight cubes with various colours on each side,
and to arrange them into a larger cube such that each side
would display exactly one single colour.

2. Free-viewing task: A town navigation scenario (walking
through a large town scene) was desinged and the same
participants were instructed to explore the town environ-
ment without any specific goal in mind.

3.1. Data Collection

Data was collected from six naïve participants performing
the two tasks. Both tasks took an average of 5 minutes
each. The eye behaviour of the users was captured within
an immersive virtual environment platform (CAVETM -like
system) [WRM∗08] operating at 60fps. During both ses-
sions, the user wore a head tracker and held one hand tracker.
The user was also calibrated with a head-mounted mobile
eye tracker to drive avatar gaze in real-time. Binocular eye-
trackers from Arrington Research, Inc. were mounted on
the CAVE’s CrystalEyes R©3 shutter-glasses. Log files were
recorded for each of the two virtual environment scenarios
described above. The hand tracker was used as an input de-
vice in the puzzle scene to manipulate objects while the joy-
stick on the hand tracker was used to navigate around the
town. The logfiles recorded the gaze targets for the tracked
gaze, gaze animation model and the random selection algo-
rithm.

Figure 1: Town Navigation and Cubes Puzzle Scenes.

Given the participants’ mapped eye and head position, ray
casting or surface intersection tests enabled an accurate esti-
mation of the object of interest for the tracked gaze in each
frame. As participants performed the task wearing the eye
tracker, two seperate background processes computes the
gaze targets for the gaze animation model and random se-
lection algorithm respectively. This enabled comparison of
the gaze targets in terms of the relevance of the prediction
and the duration of fixations during the session.

4. Results and Discussion

In the town navigation scenario where there were 147 possi-
ble targets with an average spacing between targets of 200.38
units and average size of 49.79 units. The cubes puzzle sce-
nario had 78 possible targets (13 cubes with 6 surfaces each)
with an average spacing between targets of 2.94 units and an
average size of 1.18 units. Each scene had different proper-
ties: targets were larger and more spaced out in the naviga-
tion scenario unlike the cubes puzzle scenario.

In order to assess the relevance of the model’s prediction,
the real gaze targets of the tracked gaze for each participant
was compared with the gaze targets computed by the gaze
animation model and the random selection algorithm respec-
tively. Figure 2 indicate the extent (as a percentage propor-
tion of the task duration) to which the eye tracker and the
gaze animation model produced gaze at the same target ob-
jects in the environment, compared with the extent to which
the eye tracker and the random selection algorithm produced
gaze at same targets. Generally, the gaze animation model
mostly outperforms the random selection algorithm except
on two sessions in the goal-oriented cubes puzzle task and
one session in the free-viewing town navigation task. It must
be pointed out that the percentages are very low, less than
10%. The problem is that we can’t know the particular vi-
sual strategy of the participants. However, the random se-
lection algorithm provided a performance baseline that the
gaze animation model needed to exceed. Figure 2 (naviga-
tion) in particular shows significant improvement in the time
spent looking at the same objects as the user. It is particu-
larly notable from a subjective point of view that the random
selection algorithm is simply implausible in this case.

A paired t-test on the proportion of time that model’s tar-
get prediction equals tracked gaze target shows that in the
Town scenario, the gaze model had a better performance
than random (p<0.04). However there was no significant
difference between the gaze model and the random one
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Figure 2: Proportion of time that model’s target predic-
tion equals tracked gaze target. Left:Town Navigation (free-
viewing task). Right: Cubes Puzzle (goal-oriented task).

(p=0.18) in the Cube scenario. A test of the residuals of the
models does not reject the hypothesis of normality. The gaze
model’s prediction clearly outperformed the random algo-
rithm’s prediction in the free-viewing town navigation sce-
nario and this is likely attributed to a poorer performance
of the random selection algorithm when compared with the
goal-oriented cubes puzzle scenario. The wider spacing of
the targets and increased movements due to the navigation
may also have increased the chance that irrelevant random
gaze targets are selected while the character is on the move.

Figures 3(b) and 3(a) show a comparison of the fixa-
tion durations along with the spread for all participants. The
500msecs peaks in the fixation durations of the random se-
lection algorithm was evident in both the free-viewing and
goal-oriented tasks. A Jarque-Bera test rejected the normal-
ity of the tracked (p<0.01) and the random data (p=0.02),
however using the log value of the data eliminated this prob-
lem. A paired t-test rejects the equality between the log value
of the random and the tracked data (p<0.01) but not between
the log value of the model and the tracked data (p=0.89).
This shows that the random data is significantly different
from the tracked data, but there is no statistical significance
between the model and the tracked data. On average, the
gaze model’s peak is reduced but it clearly shows that the
fixation duration can be tuned and improved further to match
with tracked gaze data.

5. Conclusion

Although the gaze animation model was not built specifi-
cally for a specific environment, task or user, this study has
shown that the model generally seems to try to adapt reason-
ably well in explorative mode. The results identify areas for
further improvements, particularly goal-oriented tasks. The
question of how to weight the saliency criteria for a better
performance remains a matter for further research. Indeed
the spread of the fixation durations clearly need to be ad-
justed by varying the fixation duration threshold rather than
the current limit of 300ms.

The improved performance of the gaze animation model
relative to the random selection algorithm in the free-
viewing task highlights a promising area to explore in cre-
ating believable virtual characters. Future work will concen-
trate on including more parameters (such as shape or size
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Figure 3: Comparisons of fixation duration

of objects), adapting the model to drive the head and auto-
matic navigation of a virtual character. This research moves
us towards the goal of building autonomous virtual charac-
ters that know when to interact with objects and other virtual
characters in the environment around them.
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