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Abstract

In this paper we present a practical method for reducing the space when searching for point patterns in optically
tracked virtual reality applications. The method uses a predictor to estimate the future position of a point. The
key idea is to define a metric that determines the quality of the predictor, and use this metric to construct a 3D
region around the predicted position of each point. The size and shape of the 3D region is based on the kinematic
properties of the predicted point. The 3D region is projected into 2D to obtain the required search window.
The contribution of the paper is that the search space can be reduced substantially by making use of adaptive
window shapes and sizes.
Keywords: optical tracking, feature detection, search spaces.
CR Categories and Subject Descriptors: I.3.1 [Computer Graphics]: Input devices; I.3.6 [Computer Graphics]:
Methodology and Techniques;. I.4.8 [Image Processing and Computer Vision]: Scene Analysis;

1. Introduction

Optical tracking for Virtual and Augmented Reality can pro-
vide a valuable alternative over other tracking methods like
magnetic, gyroscopic, and mechanical trackers. Advantages
of optical tracking are that it allows for wireless ‘sensors’,
it is less susceptible to noise, and it allows for many objects
to be tracked simultaneously. To avoid complex and compu-
tationally expensive image processing, optical tracking sys-
tems often use specific markers that can easily be detected
in an image. Several systems use retro-reflective material in
combination with infra-red lighting. The image processing
algorithm then simply comes down to finding light blobs in
an otherwise dark grayscale image. These blobs however, do
not contain any information for identification, i.e. in the im-
ages it is not known which blob of pixels belongs to which
marker.

A common approach in optical tracking of interaction de-
vices is to equip the devices with a pattern of retro-reflective
markers in a known 3D configuration. In a previous paper,
we introduced a method for tracking marker patterns using
projective invariant properties 1. Point patterns are searched
in a cloud of points and invariant properties are used to com-
pare the patterns to a description of a model pattern in a

database. The pattern best representing the model pattern is
chosen. The 3D pose of the interaction device can be recon-
structed if a pattern is found in the images of both cameras.

Searching markers patterns, however, requires an exhaus-
tive search over all possible point positions in the 2D image.
This is a combinatorially explosive operation and cannot be
performed in real-time when a large number of markers are
used. For example, an exhaustive search for a K point pattern

in an image of N points will require
(

N
K

)

combinations

to be examined. For this reason, many techniques have been
introduced to reduce the search space. These techniques usu-
ally place a small window around the estimated position of
the pattern, and search for the pattern using only the points
in the window. The number of combinations to be examined
would decrease if the number of points in the search window
is less than the total number of points. If the pattern cannot
be found in the search window (i.e. a ’miss’), then an exhaus-
tive search over all points is required. The problem of defin-
ing an appropriate search window is characterized by two
factors: the probability the pattern is detected in the window,
and the number of points in the search window. These two
measures are intimately correlated; increasing the probabil-
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Figure 1: Left: A pen and cube device in the Personal Space Station. A 4 point collinear pattern is pasted on a 8 cm rod that is
mounted on a plastic pen. Six 5 point coplanar patterns are pasted on each side of a wooden cube (held in hand). A second cube
rests on the table top. Right: The captured images from the left (top image) and right (bottom) cameras contain 42 and 46 blobs
respectively. Lines in different colors are used to highlight found patterns. The frame rate for such point clouds is approximately
43 frames per second.

ity of detection (by increasing window sizes) will inherently
increase the number of points in the search window.

In this paper, we introduce an adaptive method for the def-
inition and placement of a search window in a 2D image of
highly cluttered and noise corrupted data. The method uses
a predictor to estimate the future position of a point. The key
idea is to define a metric that determines the quality of the
predictor, and use this metric to construct a 3D region around
the predicted position of the point. The size and shape of the
3D region is based on the kinematic properties of the pre-
dicted point. The region is then projected into 2D to obtain
the required search window.

We use our adaptive method for optical tracking in the
Personal Space Station (PSS), a near-field VR/AR environ-
ment 2. In this system, a head tracked user looks into a mirror
in which stereoscopic images are reflected. Using graspable
interaction devices, the user reaches under the mirror to in-
teract directly with virtual objects. The interaction volume is
approximately 50 cm x 50 cm x 50 cm and is illuminated by
rings of IR LEDs mounted closely around the camera lenses
(figure 1 left). Retro-reflective markers are pasted onto the
interaction devices. IR light is reflected by the markers into
the lens such that, after thresholding, blobs of white pixels
can be found in the acquired image (figure 1 right).

The contribution of the paper is twofold. First, we show
that using a search window with constant size and shape does
not suffice in highly cluttered and noise corrupted data. Sec-

ond, we show that the search space can be reduced substan-
tially by making use of adaptive window shapes and sizes.

The paper is organized as follows. In the next section we
discuss related work. In section 3 we give a description of
the steps involved in the construction and projection of the
3D region. In section 4 we show how the method performs
on a selection of interaction tasks. Finally, in section 5 we
discuss the pros and cons of the method.

2. Related Work

Optical tracking systems using retro-reflective markers at-
tached to an input device have been developed in other
VR/AR systems; eg. Dorfmüller 3 and Ribo et al. 4. Both sys-
tems first solve the correspondence problem between points
in left and right image of the stereo vision system. Fixed 3D
distances between points in a triangle structure are used to
resolve ambiguities that arise after correspondence problem.
A best fit method is used on all distances of 3D-points to find
the sought triangle. Both systems use the notion of a search
window to speed up search; a rectangular window with a
constant width and height is positioned at the point’s 2D po-
sition in the previous image. Our adaptive method differs
from the above mentioned approaches in two ways. First,
the size and shape of the search window is not of constant
width and height. Instead, each search window around the
point has a unique shape and size based on the kinematic
properties of the point. Second, the position of the search
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P: Pattern Frame

C: Camera FrameD(t): Device FrameM: Model FrameW: World Frame

T T (t)
MDWM

Figure 2: Frames of reference.

window is computed by prediction methods on the 3D refer-
ence frame of the input device itself. In this way, prediction
techniques can make use of the device’s angular velocity and
acceleration. This information is not available if prediction
is performed solely on 2D information.

A different approach can be taken by integrating magnetic
and optical trackers 5, 6. Magnetic trackers are fast but inac-
curate while optical trackers can be slow when features are
complicated to process. By combining the two trackers, a
rough estimate of the position of a sensor is obtained from
the magnetic trackers and the optical trackers use this posi-
tion to determine a window to search for a feature in the im-
age. Integrating magnetic trackers in the PSS is not an option
for a number of reasons. First, the PSS is a compact desktop
environment in which the monitor will cause magnetic in-
terference. Second, multiple interaction devices should be
tracked simultaneously. Attaching magnetic sensors to each
device would result in many (intertwined) wires. Also, blob
detection is a simple operation which can be done fast. No
computationally expensive image processing is necessary.

Considerable research has been done in filtering and es-
timation using an Extended Kalman Filter and maximum
likelihood estimation. For example, Extended Kalman Filter
have been used to predict head positions in augmented real-
ity applications 7, 8. The power of Kalman filtering is that it
can estimate future events even when the precise nature of
the modeled system is unknown. Maximum likelihood for-
mulations have been used to describe robust measures and
efficient search strategies for edge template matching 9. An
advantage of uncertainty estimation techniques is that they
allow pattern selection to be performed by choosing points
that minimize the localization uncertainty. It is beyond the
scope of this paper to give a detailed comparison of these
techniques. However, we observe that the speed of input
devices are more erratic and can far exceed those of head
movements, and it is not clear if models can be defined that
perform will on cluttered images. As such, it is not clear how
well these techniques perform in the PSS environment. In
section 5 we will discuss the effects of using a better predic-
tor and maximum likelihood estimators.

3. Method

We give a description of the construction and placement
of a search window in highly cluttered and noise corrupted

data. † The method is described in five steps: predict the po-
sition and orientation of each device, predict the position of
all points in each device, define a metric that determines the
’quality’ of the prediction, construct a 3D region around each
point, project the region into 2D.

Device and Point Kinematics

The frames of reference in a PSS environment are shown
in figure 2. The world frame of reference W and the two
camera frames of reference C are at an arbitrary but fixed
location in the working volume. The model frame defines
the positions of all patterns on the device, which is placed in
the origin and aligned with the axes of the model frame. The
model frame and the world frame are related by a transfor-
mation matrix TWM , that, for simplicity and without loss of
generality, we set to the identity matrix I. The pattern frame
of reference P is defined with respect to the model frame
M. Each point is defined with respect to the point pattern
frame of reference. Point patterns can consist of 4 collinear
points or 5 coplanar points. A collinear pattern is used to re-
construct the position and direction of an interaction device
whereas a coplanar pattern is used to reconstruct the com-
plete 6D pose.

In a previous paper, we have shown how to use projec-
tive invariants to efficiently identify point patterns using two
calibrated stereo 2D images 1. Given an identified point pat-
tern, the pose of the device frame D(t) can be reconstructed
by using epi-polar geometry to compute the 3D position and
orientation of the pattern frame with respect to W and ap-
plying a pattern to device frame transformation to the found
pattern frame using the model frame and the transformation
matrix TMD(t).

The computed position and orientation of the device and
the computed positions of the points are called measured
positions and orientations and are all relative to W . We de-
note measured device and point positions as XD(t) and X(t).
Measured device orientations are denoted as θD(t).

The kinematics model of a device is captured through the
equations:

XD(t +∆t) = XD(t) + ẊD(t)∆t +
1
2

ẌD(t)∆t2

† The appendix gives a table of symbols used in the equations.
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and

θD(t +∆t) = θD(t) + θ̇D(t)∆t +
1
2

θ̈D(t)∆t2

Kinematics of a point is captured through the equation:

X(t +∆t) = X(t) + TMD(t +∆t)Xmodel

where TMD(t +∆t) is the 4x4 transformation matrix describ-
ing the transformation from model frame to the device frame
D(t + ∆t) and is defined by XD(t + ∆t) and θD(t + ∆t), and
where Xmodel is the position of the given point in the model
frame.

The kinematics equations are used to predict the position
of a point at time t + ∆t given the measured position and
orientation of the device at time t. The predicted position of
a point is denoted as X̂(t +∆t).

Predictor quality

The predictor quality is a metric that provides an indica-
tion of how well aspects of the predictor perform at a cer-
tain moment in time. Predictor qualities can be defined for
position, velocity, acceleration, angular velocity and angular
acceleration.

We only use the velocity and accelerator predictor quality.
The velocity predictor quality at time ti is defined as the av-
erage difference between the predicted and measured point’s
velocity within a given history of measured points; i.e.

ηv(ti,H) =
∑i

j=i−H+1 ‖Ẋ(t j)−
ˆ̇X(t j))‖

H
where H is a constant denoting the number of samples in the
history and

ˆ̇X(t j) =
X̂(t j)−X(t j−1)

t j − t j−1

The accelerator predictor quality is defined as

ηa(ti,H) =
∑ j

j=i−H+1 ‖Ẍ(t j)−
ˆ̈X(t j))‖

H

with ˆ̈X(t j) defined analogous to ˆ̇X(t j). In the current imple-
mentation H is set to 5.

Note that ηv and ηa approach zero when the predictor be-
haves well, while higher values of ηv and ηa imply bad pre-
dictions.

3D Region Construction

A 3D region is defined by constructing an ellipsoid around
each predicted point. Geometrically, the ellipsoid is centered
at the predicted point position X̂(t + ∆t), with its axes de-
fined by the direction of the velocity ˆ̇X and the component
of the acceleration ˆ̈Xn normal to the velocity, see figure 3.
The length of the axis in the direction of ˆ̇X is proportional

to ηv + ηa
‖ ˆ̈Xt‖

‖ ˆ̈X‖
, i.e. the part of the acceleration tangent to

ˆ̇X also contributes to the length of the region. Similarly, the
length of the axis in the direction of ˆ̈Xn is proportional to

ηa
‖ ˆ̈Xn‖

‖ ˆ̈X‖
.

��� ��� ���� ����� ���
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Figure 3: The 3D region is defined as an ellipsoid around
the predicted point position X̂(t + ∆t). Its axes are in the
direction of the predicted velocity and the component of the
acceleration normal to the velocity. The length of the axes
are proportional to ηv and ηa.

Analytically, the 3D region spanned by the ellipsoid is de-
fined as

x2

a2 +
y2

b2 +
z2

c2 < 1

a = 1
2 c(ηv +ηa

‖ ˆ̈Xt‖

‖ ˆ̈X‖
)+ ε

b = 1
2 c(ηa

‖ ˆ̈Xn‖

‖ ˆ̈X‖
)+ ε

c = ε

where c is a scaling parameter and ε denotes the noise at the
predicted point position.

The constant ε is used to estimate the noise. More accu-
rate would be to model the static and dynamic aspects of
the noise as a function over the working volume (for exam-
ple, see 7). Note that when the predictor quality is high (i.e.
ηv and ηa approach 0) the shape of the region approaches a
sphere defined by the amount of noise in the region.

Our implementation uses only the constructed 3D region
based on the translation position predictor. In general, the
region would also depend on the orientation predictor. This
region could be parameterized with predictor quality met-
rics (i.e. ηθ̇ and ηθ̈). The shape of the constructed region
based on an orientation predictor would resemble a patch of
a sphere.

Region Projection

Although the constructed region can be projected onto a
2D ellipse, the implementation fits a bounding box around
the ellipsoid and projects the bounding box onto 2D (see fig-
ure 4).

A 2D region is constructed by projecting all 8 points of
the bounding box and computing the convex hull of the pro-
jected points. It can easily be seen that the convex hull is a
polygon with 4 or 6 sides. Finding points in the region is
then easily done by a point-in-polygon test.
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Figure 5: Point velocity over time for three interaction tasks.

Set 1 Set 2 Set 3

adaptive
10x10
20x20
40x40

µhits %miss

3.54 4
0.62 80
1.64 66
4.39 31

µhits %miss

3.37 8
1.12 60
2.79 24
4.82 4

µhits %miss

3.47 13
1.39 73
4.05 29
7.41 10

Table 1: The adaptive method is compared with using a constant window size of 10x10, 20x20 and 40x40 pixels. Average
number of points and percentage of misses tabulated for each dataset.

Bounding box around the 3D region

Projection

2D Image plane

Figure 4: A bounding box of the ellipsoid and its projection
onto the 2D plane with the convex hull.

3.1. Algorithm Summary

The complete algorithm is summarized in the following
steps:

foreach device :

1. predict the position and orientation
2. determine predictor quality measures ηv and ηa
3. foreach point ∈ device :

a. construct 3D region
b. project region onto a region of the 2D image
c. use the projected region as the 2D search window

It should be noted that many optimizations can be made to
this algorithm. For example, instead of constructing the pre-
dicted regions of each marker, only those markers that are
predicted to be visible by the cameras should be taken into
account. Visibility is easily computed since the predicted
pose of each device is known.

4. Results

The adaptive method was run on three recorded motion
datasets that are considered representative of interaction
tasks in the PSS. The first dataset consists of mostly 3D
translations, resulting from simple positioning tasks. The
second dataset consists of mostly 3D rotations which result
from orientation tasks. The third dataset consists of a com-
bination of translations and rotations. Figure 5 plots the ve-
locity of a point for each recorded dataset. From the plots it
can be seen that the velocity profile is very capricious.

Table 1 compares the adaptive method with three constant
window sizes for each dataset. A window size of 10x10,
20x20, and 40x40 pixels was used. The average number of
points in the search window and the percentage of misses
is tabulated. The table illustrates the trade-off in finding an
appropriate search window: when the window size is small
(10x10 pixels), the number of misses is high. On the other
hand when the window size is large (40x40 pixels), the num-
ber of additional points is high.

With respect to the percentage misses, the adaptive
method is competitive with window sizes of 40x40. The
adaptive method is superior to window sizes of 10x10 and
20x20. With respect to the number of points in the window,
the adaptive method is superior to window sizes of 40x40,
but usually performs less than window sizes of 10x10 and
20x20.

From this table it can be argued that the adaptive case per-
forms better than 10x10 and 20x20 cases since the percent-
age of misses is far less. Also, the adaptive case performs
better than 40x40 case since the number of points in the win-
dow is clearly less, while the percentage misses is similar.
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Set 1 ηv < 0.50 ηv < 0.33 ηv < 0.25

adaptive
10x10
20x20
40x40

µhits %miss

3.41 7
0.81 88
2.09 69
5.42 28

µhits %miss

3.20 6
0.99 52
2.69 37
6.14 5

µhits %miss

2.69 2
1.35 16
3.46 9
5.69 0

Table 2: The adaptive method is compared with using a constant window size of 10x10, 20x20 and 40x40 pixels. Average
number of points and percentage of misses tabulated for each dataset.

Figure 6 plots the predictor quality ηv (top) and the area of
the projected 3D region in pixels (bottom) for the translation
task (left plot in figure 5). The predictor quality fluctuates
greatly, which indicates that the predictor has difficulty in
predicting the point velocity. The area fluctuates over time
between 100 and 550 pixels. The plot profiles in figure 6 are
correlated. High values for ηv result in large 3D regions.
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Figure 6: ηv (top) and area of the projected 3D region in
pixels (bottom) over time.

Table 2 compares the adaptive method with constant win-
dow size when ηv is low. The average number of points
in the search window and the percentage misses are com-
puted only when the predictor quality is less than 0.50, 0.33
and 0.25. With respect to the percentage misses, the adap-
tive method is competitive with window sizes of 40x40. The
adaptive method is superior to window sizes of 10x10 and
20x20. With respect to the number of points in the window,
the adaptive method is superior to window sizes of 40x40.

From the table it can be seen that the adaptive method
performs competitive even for cases when a better predictor
is used. From this table it can be argued that the adaptive
case performs better than 10x10 and 20x20 cases since the

percentage of misses is far less. Also, the adaptive case per-
forms better than 40x40 case since the number of points in
the window is clearly less, while the percentage misses is
similar.

5. Discussion

In the previous sections we have described a method for
predicting a search window size and shape in cluttered and
noisy data. The key idea is to define a quality of the predictor
metric. The metric to construct a 3D region around the pre-
dicted position of each point. The required search window is
constructed by projecting the 3D region onto image space.

The results show that the method performs favorably com-
pared to search windows of constant size, even when the
good predictors are used.

We now discuss some pros and cons of the method:

• Impact on performance.
The adaptive method introduces an additional perfor-
mance penalty to compute the region and its projection.
To discuss the impact on the total performance, we an-
alyze the trade-off between exhaustive search and local
search for a pattern.
Exhaustive search for a K point pattern in a cloud of N
points will require

(

N
K

)

=
N ·N −1 · ... ·N −K +1

K ·K −1 · ... ·1

combinations to be examined. Each combination must be
checked with a model pattern in a database, and the com-
bination best representing the model will be chosen. This
is combinatorially explosive and cannot be performed in
real-time when a large number of points are used.
The number of combinations examined when using search
windows is:

K

∏
i=1

Ni = N1 ·N2 · ... ·NK

where Ni denotes the number of points in each search win-
dow of the K point pattern. If Ni << N then the number
of combinations will be significantly less in the case of
search windows.
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For all test cases the performance of the adaptive method
is never worse than that of a constant window size and for
most cases it gives superior performance. Tables 1 and 2
shown that the average number of points in a 40x40 win-
dow is at least 30 percent more than in an adaptive win-
dow.

• A practical solution.
As was discussed in the related work, an Extended
Kalman Filter or maximum likelihood estimation could
be used to implement a predictor or to estimate 3D confi-
dence regions based on probabilistic formulations. A bet-
ter predictor would increase the predictor quality metrics
(i.e. decrease ηv and ηa) and decrease 2D search window
area size. A probabilistic formulation of the 3D region
would allow for searching strategies to be implemented
based on confidence levels. Also, we have defined the 3D
region based on the translation position predictor quality.
In general, the region would also depend on the orienta-
tion predictor quality.
In this study we have chosen for a very simple predictor,
a geometric method for the construction of the 3D region,
and an simple projection scheme to obtain search win-
dow. Hence, the ’practical solution’. It is not clear what
the impact would be if Kalman filters or probabilistic for-
mulations were used. For example, table 2 shows that the
adaptive method still gives superior performance in case
the predictor quality is high.

• Optimizations.
We have used the adaptive method to reduce the space
for searching features efficiently in highly cluttered and
noise corrupted data. An interaction device is constructed
from one or more marker patterns and each pattern is con-
structed from four or five markers.
The adaptive method can be improved in two ways.
Firstly, projective invariant properties of the point patterns
can be used to determine the position of other search win-
dows in the pattern. In this way, only one search window
needs to be defined and the position and orientation of
other search windows in the point pattern will be fixed.
Secondly, by making use of the device, point pattern, and
point hierarchy, all points belonging to the device can be
removed once a point pattern on the corresponding device
is found. Both of these optimizations would reduce the
number of points in the image substantially.

6. Conclusion

In this paper we have presented a practical method for reduc-
ing search space for tracking point patterns in optical track-
ing. The key idea is to define a metric that determines the
quality of the predictor, and use this metric to construct a 3D
region around the predicted position of each point. The re-
gion is then projected into 2D to obtain the required search
window.

The problem of defining an appropriate search window is

characterized by two factors: the probability of point detec-
tion, and the number of points in the search window. These
two measures are intimately correlated; increasing the prob-
ability of detection (by increasing window sizes) will inher-
ently increase the number of points in the search window.
For all test cases the performance of the presented method
is never worse than that of using a constant search window
size and for most movements it gives superior performance.
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Appendix

symbol description

X, θ measured position and orientation
X̂, θ̂ predicted position and orientation
Ẋ, Ẍ velocity and acceleration
θ̇, θ̈ angular velocity and acceleration
TWM world to model 4x4 transformation matrix
TMD model to device 4x4 transformation matrix

H length of history
ηv predictor quality for velocity
ηa predictor quality for acceleration
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