
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

A Testbed for Studying and Choosing Predictive Tracking
Algorithms in Virtual Environments

Joseph J. LaViola Jr.

Brown University Technology Center
for Advanced Scientific Computing and Visualization

PO Box 1910, Providence, RI, 02912, USA
jjl@cs.brown.edu

Abstract
We present a testbed for comparing predictive tracking algorithms that allows virtual environment system develop-
ers to make better choices about which predictors to use in their environments and aids researchers in determining
how predictors work across various virtual environment configurations. Our testbed saves the virtual environment
developer and researcher both time and effort with the important task of reducing dynamic tracking error and
masking latency. The testbed consists of three components: a prediction algorithm library, a motion data reposi-
tory, and a graphical testing application which provides users with the ability to test different predictive tracking
algorithms across a variety of user motion sequences. The testbed provides enough generality for testing across
different algorithmic and system parameters such as sampling rate, prediction time, and noise variance. The paper
describes the contents of the predictor library and how to extend it, the types of motion data sets collected thus far,
the motion data preparation methodology, and the graphical testing application’s functionality and architecture.
A simple testing scenario showing output from the testbed is also presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual Reality I.6.7 [Simulation Support Systems]: Environments

1. Introduction

Choosing prediction algorithms for virtual environment(VE)
tracking is a challenging task. Certain algorithms may per-
form better or worse depending on the underlying tracking
system’s sampling rate, noise variance and tracking tech-
nology (e.g., magnetic, acoustic, inertial, hybrid). The types
of user motion, including head and hand, play a significant
role in determining what prediction algorithms to use. An-
other critical factor in prediction algorithm determination is
the prediction time (i.e., how far one has to predict). Some
prediction algorithms may be more or less robust as predic-
tion time increases. Almost all prediction algorithms contain
one or more parameters that are used for tuning to optimize
performance. Therefore, a significant aspect in determining
what prediction algorithms to use is in adjusting an algo-
rithm’s parameter values. These adjustments are nontrivial
in the sense that an optimal parameter setting for one type of
user motion may not be optimal for another.

Testing
and

ApplicationLibrary
Algorithm
Prediction

Repository
Data 

User Motion

Analysis

Figure 1: The three components of our predictive tracking
algorithm testbed.

Currently, there is not a common framework for perform-
ing predictor comparisons that address all of these issues. As
a result, most predictive tracking work deals with only sub-
sets of the space of issues that arise with developing and
utilizing predictive tracking. To address this problem, we
developed a testbed for comparing different predictors that

c© The Eurographics Association 2003.

189

http://www.eg.org
http://diglib.eg.org


Joseph J. LaViola Jr. / Predictive Tracking Testbed

allows VE system developers to make better choices about
which predictive tracking algorithms to use in specific en-
vironments and aids researchers in determining how predic-
tion algorithms work across various VE configurations. With
such a testbed, we provide a set of tools in one central loca-
tion that will save developers and researchers valuable time
and effort in the task of improving the fidelity of their VE
systems and applications.

We concluded that a common testbed for studying these
algorithms should have three essential components (see Fig-
ure 1). These components should work together as a single
unit to provide a robust tool set. The first component is an
easily extensible prediction algorithm library containing a
wide variety of different predictors. The second component
is the motion data repository and its associated data prepa-
ration methodology. Currently, the repository contains head
and hand motion datasets from a Cave-like environment en-
compassing a variety of motion styles, plus the publicly
available head motion datasets from Azuma and Bishop’s
1994 Siggraph paper2. The data preparation methodology
provides an automatic way of adding additional datasets to
the repository which is an important part of the testbed,
since we want developers and researchers to add datasets
from their own VR systems. Finally, the third component
is a testing and analysis application which effectively con-
nects the prediction algorithm library and the dataset repos-
itory together and provides a number of different testing
strategies and error metrics. These three components, work-
ing together, save the VE system developer and researcher
time and effort by providing them predictor implementa-
tions, many different motion datasets, and an application for
running experimental studies.

In the next section, we present some related work on the
study of predictive tracking algorithm performance. Section
3 presents the details of the prediction algorithm testbed by
describing the predictors currently in the library and how
to add new ones, the types of motion sequences currently
available and the procedure for pre-processing the data, and
the testing application’s features and architecture. Section 4
shows an example scenario of how the testbed might be used
by examining the performance of a least squares predictor.
Section 5 discusses future work and Section 6 concludes the
paper and provides a URL for downloading the testbed.

2. Related Work

A significant body of work exists on predictive tracking al-
gorithms in both augmented and virtual reality. However,
there has been little work on comparing different predic-
tive tracking algorithms head-to-head on the same data and
hardly any work on developing an easily accessible testbed
to facilitate such studies. Azuma and Bishop compared
Kalman filter-based predictors for a see-through HMD2 and
performed tests with and without inertial sensors on three
head motion datasets. Although their system was unique and

they showed good performance, a testbed with a robust pre-
diction algorithm library would have enabled them to try
out a number of other prediction algorithms that may have
yielded better performance. Wu and Ouhyoung19 presented
experiments comparing a Kalman filter-based predictor, sim-
ple extrapolation, and Grey System prediction20, however
they were limited to only testing with head motion sequences
based on two applications. Having a testbed with a variety of
motion datasets from different application types and body
parts would have enabled them to easily conduct a wider
range of experiments.

Besides using the testbed as a tool for making better
choices about what prediction algorithms to use for spe-
cific VR systems, it also can be used to study predictors
more generally. There has been little work done in this area.
For example, Azuma and Bishop’s study2 did not take dif-
fering sampling rates, prediction times, and sensor noise
variances into account. Friedmann et.al. used Kalman filter-
based predictors for hand motion, but their studies were lim-
ited (i.e., drumming) and were not thoroughly tested across
different system parameters7. This is one of the few cases
where a predictive tracking algorithm was tested with mo-
tion coming from a body part other than the user’s head.
Other Kalman filter-based predictors have been developed
and studied with similar restrictions on system parameters
and user motion11, 15, 16. In addition, most of these prediction
algorithm’s parameters were tuned using a limited amount
of motion datasets, optimizing their performance to motion
data with similar characteristics. However, if the predictors
need to be applied to other types of motion, these tuned pa-
rameters may not yield accurate results. A testbed with a
wide variety of motion data sequences makes algorithm tun-
ing easier to perform and could lead to the development of
predictors that adapt their parameters to the types of user
motion under consideration.

Finally, Azuma and Bishop’s frequency-domain analysis
of predictive tracking algorithms is similar to our work in
that they developed a theoretical “testbed” for characteriz-
ing predictor behavior based, in part, on prediction time and
the motion signal’s power spectrum3. With their work, ex-
tensive comparative studies are not as important since they
can obtain “closed form solutions” which provide a power-
ful measure of predictor accuracy. However, their theoretical
framework does have limitations in that they do not take into
account sampling rate or static sensor error. In addition, they
were not developed with hand motion in mind and do not
take nonlinear or adaptive predictors into account. Although
our testbed is designed for mostly empirical testing, we be-
lieve that it can act as a complement to their formalisms and
also provide the ability for more general and robust predictor
analysis.

c© The Eurographics Association 2003.

190



Joseph J. LaViola Jr. / Predictive Tracking Testbed

3. Predictive Tracking Algorithm Testbed

The testbed contains three essential components including
am extensible prediction algorithm library, a motion data
repository with an associated data preparation methodology,
and a testing application which provides a number of useful
features for experimenting with prediction algorithms under
various circumstances. The following sections describe the
testbed in more detail.

3.1. Prediction Algorithm Library

The prediction algorithm library provides an easily accessi-
ble collection of predictive tracking algorithms that VR sys-
tem developers and researchers can use in their own work.
The library contains a variety of different predictors, writ-
ten in C++, that have been presented in previous predictive
tracking papers and taken from other disciplines such as eco-
nomic time series forecasting and control theory. It is by no
means all inclusive as it is still expanding (see Section 5 for
a list of other predictors we plan to incorporate into the li-
brary).

3.1.1. Current Predictors

The library, in its current form, is divided into four cate-
gories: simple extrapolation routines, integerized predictors,
filter-based approaches, and multiple model adaptive esti-
mation. We chose these predictors as our initial set for two
main reasons. First, they are not as training intensive as some
other types of predictors such as neural networks. Second,
we wanted to use the library’s development as a chance to
try some new predictors that have not been applied to the
VE tracking domain. To describe all the algorithmic details
and tradeoffs of each predictor is beyond the scope of this
paper. Therefore, we only briefly discuss them here.

There are four simple extrapolation routines available in
the predictor library based on Lagrangian polynomials, cu-
bic splines, least square approximation using orthogonal
polynomials8, and 2nd order Taylor expansions. A common
theme with the simple extrapolation routines is that they
all are based on approximating a function with polynomi-
als using the previous n user poses from an evolving mo-
tion sequence, and then using that approximating function
to extrapolate the user’s future location. The different predic-
tors in this category all use different function approximation
schemes.

The “intergerized” predictors include exponential
smoothing4 and Grey system prediction19. These predictors
are called “intergerized” because future poses are forecast
as integer multiples of the time between samples, ∆t. Such
a prediction scheme presents no difficulties when predicting
i∆t steps into the future. However, modifications to the
algorithms are required if i is not an integer. For general
applicability, the predictors in this category are modified to
handle any prediction time i by predicting bic∆t and die∆t

steps into the future and then interpolating to predict the
user pose at the exact time.

The filter-based category includes four different types
of predictor/corrector filtering techniques including Kalman
filtering18 and extended Kalman filtering18, the most com-
mon predictive tracking algorithms used today, plus un-
scented Kalman filtering17 and Covariance Intersection9. In
general, these filters use an underlying process model to
make an estimate of the current state of the system and then
correct the estimate using any tracker measurements avail-
able. Then, after the correction is made, the process model
is used to make a prediction.

The last class of predictors in the library utilize Multiple
Model Adaptive Estimation (MMAE)12. MMAE-based pre-
diction assumes that either a single process model or a single
parameter setting cannot adequately cover the wide range
of user motions that are possible in a virtual environment.
Therefore, a bank of different Kalman filters (or extended
Kalman filters for orientation), work in parallel to better pre-
dict user motion by adapting to changing dynamics.

3.1.2. Extending the Library

Although the library contains the majority of the predic-
tive tracking algorithms used today in both VR research and
practical applications, it is important that the library is ex-
tensible so new predictors can be easily added when they
become available. To add a predictor to the library, the devel-
oper must make a subclass off of the Predictor abstract
base class which contains the virtual prepare and pre-
dict functions as well as the ParameterBundle object.
This object holds all algorithmic parameter variables that the
predictors might need. These parameters can be set either
through the testing application (see Section 3.3) or in the
context of a real predictive tracking application. The pre-
pare and predict routines must be redefined for a given
prediction algorithm with the prepare routine performing
necessary initializations and the predict routine taking
the current user pose and prediction time and returning a
predicted pose. All predictors are stored in a list in the Pre-
dictorHolder object. This object creates the predictor
objects and allows for easy accessibility using an enumer-
ated type which indexes into the predictor list. Using this
approach, we have been able to easily and quickly add pre-
dictors to the library.

3.2. User Motion Data Repository

The second major component in our testbed is the user mo-
tion data repository. The main goal of this repository is to
have a set of user motion datasets from a variety of differ-
ent motion styles and tracking systems in one central loca-
tion, thus making it easier to test and analyze prediction al-
gorithms.

c© The Eurographics Association 2003.

191



Joseph J. LaViola Jr. / Predictive Tracking Testbed

3.2.1. Motion Datasets

Currently, the datasets in the repository are from two types
of tracking systems. The first is an Intersense IS900 used
in our Cave, and the second is Azuma and Bishop’s custom
tracking system used in an AR setup2. Each collected dataset
contains pose records consisting of a timestamp, a position
vector and a unit length quaternion.

With the first tracking system, we collected both head
and hand user data representing typical motions found
in a variety of our Cave applications and interaction
techniques1, 10, 13, 14, 21, 22. All of these datasets are approxi-
mately 20 seconds in length and sampled between 210 and
217 Hz.

Head motions can be divided into three categories. The
first category is simple head movement where the user stands
roughly in place and rotates either the head or body to view
the different Cave display screens1. The second category
is head movement from the user both walking and looking
around in the Cave. This type of motion is a common oc-
currence when using the StepWIM navigation technique13.
The third category is head motion from the user examining a
fixed object by moving up and down and side to side in order
to gain perspective about its structure22.

The hand motion sequences are also be divided into three
categories. The first category is hand motion used in navigat-
ing through a VE such as the type of motion found using the
LaserGrab technique 21. The second category is hand mo-
tion used in object selection, manipulation, and placement
(i.e., grabbing and manipulating a streamline in a scientific
visualization application14). The third category is freeform
hand motion from users working in CavePainting10, a tool
for creating 3D artistic scenes.

In addition to these Cave-based datasets, we also have in-
corporated the Swing, Walkaround, and Rotation head mo-
tion datasets from Azuma and Bishop’s custom AR tracking
system2. These datasets give the repository more variety in
the types of head motion dynamics available for prediction
algorithm testing (see Section 5 for plans for expanding the
repository further).

3.2.2. Data Preprocessing

In order to determine how well a given prediction algorithm
is performing, we need comparison data. Additionally, we
want the test data to be in a format which handles the variety
of different prediction algorithms as well as different test-
ing procedures. Comparing predicted output with reported
user poses is problematic since these records have noise and
small distortions associated with them. Thus, any compari-
son with the recorded data would count tracking error with
the prediction error. Therefore, we require a set of “ground
truth” datasets which are assumed to be the user’s actual mo-
tion. Reducing these small distortions is a difficult problem,
however, we can reduce the static tracker noise2. Although

these “ground truth” datasets may not be the exact motion
of a given user, we can consider them to be close to what
the user has done and this gives us appropriate data to test
against.

To develop the “ground truth” datasets, each dataset was
resampled at a higher sampling rate to make each motion
sequence’s sampling rate a little over 1kHz using lowpass
interpolation. The resampling makes testing over different
sample rates much easier to perform. The resampled motion
sequences have noise associated with them from both the
lowpass interpolation and the sensors themselves. To create
truth signals, we examined the power spectrum of each to
determine the lowpass and highpass parameters to a zero-
phase shift filter used to remove high frequency noise. Note
that once the signals are filtered, the quaternions are renor-
malized to ensure they are of unit length.

Many predictors that achieve high levels of accuracy uti-
lize velocity and/or acceleration information from other sen-
sors like gyroscopes and accelerometers2. Therefore, it is
important to have the flexibility to examine these predictors.
Since we do not have access to these types of sensors, we do
the next best thing by simulating them. Using the clean mo-
tion sequences, first and second derivatives (i.e., velocity and
acceleration) are calculated using 4th order finite central dif-
ferencing schemes. Because the derivatives were calculated
on clean signals with high sampling rates, the 4th order dif-
ferencing schemes provide a nice approximation to what one
would get with today’s gyroscopes and accelerometers. With
the derivative information for both position and orientation,
each pose record contains a timestamp, a position, velocity,
and acceleration vector and an orientation quaternion, an an-
gular velocity pure vector quaternion, and an angular accel-
eration pure vector quaternion. These motion sequences are
then ready for use in prediction algorithm testing.

Although we plan to continually add more motion data
sequences to the repository, we realize that most VE de-
velopers and researchers will want to use their own motion
datasets in addition to already existing repository datasets.
Therefore, to make it easier to add new datasets to the repos-
itory, we have automated our data preparation process. Users
can simply record motion sequences from their own appli-
cations and run our data preprocessing routine to add new
datasets to the repository.

3.3. Testing and Analysis Application

The testing and analysis application (see Figure 2) connects
the motion data repository and the prediction algorithm li-
brary. Having a testing application helps alleviate the extra
effort required to take full advantage of the testbed. It also
makes it easier to study prediction algorithms. However, the
first two testbed components can be used independently with
the VE system developer or researcher developing a testing
application of their own.

c© The Eurographics Association 2003.

192



Joseph J. LaViola Jr. / Predictive Tracking Testbed

Figure 2: A screenshot of the testing and analysis application. The window in the lower right is used for choosing various
Kalman, extended Kalman, and unscented Kalman filter-based predictors.

3.3.1. Functionality

The testing application provides a number of useful features.
By setting specific parameters (i.e., sampling rate, prediction
time, noise variance, and algorithmic parameters), users can
run a single test which provides global and component wise
error results for a number of different error metrics. The ap-
plication also provides testing procedures for examining pre-
dictors across different sampling rates, prediction times, er-
ror variances, and algorithmic parameters (depending on the
particular predictor). In addition, the application provides a
full parameter test where sampling rate, prediction time, er-
ror variance, and algorithmic parameters are all variables.
This test can be used for collecting data points across the
space of parameters.

In general, determining the best way to compare differ-
ent prediction algorithms is a difficult problem. There are a
variety of error metrics that could be used, each one provid-
ing distinct insights into predictor performance. We chose to
use three of the most common error metrics including root
mean square (RMSE), max norm (also known as the L∞

norm), and percent better. All of these metrics are computed
for global position and orientation as well as the individual
components of the position vector and quaternion. With the
RMSE metric, we can see how a predictor is performing on
average, and with the max norm, we can see a predictor’s
performance in the worst case. The percent better error met-
ric determines how predictors are performing relative to do-
ing no prediction at all (i.e, using the previous pose from the
tracking system as the predicted pose) by counting the num-
ber of times the predicted pose is closer to the true pose than
the previous pose and dividing by the total number of pre-
dictions made. Although the supported error metrics provide
only a small sample of the possible ways of analyzing pre-
dictors both numerically and perceptually, they are a good
starting point and provide a significant amount of informa-
tion about predictor accuracy.

VE system developers and researcher might be interest-
ing in a better understanding of the quantitative aspects of
a motion dataset. Therefore, the testing application also has
a signal analysis module which provides a variety of tools

c© The Eurographics Association 2003.

193



Joseph J. LaViola Jr. / Predictive Tracking Testbed

for examining motion signals. These tools give the user the
ability to easily examine power spectrums and sample au-
tocorrelation functions as well as variability in the signals,
total and average power, and absolute speeds and velocity
variances. These tools can offer more insight into a predic-
tor’s performance by providing a better understanding of a
motion signal’s characteristics.

3.3.2. Software Architecture

The testing application’s software architecture, shown in
Figure 3, has four main components. The first, the user
interface component, was developed with the Qt interface
toolkit and provides the user with control panels for loading
datasets, setting system parameters, setting prediction algo-
rithm parameters, and running different experiments. In ad-
dition, it allows the user to start a MATLAB engine used for
producing graphical error plots from the various test types.

The UI component has a two way connection to the sec-
ond component, the Dispenser. The Dispenser acts as a link
between the UI component and the prediction algorithm li-
brary. It takes all the required system, algorithmic, and test
parameter information plus the active dataset from the UI
component and simulates a tracking system by providing
pose records to the prediction algorithm library’s active pre-
dictor. Note that the library’s only connection to the testing
application is through the Dispenser because we want it to be
as independent as possible. This independence makes port-
ing the predictors to real-time VR and AR applications much
easier. The Dispenser is also in charge of adding noise to the
clean motion sequences according to the noise variance pa-
rameter (We assume zero mean Gaussian white noise).

The Dispenser’s other job is to send the predicted as well
as the clean and corrupted motion sequences to the Results
and Error Analysis component. This component performs
the error computations as well as prepares the results for
both tabular and graphical display according to the partic-
ular test run. Finally, the fourth component is the Signal
Analysis component. This component is also connected to
the UI component and provides routines for understanding
motion signal characteristics. The Signal Analysis compo-
nent also connects to the MATLAB engine so it can utilize
MATLAB’s signal processing toolbox.

4. A Testbed Scenario

We present a simple example scenario illustrating how the
testbed might be used to understand a prediction algo-
rithm’s performance. The example scenario also helps to
show some of the output that the testing application pro-
duces. In this particular example, we examine the perfor-
mance of the least squares orthogonal polynomial (LSOP)
predictor8 using a head dataset taken from the StepWim nav-
igation technique13. We only consider position prediction.
Examining user orientation prediction would be conducted
in a similar manner.

We first run an algorithmic parameter test to find appro-
priate values for the LSOP predictor’s two parameters, the
window size and the polynomial degree. In this example,
our criteria for choosing the best parameter values is the per-
cent better metric since we want to maximize the times in
which LSOP predictor is performing better than no predic-
tion at all. With the tracker’s sampling rate at approximately
215 Hz, the noise variance set to 2e-05 (determined from a
static tracker), and the prediction time set to 75 ms (assum-
ing around 20 fps) the output of the test is shown in Figure 4.
The output from the test shows that the window size should
roughly be 12 and the polynomial degree should be set to
one.

Figure 4: Results from an algorithm parameter test for the
LSOP predictor of position data.

Using this information, we can run a simple test to get a
better idea of the predictor’s performance under the given
conditions. This time we use the RMS error metric as our
testing criteria to see how the predictor performs in the RMS
sense. The test produces both textual (see Figure 5) and
graphical (see Figures 6 and 7) output. The output shows
that the predictor has an overall RMS error of 0.36 inches
and slightly better performance for the individual position
components. From Figure 6, we can see a close up view of
a segment of X position data. Even though the prediction re-
sults look poor, the Y-axis values are in inches showing that
the error is small. Note that since all the graphs are gener-
ated with MATLAB, users can utilize the built in zooming
and 3D rotation features to more closely examine the output.

In most VR applications, the framerate rarely stays con-
stant. Therefore, it would be nice to see how the LSOP pre-
dictor performs across different prediction times. We keep
all other parameters constant and once again use the RMS
error metric. Additionally, we superimpose the output of a
test using no prediction at all to show the predictor’s per-
formance relative to simply using the previous pose as the
predicted pose. The output of this test is shown in Figure

c© The Eurographics Association 2003.

194



Joseph J. LaViola Jr. / Predictive Tracking Testbed

Algorithm
Library

Prediction

Repository
Data

User Motion

Error Analysis
and

Results

Dispenser
UI

Component Analysis
Module

Signal 

MATLAB

Testing and Analysis Application

Figure 3: A software architecture diagram of the predictive tracking algorithm testing and analysis application.

head21_work.dat is the active data set.

Matlab Engine Active.

ROOT MEAN SQUARE ERROR RESULTS

------------------------------

File: head21_work.dat

Predictor: Local Polynomial - Algo 2

Window Size: 12 Degree: 1

Sampling Rate: 213.463

Prediction Interval: 75.8914

Noise Variance: 2e-05

Position(inches): 0.3623756

Component Wise -

X: 0.22594799

Y: 0.17811517

Z: 0.22031471

Figure 5: Textual output from a simple predictor test. These
results were copied from the testing application’s text win-
dow.

8 and shows that the LSOP predictor performs much better
in the RMS sense over different prediction times compared
with no prediction at all. The testbed supports the ability to
superimpose any combination of predictor results onto the
same graph so they can easily be compared. These initial
results indicate that the LSOP predictor might be a good
choice for our VR configuration although more tests on dif-
ferent datasets and comparisons with other predictors would
still be needed.

2.4 2.5 2.6 2.7 2.8 2.9

0.44

0.46

0.48

Predicted X vs. True X

Time (seconds)

X

Figure 6: A small segment of X position (in inches) data from
the LSOP predictor test run. The dotted line represents the
"truth" data, the thin solid line is the noise corrupted signal,
and the thick solid line is the predicted signal.

5. Future Work

Although the testbed is quite robust, it is still evolving and
there are a number of areas for future work. We wish to
continue adding prediction algorithms to the library com-
ponent such as neural network-based techniques, ARIMA
forecasters5, and support vector machine regressors6. More
datasets are required from other VR and AR applications
and tracking systems so more thorough and general analy-
ses of prediction performance can be made. Therefore, we
plan to continue to record new datasets and hope to solicit
other researchers and VR system developers to record mo-
tions sequences to add to the repository. Finally, we wish to
provide more functionality to our testing and analysis appli-
cation by adding more error metrics, such as a screen error

c© The Eurographics Association 2003.

195



Joseph J. LaViola Jr. / Predictive Tracking Testbed

0 5 10 15 20 25
−0.1

0

0.1
X Error

Time (seconds)

X

Figure 7: The prediction error associated with the X posi-
tion. These values represent the predicted values minus the
"truth" values.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
ROOT MEAN SQUARE ERROR RESULTS OVER DIFFERENT PREDICTION TIMES

Milliseconds

E
rr

or
 (i

nc
he

s)

No Prediction
LS Orthogonal Prediction

Figure 8: Results from a prediction time test using the LSOP
predictor and no prediction at all. The graph shows that the
LSOP predictors performs much better in the RMS sense
over different prediction times.

metric2, more signal analysis tools for quantifying motion
sequences, and more sophisticated modules for understand-
ing tracker noise characteristics and real time algorithmic
parameter tuning.

6. Conclusion

We presented a testbed for studying predictive tracking algo-
rithms which is comprised of a prediction algorithm library,
a user motion data repository, and a testing and analysis ap-
plication. The testbed is publicly available and can be down-
loaded at www.cs.brown.edu/people/jjl/
ptracking/ptracking.html. The testbed makes it
easier for VR system developers and researchers to study
prediction algorithms and provides the foundation and nec-
essary infrastructure for running a variety of experiments
across many different conditions. Having this machinery in
one location will ultimately save developers and researchers

valuable time and effort which could otherwise be used for
the task of masking latency, reducing dynamic tracking er-
ror, and improving the fidelity of VE applications.

Acknowledgments

Special thanks to Gary Bishop, Greg Welch, John Hughes,
and Andy van Dam for valuable guidance and discus-
sion. This work is supported in part by the NSF Graphics
and Visualization Center, IBM, the Department of Energy,
Alias/Wavefront, Microsoft, Sun Microsystems, and TACO.

References

1. Acevedo, Daniel, Eileen Vote, David H. Laidlaw, and Martha
S. Joukowsky. Case Study: Archaeological Data Visualization
in VR – Analysis of Lamp Finds at the Great Temple of Petra.
In Proceedings of IEEE Visualization 2001, 493-496, 2001.

2. Azuma, Ronald and Gary Bishop. Improving Static and Dy-
namic Registration in a See-Through HMD. In Proceedings of
SIGGRAPH’94, 197-204, 1994.

3. Azuma, Ronald and Gary Bishop. A Frequency Domain Anal-
ysis of Head Motion Prediction. In Proceedings of SIG-
GRAPH’95, 401-408, 1995.

4. Bowerman, Bruce J. and Richard T. O’Connell. Forecasting
and Time Series: An Applied Approach. Duxbury Thomson
Learning, 1993.

5. Chatfield, Chris. Time-Series Forecasting. Chapman and
Hall/CRC, 2001.

6. Cristianini, Nello and John Shawe-Taylor. An Introduction to
Support Vector Machines: An Other Kernel-Based Learning
Methods, Cambridge University Press, 2000.

7. Friedmann, Martin, Thad Starner, and Alex Pentland. Device
Synchronization Using and Optimal Linear Filter. In Proceed-
ings of the 1992 Symposium on Interactive 3D Graphics, 57-
62, 1992.

8. Golub, Gene and James M. Ortega. Scientific Computing: An
Introduction with Parallel Computing, Academic Press, 1993.

9. Julier, Simon J. and Jeffrey K. Uhlmann. General Decentral-
ized Data Fusion With Covariance Intersection(CI). In Hand-
book of Multisensor Data Fusion, David Hall and James Lli-
nas (eds.), CRC Press, 2001.

10. Keefe, D., Acevedo, D., Moscovich, T., Laidlaw, D., and LaVi-
ola, J. CavePainting: A Fully Immersive 3D Artistic Medium
and Interactive Experience. In Proceedings of the 2001 Sym-
posium on Interactive 3D Graphics, 85-93, 2001.

11. Kiruluta, Andrew, Moshe Eizenman, and Subbarayan Pasupa-
thy. Predictive Head Movement Tracking Using a Kalman Fil-
ter. In IEEE Transactions on Systems, Man, and Cybernetics -
Part B: Cybernetics, 27(2):326-331, April 1997.

12. Kyger, David W. and Peter S. Maybeck. Reducing Lag in
Virtual Displays Using Multiple Model Adaptive Estimation.
In IEEE Transactions on Aerospace and Electronic Systems,
34(4):1237-1247, 1998.

c© The Eurographics Association 2003.

196



Joseph J. LaViola Jr. / Predictive Tracking Testbed

13. LaViola, Joseph, Daniel Acevedo, Daniel Keefe, and Robert
Zeleznik. Hands-Free Multi-Scale Navigation in Virtual Envi-
ronments. In the Proceedings of the 2001 Symposium on Inter-
active 3D Graphics,ACM Press, 9-15, 2001.

14. LaViola, Joseph. MSVT: A Virtual Reality-Based Multimodal
Scientific Visualization Tool, In Proceedings of the Third
IASTED International Conference on Computer Graphics and
Imaging, 1-7, 2000.

15. Liang, Jiandong, Chris Shaw, and Mark Green. On Temporal-
Spatial Realism in the Virtual Reality Environment. In Pro-
ceedings of UIST’91, 19-25, 1991.

16. Mazuryk, Tomasz and Michael Gervautz. Two-Step Prediction
and Image Deflection for Exact Head Tracking in Virtual En-
vironments. In EUROGRAPHICS’95, 29-41, 1995.

17. Wan, E. A., and R. van der Merwe. The Unscented Kalman
Filter, In Kalman Filtering and Neural Networks, S. Haykin
(ed.), Wiley Publishing, 2001.

18. Welch, Greg and Gary Bishop. An Introduction to the Kalman
Filter. Technical Report TR 95-041, Department of Computer
Science, University of North Carolina at Chapel Hill, 1995.

19. Wu, Jiann-Rong and Ming Ouhyoung. On Latency Compen-
sation and Its Effects on Head-Motion Trajectories in Virtual
Environments. The Visual Computer 16(2): 79-90, 2000.

20. Wu, Jiann-Rong and Ming Ouhyoung. A 3D Tracking Exper-
iment on Latency and its Compensation Methods in Virtual
Environments. In Proceedings of UIST’95, 41-49, 1995.

21. Zeleznik, Robert, Joseph LaViola, Daniel Acevedo, and
Daniel Keefe. Pop Through Buttons for Virtual Environment
Navigation and Interaction. In Proceedings of Virtual Reality
2002, 127-134, 2002.

22. Zhang, Song, C. Demiralp, Daniel Keefe, et al. Case Study:
An Immersive Virtual Environment for DT-MRI Volume Visu-
alization Applications. In Proceedings of IEEE Visualization
2001, 437-440, 2001.

c© The Eurographics Association 2003.

197



Joseph J. LaViola Jr. / Predictive Tracking Testbed

Figure 9: An alternate graphical representation of the results from the algorithm parameter test (shown in Figure 4) for the
LSOP predictor of position data.

c© The Eurographics Association 2003.

198


