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Abstract

Building a system to actively visualize extremely large data sets on large tiled displays in a real time immersive
environment involves a number of challenges. First, the system must be completely scalable to support the ren-
dering of large data sets. Second, it must provide fast, constant frame rates regardless of user viewpoint or model
orientation. Third, it must output the highest resolution imagery where it is needed. Fourth, it must have a flexible
user interface to control interaction with the display. This paper presents the prototype for a system which meets
all four of these criteria. It details the design of a wireless user interface in conjunction with a foveated vision
application for image generation on a tiled display wall. The system emphasizes the parallel, multidisplay, and
multiresolution features of the Metabuffer image composition architecture to produce interactive renderings of
large data streams with fast, constant frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems]: Distributed/network graph-
ics

1. Introduction

One goal of very large tiled immersive displays is to in-
crease a wider experience. In other words, the user is able to
see globally with local detail. However, as displays become
larger and larger, computer graphics systems encounter a di-
minishing dpi (dots per inch) problem. At a certain point the
system is no longer able to render enough pixels at a real
time rate to ensure a high resolution, high dpi image over
the entire tiled display wall.

This paper demonstrates a system which attempts to solve
this problem by applying dynamic multiresolution tech-
niques in conjunction with wireless control devices. Through
the use of foveated displays along with progressive stream-
ing to alleviate bandwidth issues, multiresolution techniques
can allow real time frame rates on large tiled display walls
while still achieving high dpi imagery wherever the user
wishes to look, or more generally, at points of interest in the
scene.

Foveated vision techniques rely on the fact that the hu-
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man eye can only sense detail directly at the point of focus.
Objects in the peripheral vision appear in low resolution and
lack definition. This basic biological fact is a result of the
concentration of rods and cones in the retina of the human
eye. A higher concentration exists at the center with the den-
sity gradually becoming lower and lower towards the edges.
As a consequence of human biology, even though computer
visualization systems may render a large display in high res-
olution, by the time that information gets to the brain, much
of the information has been lost by the limitations of the vi-
sion system.

Applying this fact to the large displays currently available
could significantly improve frame rates and user interactiv-
ity. Already CAVE type virtual reality labs6 employ multi-
ple projectors for an immense immersive display. By tiling
the higher resolution projectors or panels available today,
creating enormous displays with billions of pixels is prac-
tical. IBM, for example, currently has a 3840 by 2400 pixel
LCD panel consisting of 9.2 million pixels. Creating an 11
by 11 grid of those panels would result in a display con-
sisting of over one billion pixels. Foveating such displays
as these could greatly reduce workload and load balancing
issues while increasing frame rate and user interactivity.

The active visualization system shown in this paper con-
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Figure 1: Closed loop architecture for parallel time-critical rendering of massive data streams

sists of a wireless user interface, parallel rendering servers,
and an image compositing device which drives a tiled dis-
play wall. Figure 1 shows the complete closed loop system.

In order to provide the multiresolution functionality re-
quired by the foveated vision technique, the Metabuffer mul-
tiresolution sort-last image compositing architecture4 is em-
ployed to composite image output generated by the cluster
of rendering machines and then drive the tiled display wall.
Many other research groups have developed sort last hard-
ware similar to the Metabuffer in order to leverage the com-
bined rendering power of multiple distributed rendering ma-
chines. These include the Sepia project17 � 13, PixelFlow8, and
Lightning-212. The Metabuffer is most similar to Lightning-
2 in that it uses a crossbar type architecture to composite
image data and drive multiple displays. However, one main
difference between the two is that the Metabuffer supports
multiple levels of resolution which makes the foveated vi-
sion technique shown in this paper possible.

Since the Metabuffer architecture has not been deployed
in hardware yet, the images and results provided in this
paper have been computed by a software emulator of the
Metabuffer5 running on a cluster of standard Linux worksta-
tions. This paper shows that a system built using multireso-
lution techniques such as foveated vision and progressivity
in conjunction with a wireless user interface helps to allow
for a real time immersive environment when applied to large
data sets and large tiled displays.

2. Background

Using the foveation of the human visual system as an advan-
tage is nothing new. Several research groups have tackled
problems such as image transmission and image processing
by using the low resolution areas of the eye as an asset.

2.1. Image Processing

One problem that benefits from foveated techniques is im-
age processing. Image processing is often a very computa-
tionally intensive task. Every pixel in an image must have
calculations performed on it to perform pattern matching,
edge detection, or other operations.

Many times, though, this image processing is being done
to simulate what a normal human eye would be seeing. Fa-
cial recognition is one such example. The human eye lacks
detail in its peripheral view. Therefore, the brain does not
have to process nearly as much information from the edges
of the view as it does in the center.

Researchers have taken advantage of this fact by using
methods to avoid processing the enormous quantities of high
resolution pixels in the periphery. Special foveated CCD
cameras have been developed which record high resolution
only at the center of the gaze in order to lessen the infor-
mation overload resulting from taking in imagery from high
resolution cameras which sense all areas equally9 � 23 � 19. Im-
age processing applications can then take advantage of this
reduced imagery to concentrate their algorithms on the cen-
ter of the scene, rather than the edges of the gaze.

2.2. Image Transmission

Another problem which has used foveated vision is image
transmission. Full motion video can require large amounts
of data to be transmitted. Usually the amount of bandwidth
available is the limiting factor facing this transmission. Any
technique that lessens the need for data will greatly help the
image transmission problem. Since the peripheral vision of
the human eye cannot see high resolution imagery, it makes
little sense to have to transmit this peripheral image data that
eventually will not even be processed by the vision system.
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This is the technique used by Geisler et al11 and Lee et
al16. Their research applies foveated techniques to image and
video encoding. Essentially the video stream is recorded at
successive levels of resolution. By recording the user’s gaze,
a “foveated pyramid” is created with high resolution imagery
in the center which becomes successively lower the farther
the imagery happens to be from the user’s gaze.

2.3. Image Generation

Although not specifically tied to applications involving
eye tracking, several research groups have studied using
multiresolution techniques to speed up image generation.
Hoppe14 illustrates how progressive meshes can be used
to significantly increase performance when rendering large
data sets. He shows how different levels of detail can be
used depending if the data is close or far away from the
user. Shamir et al21 reveal how to use DAGs in order to ef-
ficiently create multiresolution meshes on time varying de-
forming meshes. Magillo et al18 present a library in order
to model multiresolution meshes. Saito et al20 discuss how
to use wavelets to compactly encode and efficiently retrieve
hierarchical multiresolution representations of objects.

Progressive meshes will be used by the Metabuffer
foveated vision application to present level of detail views of
the scene to the user based on gaze location. Currently, the
progressive meshes used by the Metabuffer foveated vision
application do not use wavelet compression, but this method
could serve to compress source data further to better handle
large data sets.

3. Implementation
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Figure 2: Coren’s acuity graph

Acuity is the term used to describe the eye’s ability to
resolve detail. Typically, this measurement is expressed as an
angle corresponding to the smallest span the eye can identify.
As shown in figure 2 by Coren et al7, acuity changes as a

function of the distance away from the center of the eye. This
is due to the concentration of rods and cones in the retina.
The highest concentration exists at the center of the eye in
the fovea, with the density becoming less and less towards
the periphery. In the 2D slice of the eye shown in figure 2, a
blind spot also exists where the optic nerve exits the eyeball.

Coren’s graph reveals that the drop off in acuity, and thus
resolution, in the eye is exponential. In fact, within 10 de-
grees it drops by almost 80 percent. By matching the render-
ing resources of the computer graphics system to this acu-
ity graph, the rendering power of the system can be con-
centrated mainly in the areas where it is needed most–the
center of the user’s gaze. Only a small portion of the system
is needed to generate the low level of detail and resolution
towards the periphery.

A foveated vision system can be designed using Coren’s
graph either via the continuous method or the discrete
method. The discrete method using the hardware capabili-
ties of the Metabuffer will be covered in this paper.

3.1. Continuous Method

With the continuous method, level of detail and resolution is
matched directly to Coren’s acuity graph. By using a wavelet
encoded mesh, it is possible to finely adjust the complexity
of the scene. Depending upon the distance from the center
of the user’s view, an error value corresponding to Coren’s
graph can be used to walk through the wavelet encoding
in order to obtain the proper amount of detail for every
area in the scene. Likewise, this same error value can be
used to adjust the level of resolution used to generate the
scene. Higher error values would allow lower levels of reso-
lution. A very similar method employing hierarchical bound-
ing boxes2 could also be used.

In either case, delays resulting from data locality issues
could be quelled by utilizing progressivity. As with pro-
gressive image composition3 , switching to lower resolution
viewports would allow renderers to cover all the polygons
they are responsible for drawing while still keeping the
frame rate high. Over time polygons can dynamically be
moved to achieve the high resolution output imagery.

Of course, other metrics besides Coren’s acuity graph
could be used to direct the resolution and level of detail. In
these cases, the foveated vision system dealing strictly with
user gazes can instead be generalized into a region of inter-
est (ROI) application. This region could be controlled via
user input from a wireless device or other input method in-
stead of merely being taken from gaze tracking hardware.
The region of interest could also be modified by past user
history–keeping previous areas of interest in focus. Another
characteristic that could modify resolution and level of detail
is prominent features in the data set. Algorithms could detect
high frequency changes in the data set and bring those areas
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into closer focus since they could yield interesting informa-
tion. Distance from the user is also a trait that could be used
to influence the level of detail in a scene such as is done in
Hoppe’s work14.

3.2. Discrete Method

Applying the discrete method to the Metabuffer hardware
makes sense since the Metabuffer is able to generate view-
ports only in integer increments of different resolution. This
is because the Metabuffer employs pixel replication to gener-
ate the low resolution viewports. Using local memory caches
to replicate the pixels, instead of transmitting more data
over at-capacity buses, alleviates any bandwidth issues in the
compositing hardware.

Because of this limitation, instead of using Coren’s com-
plete graph as a cue for the level of resolution, individual
points on that graph are taken for each Metabuffer view-
port resolution multiple. These individual points are used to
precompute a hierarchical mesh of the model to be used in
generating the scene. Also because of the Metabuffer hard-
ware, the high resolution area as shown in this paper is set to
the size of one Metabuffer high resolution viewport. This re-
striction, though, could be remedied by tiling high resolution
viewports together to form a larger area.

For example, in the case shown in figure 3, the foveated
vision application using the Metabuffer employs three dif-
ferently sized viewport. The smallest viewport contains the
highest resolution and is centered at the user’s focus. This
area corresponds to the peak in Coren’s acuity graph and
will be assigned the highest level of detail data set. The next
larger viewport implemented by the Metabuffer is in medium
resolution. To find the level of detail for this area, the highest
acuity level covered by this area in Coren’s graph is used. In
this case, it would be about 20% of the detail of the high res-
olution data set. Likewise, the largest and lowest resolution
viewport implemented by the Metabuffer uses a level of de-
tail of approximately 10% as according to Coren’s graph.
The polygon counts in figure 3 differ slightly from these
percentages. The mesh generation algorithm currently used
only roughly outputs the number of polygons requested.

With polygon counts in the medium and low resolution
viewports running 20% and 10% of the polygon counts in the
high resolution viewport, it is possible to match the greater
number of rendering servers to the area of the user’s fo-
cus. Using a cluster of rendering servers, 77% of these can
be assigned to generate the imagery for the high resolution
high level of detail viewport. Because the medium resolution
viewport consists of only 20% of the polygons as the high
resolution viewport, only 15% of the machines are needed
to render this area. Finally, since the lowest resolution con-
sists of only 10% of the polygons, only 8% of the machines
are necessary to render the entire region in a load balanced
manner. Because only 10 machines are being used in figure

3, the numbers of rendering servers assigned differ slightly
from these stated percentages.

3.3. Load Balancing

The main problem in creating a foveated vision application
for the Metabuffer system is how best to utilize the render-
ing resources available. They should be organized in order
to achieve the best degree of efficiency and the fastest frame
rates. The multiple parallel rendering machines need to be
load balanced no matter what viewpoint the user chooses.
This organizational problem is presented formally as fol-
lows.

Conditions

1. There exists a screen of n tiles and m rendering servers�
m � n � . Each tile has the same size of w � h pixels

and each server has the same rendering capability c tri-
angles/second.

2. There are p triangles that project into the screen. We as-
sume each triangle takes the same amount of time to ren-
der.

Constraints

1. A high resolution w � h pixel area must be rendered
where the user(s) are gazing at all times. Regions sur-
rounding this area can be rendered in diminishing level
of detail and resolution corresponding to the drop off in
rod and cone concentration in the peripheral view of the
eye.

2. The data set could be extremely large, and thus all p tri-
angles along with the varying levels of detail of this trian-
gle set must be evenly distributed across all the machines.
There cannot be a global data set that resides on each ma-
chines.

3. The frame rate should be at least on par with the p
m � c

time possible with the progressive image composition
method. Taking into account the diminished triangle
count from decimated data sets, this means that the ren-
dering machines need to be fairly load balanced for any
user viewpoint even if the data set is almost certainly het-
erogeneously distributed across the scene.

The goal is not only to find the best assignment of levels
of detail of data to renderers but also the best match of ren-
derers to display space such that the display is rendered in
the shortest time.

In order to solve this problem, the multiresolution features
of the metabuffer will be used extensively. In the case of a
single user, viewports are arranged in a configuration anal-
ogous to Geisler’s “foveated pyramid”. Figure 3 shows the
“foveated pyramid” for the visible human example in this
paper. High resolution viewports are located at the center of
the user’s gaze. Successively lower resolution viewports ra-
diate out until the lowest resolution viewport fills the entire
display.
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7 renderers
9,124,090 polygons

1,303,441 polygons each

Medium Resolution
2 renderers

530,053 polygons each
1,060,106 polygons

Low Resolution

241,988 polygons

High Resolution
1 renderer

Figure 3: Foveated pyramid for active visualization of the
visible human polygonal isosurface

The ability to concentrate the rendering power of the
Metabuffer in the area of the user’s gaze is possible because
of progressive meshes that have been created by decimating
data sets. The large low resolution viewports in the periph-
ery are required to render a much greater area that would
normally consist of a large amount of polygons. By using
decimated data sets, however, the quantity of polygons in
this area can be much less than the number of polygons
contained in the small high resolution viewport. Therefore,
a small number of rendering servers can adequately render
larger area.

Ensuring that the rendering servers are load balanced de-
spite the user’s viewpoint is achieved by assigning the trian-
gles belonging to each progressive mesh modulo the num-
ber of processors assigned to that mesh. This means that the
polygons for the data set are evenly distributed in 3D space
among all the processors. No matter where the user looks,
all the processors will be responsible for an even number of
polygons. This is the technique used by PixelFlow8 to load
balance its custom hardware even when dealing with nonho-
mogeneous data sets. By avoiding the assignment of clusters
of close together polygons to the same rendering server, load
balancing issues with changing user viewpoints are allevi-
ated.

3.4. Compositing

In order to merge the layers of multiresolution imagery
together and simulate the “foveated pyramid” using the
Metabuffer, it is necessary to ensure that the higher level res-
olution imagery always takes precedence over lower level
resolution imagery. To do this, lower resolution rendering
servers remove portions of their viewports that will be cov-
ered by higher resolution imagery using the hardware sten-
cil buffer. With most of today’s graphics cards, including the
GeForce2 boards in the Metabuffer cluster, stencil tests are

always performed when doing Z buffer comparisons. Thus,
the use of a stencil buffer is essentially free in terms of
performance cost. With the areas not covered by the sten-
cil vacant, pixels from high resolution renderers are free to
be composited over these areas. This effectively performs a
painters algorithm operation using the existing architecture
of the Metabuffer.

To allow for continuity, neighboring viewports of different
resolutions are allowed to overlap slightly. In these areas of
overlap, dithering patterns are performed. Again, this is done
using the stencil buffer. Checkerboard patterns are applied
at the edges of the higher resolution viewport. By pushing
the far and near clipping planes slightly farther back for the
neighboring low resolution area, the border area between the
two viewports consists of half higher and half lower resolu-
tion data, but with a checkerboard mesh that is of the higher
resolution. This screen door transparency technique effec-
tively smooths the output image at the transitions between
the higher and lower resolutions. Blending this area masks
discontinuities in the progressive meshes and in the resolu-
tion changes.

3.5. Wireless Control

Employing handhelds to control the visualization system
opens up many interesting new research areas to explore.
Many different groups have studied the user of handheld
devices for user interfaces for such things as ubiquitous
computing22, augmented reality and situated information
spaces10, and context-aware applications including memory
prostheses15.

Recent advances in wireless handheld technology have
rendered what used to be a complicated technical undertak-
ing to just plugging in a collection of commercial off the
shelf components. The handheld device carried by the user
is a Compaq iPAQ Pocket PC. This device runs the Windows
CE operating system from Microsoft. For wireless connec-
tivity, an Orinoco RG-1000 residential gateway is employed
along with Lucent wireless Ethernet cards. The wireless Eth-
ernet cards plug into the iPAQs by means of a PCMCIA
adapter. They are then configured to talk to the RG-1000
which is connected to the Metabuffer cluster’s LAN. From
this point, communicating over the network is seamless.

Figure 4 shows an actual screen shot of the user interface.
At the top of the shot is a representation of the 5 by 2 tiled
display wall. The longhorn icon is placed where the user is
gazing via the stylus. For now this provides the center of
the user’s foveated viewing region until a retina tracker is
installed in the visualization lab. The X, Y, and Z vectors
shown at the lower portion of the screen are a hypervolume
control as described by Bajaj et al2. Using a classical ro-
tation based user interface in order to visualize data sets in
higher dimensions than 3D is very tedious. Examples of such
data sets include gated MRI volume scans of heart motion,
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Figure 4: Wireless visualization device user interface

time varying data from computational fluids dynamics, and
molecular vanDerWaal energies as a function of molecular
configurations (bond angles). Using the hypervolume con-
trol shown here allows for controlling any number of dimen-
sions in a scalable manner. For each dimension, only a sin-
gle vector is needed. By controlling the length and relative
angle of each vector, it is possible to maneuver the viewed
object into any possible position in the 3-dimensional space.
As shown by Bajaj et al, for simple 3D case like the one
shown in figure 4 it is easy to convert these three individual
vectors into a more familiar 3D projection matrix2.

The orientation and gaze information received from the
graphical UI is transmitted over the wireless Ethernet as
UDP packets to a server residing on the land based host clus-
ter. This server collects the information from all the wire-
less devices and stores the current state of all locally. At
each frame, the Metabuffer application queries the server
about the status of the wireless users. This is done via a
named pipes mechanism. The server was separated from
the Metabuffer application because the Metabuffer emulator
uses MPI as its basis. Currently the version of MPICH run-
ning of the Metabuffer’s host cluster does not support multi-
threading. Therefore running it as a separate process allows
the Metabuffer to run unencumbered. The individual process
model will also make it easier for other applications to have
access to the same data.

4. Results

The configuration used to test the foveated vision application
consisted of 19 machines in the visualization cluster. Each
machine was equipped with a high performance Hercules
Prophet II graphics card, 256 MB of RAM, an 800 MHz
Pentium III processor and ran the Linux operating system. 9

of the machines were set to actually emulate the Metabuffer
hardware. They performed the image compositing and out-
put of the 3 by 3 tiled display space for the examples in this
paper. The other 10 machines were tasked with actually ren-
dering the scenes. The actual 5 by 2 display wall in the visu-
alization lab is detailed at http://www.ticam.utexas.edu/ccv.

All 19 machines were connected via 100 Mbps Fast Ether-
net. We limited the test to 19 machines instead of the full 32
in the cluster with graphics cards because the higher amounts
of data transfer exceeded the capabilities of the network and
significantly slowed emulator performance. We anticipate
that the addition of Compaq’s ServerNet II to the cluster will
greatly reduce this constraint. The actual Metabuffer design,
when put into hardware form, eliminates this overhead en-
tirely.

Three data sets are used to demonstrate the capabilities of
the foveated vision application for the Metabuffer: an iso-
surface of an engine block, a skeletal isosurface of the visi-
ble human, and a epidermal isosurface of the visible human.
Both contain progressive meshes generated by the fast iso-
surface extraction system developed by Zhang et al24.

Data Set (partition) Size Render Time

Engine (7 high res.) 88,273 0.05 seconds
Engine (2 medium res.) 23,041 0.03 seconds

Engine (1 low res.) 10,728 0.02 seconds

Engine (overall) 617,910 0.05 seconds

Skeleton (7 high res.) 907,543 0.57 seconds
Skeleton (2 medium res.) 332,264 0.17 seconds

Skeleton (1 low res.) 138,594 0.06 seconds

Skeleton (overall) 6,352,801 0.57 seconds

Human (7 high res.) 1,303,441 0.81 seconds
Human (2 medium res.) 530,053 0.28 seconds

Human (1 low res.) 241,988 0.12 seconds

Human (overall) 9,124,090 0.81 seconds

Table 1: Foveated data set information

The statistics for each are shown in table 1. The render
timings for each data set reflect the average time needed to
compute each frame in a 720 frame movie with the model
being zoomed and rotated. As all data is kept locally, and
polygons are assigned so that changing user viewpoints will
not upset load balancing, these average timings are in fact the
frame times for any point in the movie. The timings are sub-
divided by viewport resolution. The machines which render
the high resolution area take the longest to render and thus
determine the overall frame time. As these machines are al-
ways the majority (7 out of 10), the parallel efficiency of the
method is reasonable.
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4.1. Visible Human

In the case of the visible human data set, the highest resolu-
tion mesh consists of 9,124,090 polygons. The medium reso-
lution mesh consists of 1,060,106 polygons. Finally the low-
est resolution mesh has only 241,988 polygons. Given the
processor assignments from figure 3 with the polygon counts
from the progressive meshes of the visible human gener-
ated by the isosurface extraction, the high resolution mesh
is divided among 7 rendering servers resulting in 1,303,441
polygons per server. The medium resolution mesh is divided
between 2 rendering servers giving 530,053 polygons per
server. The low resolution mesh is assigned to one render-
ing server which is responsible for all 241,988 polygons. At
first it may seem that these assignments are imbalanced, but
it is important to remember that, because the high resolution
imagery will only be drawn for one area of the display, not
all of the polygons assigned to the high resolution render-
ers will need to be drawn. This is true to a lesser degree for
the medium resolution polygons too. Because the polygons
for all the servers are distributed evenly across object space,
different viewpoints or zooms should not affect loading.

The images in figure 5 (see color section) show 8 of the
frames from a 720 frame movie. At the beginning and end
of the movie, the nine separate screens in the tiled display
split apart to reveal the geometry of the overall scene. In
the middle of the movie they join together to show how the
unified display would look.

During the movie, the visible human data set is moved
through a zoom in and zoom out while being continually ro-
tated. Meanwhile, the user’s gaze is being tracked and that
area is rendered in high resolution no matter what the view-
point. The user is not restricted to where he or she may look.
Anywhere in the entire display space is a valid place for the
high resolution viewport.

Polygons are color coded according to which rendering
server created them. This gives the imagery within the high
resolution viewport a mottled appearance, since 7 rendering
machines are responsible for this area. The medium resolu-
tion viewport, on the other hand, only has two colors from
the two renderers that are assigned to it. Finally, the low res-
olution viewport is being rendered by only one machine and
thus is a solid green.

Notice that the display decreases in resolution and com-
plexity according to the “foveated pyramid” of multiresolu-
tion viewports which are marked as black rectangles. The
level of detail differences in the progressive meshes and the
resolution differences are most noticeable in the zoomed in
views. For example, the fine detail of the lower torso of the
human inside the high resolution viewport contrasts with the
less detailed data set being rendered by the low resolution
viewport of the leg in these views.

Timings from the movie are shown in table 1. Because
the polygons are distributed evenly across the scene between

the processors, all the timings from the 720 frame movie are
flat. No matter where the user looks or how much he or she
zooms into the scene, the load will always be the same. Be-
cause a parallel application is only as fast as its slowest com-
ponent, the frame rate for this example using 10 rendering
machines would be 0.81 seconds per frame. However, be-
cause of the scalable nature of the Metabuffer architecture,
adding additional rendering machines only results in addi-
tional pixels worth of latency and does not affect throughput.
More machines would result in smaller data partitions which
should decrease rendering time and increase frame rate.

4.2. Engine

For the engine data set, the highest resolution mesh con-
sists of 617,910 polygons. The medium resolution mesh
has 46,082 polygons and the lowest resolution mesh con-
sists of 10,728 polygons. With the processor configuration
of above. this means that the high resolution mesh is parti-
tioned into units of 88,273 polygons, the medium resolution
mesh is divided into 23,041 polygons each, and the low res-
olution mesh is assigned to one processor responsible for
10,728 polygons. Again, the polygon distributions are not
even across the resolution groups, but the majority of render-
ers (those rendering the high resolution area) are completely
balanced in terms of polygon count. Those high resolution
renderers will be the determining factor in frame timings,
since they are responsible for the largest polygon counts.
Thus, the minority of renderers should not adversely affect
either the timings or the efficiency of the system.

Figure 6 (see color section) shows 8 of the frames from
the 720 frame movie created using the engine data set. Just
as with the visible human example, the data set is zoomed in
and out while constantly being rotated. The region of interest
controlled by the user is constantly in high resolution with
the periphery falling off in detail according to Coren’s model
and Geisler’s “foveated pyramid”. Again, each viewport is
color coded according to the renderer that drew it.

The timings for the engine movie are shown in table 1.
Again, just as with the visible human, the timings are flat
no matter what viewpoint or region of interest is chosen.
In the case of the engine model, the 10 machines used in
the rendering of the frames are more than enough to create
30 frames per second. Again, if this were not the case, the
Metabuffer architecture is easily scalable to allow for more
rendering machines which will subdivide the polygon count
further and allow for faster frame times.

4.3. Skeleton

With the skeletal data set, the foveated vision application
for the Metabuffer behaves just as the previous two exam-
ples. The skeletal data set consisted of 6,352,801 polygons
in the high resolution viewport split over 7 processors re-
sulting in 907,543 polygons per processor. For the medium

c
�

The Eurographics Association 2002.

109



Blanke and Bajaj / Active Visualization

resolution level of detail, there were 664,528 polygons split
over two processors giving 332,264 polygons per processor.
Finally, in the lowest resolution level of detail there were
only 138,594 polygons assigned to a single machine.

Figure 7 (see color section) shows 8 of the frames from the
movie made from the skeletal data set. Again, the model is
zoomed in and zoomed out while being rotated. The foveated
area is moved around the screen, revealing a constant area of
high resolution. The rest of the display falls off in resolution
as prescribed by the “foveated pyramid”. As with the other
two examples, each viewport is color coded according to the
renderer that drew it.

The timings for the skeletal data set shown in table 1 mir-
ror the results of the other two examples. All timings are flat
regardless of the frame number. The majority of renderers
are balanced and grouped in the highest time requirement.
The minority of renderers responsible for the medium and
low resolution areas of the screen are in the second and third
highest respectively.

5. Discussion

One possible criticism of the technique as presented in this
paper is that all of the rendering machines are not completely
load balanced. While this is not very obvious in the case of
the engine model, from the visible human results in table 1 it
is evident that the timings are clumped into three groupings.
The first, at 0.81 seconds per frame, are the 7 renderers that
are doing the high resolution viewport. The second, at 0.28
seconds per frame, are the 2 renderers doing the medium
resolution viewport. Finally, at 0.12 seconds per frame is
the single renderer responsible for the low resolution view-
port. While the renderers in each of these groups are load
balanced among themselves, as a whole they are not evenly
balanced.

This should not be a concern. The majority of rendering
servers are assigned to the high resolution viewport and are
load balanced among themselves. The minority of rendering
servers doing the low and medium resolution viewports may
not have as much work to do, but because of their small num-
ber they will not greatly erode the overall efficiency of the
algorithm. As long as the workload assigned to the low and
medium resolution viewports by the progressive mesh is less
than the workload of the primary high resolution rendering
servers, these few low and medium resolution renderers will
always be faster than the high resolution renderers. Thus,
this imbalance will not adversely affect the overall parallel
timings.

The flat timings of the foveated vision algorithm pre-
sented here provide consistent frame rates no matter what
the user viewpoint. However, these initial results should be
looked on only as the worst case timings possible with this
technique. Much faster timings than these could be possible
with efficient frustum culling.

Even though enough data is stored on all the machines
in the system to render each level of detail mesh in its en-
tirety, obviously only a small portion of those data sets is
rendered at any one frame. This is because the majority of
those data sets are located outside of their area of their view-
port for that particular viewing angle. To avoid rendering
these polygons, it is necessary to employ a very efficient
frustum culling algorithm. The frustum culler checks poly-
gons against the boundaries of the viewing area and elimi-
nates extraneous polygons from being sent to the OpenGL
rendering stream. The more efficient the algorithm, the bet-
ter the speedup the foveated vision application will achieve.
Assarsson et al1 discuss many of the methods used in fast
frustum culling. Employing efficient culling would improve
the overall frame rate of the system.

One issue with frustum culling is the imbalances that
could exists among the different resolution viewports. For
example, only machines that have a particular sized deci-
mated data set can render polygons to the correspondingly
sized viewport. In the example, this effectively means that
the cluster of rendering servers has been split into three
groups, a high resolution group, a medium resolution group,
and a low resolution group. Because members of these
groups can not easily shift to help relieve loading pressures,
in some instances load imbalances will result. However, the
worst case scenario is if the user is looking at a region con-
sisting of no polygons. In that case, the majority of the ren-
dering servers are rendering nothing. Even so, the medium
and low resolution rendering servers can at most render all
the polygons which they are assigned. Since the polygon
count drops off exponentially this count will still be bounded
to a worst case frame rate. In the case of the visible human
example presented in this paper, that upper bound would be
0.28 seconds.

This paper discusses foveated vision using a single user.
In order to support multiple viewers with multiple gazes,
replication is necessary. Because of the modulo distribution
of polygons among the rendering servers, a single distributed
data set can only render one viewport area. Trying to ren-
der another viewport with that same data set would result
in some polygons being unavailable. To cope with this, it
is necessary to have copies of each decimated data set (ex-
cept for the lowest resolution data set which covers the en-
tire display, of course) and a set of dedicated machines for
each viewer. Replication is typically not a good attribute to
have when dealing with large data sets, but considering that
the number of users will typically be much lower than the
available machines that can render, this duplication does not
present an inordinate problem for memory requirements.
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Frame 119 Frame 255 Frame 352 Frame 360

Frame 367 Frame 452 Frame 557 Frame 643

Figure 5: Sample frames from the visible human movie

Frame 78 Frame 145 Frame 213 Frame 286

Frame 360 Frame 439 Frame 516 Frame 596

Figure 6: Sample frames from the engine movie

Frame 100 Frame 199 Frame 300 Frame 341

Frame 384 Frame 481 Frame 591 Frame 685

Figure 7: Sample frames from the skeleton movie
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