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Abstract

We describe the zonal map, a data structure used for the visualization of large, time
dependent molecular configurations in virtual environments. The governing idea of the
zonal map is to use the user’s line of sight to define a region of interest onto which time
critical algorithms can be applied. Two examples of time critical algorithms are given:
for computing and rendering of solvent-accessible surfaces of protein molecules. We
show that substantial performance gains can be obtained by using the zonal map.

1 Introduction

Virtual environments have shown great promise as a research tool for the exploration of
molecular data. The additional depth information and intuitive interaction inherent to vir-
tual environments can aid in obtaining insight to the 3-D structure and properties of a
molecular configuration. Various implementations of virtual environments for molecular
modeling and molecular dynamics are underway.

There are a vast number of visualization methods to represent molecules; e.g. stick,
ball-and-stick, CPK space-filling methods, surfaces, etc. Each method highlights certain
molecular properties. A problem with many of these methods is that of performance. Ren-
dering large molecules – for example combining a CPK and a surface representation of a
5000 atom molecule – at a performance of minimal 10 frames a second is currently not
possible. Recent developments have addressed the problem of performance by developing
techniques that enhance the rendering speed at the cost of a less detailed representation of
the molecule. Higher detail representations are used when a part of the molecule is per-
ceptually more important and lower detail representations are used when the part of the
molecule is perceptually less significant.

However, when studying molecular data in virtual environments, the goal is to visual-
ize highly detailed molecule representations at close range. It is likely that the molecule
being visualized will not move adequately far away from the viewer to allow the rendering
algorithm to switch to a lower level of detail. The approach taken in this paper is not to
compromise the level of detail of the representation. Instead, time critical algorithms are
used to compute and render parts of the molecule representation at a high level of detail
at predictable frame rates. This is realized by thezonal map: a data structure containing
geometrical information of the molecule. A view dependent region of interest is defined
in which the representation is rendered at a high level of detail. The size of the region of
interest depends on the time critical algorithms that operate on the atoms in the region.

The motivation for a view dependent region of interest is that this is the area of the
molecule where the user is focusing her attention on. Since the region of interest is close
to the user, we render the molecule representation with a high level of detail. Molecule
representations outside the region of interest need not be computed and rendered at all.

1



The zonal map has many applications: it can be used for the computation and ren-
dering of many molecular representations, data culling, visibility, and adaptive molecular
algorithms. This paper will focus only on using the zonal map for time critical computing
and rendering of the solvent accessible surfaces of the molecule. The rest of the paper is
organized as follows: First, we briefly review related work on molecular visualization and
time critical rendering. In section 3 we discuss the zonal map and give two examples of
time critical algorithms. In section 4 we show how the time critical algorithms are man-
aged, in which we take advantage of pipelining in a multi-threaded environment. Finally,
in section 5 we show some timing results for various molecules.

2 Related work

Numerous academic and commercial efforts have used virtual environments for the study
of molecules. Many have placed emphasis on interactive protein modeling and molecular
dynamics, [1, 2, 3], while others have concentrated on the interactive display of molecule
representation, [4, 5]. Haase et. al., for example, developed techniques for rapid interac-
tion, fast rendering of large molecules (including techniques as level of detail, fast sphere
rendering, multi-pipe rendering, sorting for transparent surfaces), and on perceptual issues
(such as shadows for additional size and position cues). Our approach for computing and
rendering molecular surfaces differs from Haase’s techniques in that we require that our
techniques are applicable to large, time dependent, molecular configurations. Haase’s tech-
niques for surface rendering are less suitable when the molecular structure changes over
time, since they rely on a number of pre-processing steps on the molecule.

Time critical computing for virtual environments has been an extensive topic of study.
Funkhouser and S´equin presented an adaptive display algorithm for interactive frame rates
during visualization of complex virtual environments, [6]. Their algorithm uses hierarchi-
cal model representations in which objects are described at multiple levels of detail. The
predictive algorithm adjust image quality adaptively to maintain a uniform target frame
rate. This is achieved by maximizing a benefit/cost ratio for rendering graphical objects in
a scene. Transitions from one level of detail to the next are based on image-space metrics;
e.g. the ratio of the image-space area of the representation to the distance of the represen-
tation from the viewer. Tests indicate that the algorithm performs at near uniform frame
rates with large walk through models. The zonal map technique differs from the techniques
based on hierarchical model representations in that we require the highest level of detail at
all times. We use the notion of a view dependent region of interest in which the highest
level of detail is used for the molecular surface. Outside the region of interest we may or
may not display the surface. Our experience is that providing maximal detail in the region
of interest outweighs the approach in which less detail is given. Obviously, this observation
is application dependent and will not hold for walkthroughs.

Bryson and Johan report on an alternative method of time critical computing in interac-
tive time-varying visualization environments, [7]. Assuming a scene consists of a number
of individual visualizations, this method carefully assigns a time budget to each individual
visualization. They report on different techniques that may used to allow the visualizations
to meet their time budget. An example is that of alocal isosurface, where there is a fixed
cost per polygon so that the only way to control the time required to compute the isosur-
face is to control the number of polygons. One can start from a point in space and generate
isosurface triangles until the time budget is used up. Although rendering the geometry in
this way is similar to our approach, we compute the geometry differently. The zonal map
provides structural information and properties of the object (in our case a molecule), which
may be used by the visualization techniques to control which fragments of the object are
to be visualized. In particular, we show that the number of triangles is not an optimal time
critical parameter for the computation of the geometry. Instead, we use the number of
atoms and their neighborhoods. In the case of molecular surfaces, the number of atoms is
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directly related to a target frame rate, whereas the number of triangles is not (this is due
to the abundance of cavities in the surface). We show that, by separating the computation
from the rendering, we can use different time critical parameters to achieve the desired
target frame rates.

The definition of a molecular surface – due to Richards [8] – is the surface which an
exterior probe-sphere touches as it is rolled over the spherical atoms of the molecule. There
are many algorithms for analytical computation of molecular surfaces, e.g. [9, 10]. These
algorithms vary in their time complexity. In this paper we use an adapted version of the
algorithm described by Varshney and Brooks. We use this algorithm because the source
code is publicly available, but believe that the zonal map technique will also apply to the
other computation algorithms of molecular surfaces.

3 The Zonal Map

3.1 Data structure

The zonal map is defined as a regular 3D grid of cells. Each atom is represented as a sphere
with a center and a van der Waal’s radius;Si = < ci; ri >. Each cell contains a list of
atoms for which the corresponding sphere intersects the cell.1 The data structure can be
written in pseudo-C code as:

struct zonal_map {
int natoms; /* number atoms in cell */
Atom *atoms; /* list of atoms */

}[NX][NY][NZ];

The resolution of the zonal map depends on various geometric properties of the molecule,
such as its bounding box. Usually, each cell is configured to span approximately 0.2 nm.

We use the Manhattan distance compute the distance between two cells. The Manhattan
distance is the distance between two cells measured along axes at right angles. For example,
two cells atc1 andc2, have a Manhattan distance ofjx1�x2j+ jy1�y2j+ jz1�z2j. Using
the Manhattan distance between two cells, instead of the Euclidean distance between two
cells, simplifies the definition of a region in the zonal map.

Associated with the zonal map are the view dependent notions of afocus celland a
region of interest:

� focus cell

A focus cell is defined as the cell which is at the user’s center of attention. The line of
sight obtained from the user’s head position and orientation is used for this purpose.
The focus cell is computed by first finding all spheres which intersect the line of sight
and selecting the sphere with the smallest distance to the user. The focus cell is the
cell in the zonal map which contains the center of the selected sphere.

We denote the focus cell asCf .

� region of interest

A concentric ring of distancen is defined as the set of cells with a Manhattan distance
of n toCf . The notation:

C(n;Cf ) = fCi jManhattan dist(Ci; Cf ) = ng

is used to denote the concentric ring of distancen.
1Note that a sphere can reside in more than one cell.
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A region of interest of sizeN is the set of cells whose Manhattan distance toCf is
less than or equal toN ;

ROI(N;Cf ) =

N[

i=0

C(i; Cf )

As an example, consider the 2D zonal map with a resolution of 7x7 (see figure 1). A
region of interest of size 3 is shaded. Twelve atoms and their van der Waal’s radius are
shown; three atoms are outside the region of interest. 1 atom resides inC(0). 3 atoms
reside inC(1). 2 atoms reside inC(2). 3 atoms reside inC(3).

Figure 1: A 2D zonal map. The user’s line of sight determines the focus-cell. The Man-
hattan distance to the focus-cell is used to determine concentric rings around the focus-cell
(shaded cells).

The goal of a time critical algorithm operating using the zonal map can be stated as:
Maximize :

ROI(n;Cf ) ; n = 0; 1; ::::; N (1)

Subject to:
Tactual � Ttarget (2)

in which Ttarget is the target time andTactual is the actual time used by the time critical
algorithm operating in the region of interest.

In the next two sections we give examples of time critical compute and render algo-
rithms of solvent surfaces.

3.2 Time critical computation of solvent surfaces

An algorithm for the computation of smooth molecular surfaces is described Varshney and
Brooks in 1993, [10]. The algorithm uses the notion of afeasible cellto determine those
atoms that contribute to the surface of the molecule. A property of this algorithm is that
it can compute the surface by considering only the neighbors of an atom that are close
enough to effect the probe placement. The complexity of the surface generation algorithm
isO(k log k), in whichk is the average number of neighbors per atom.

Although the algorithm can be parallelized, the computation of the surface of a large
molecular configuration may still take a few seconds. The goal of our time critical approach
is to restrict the computation of the surface to user’s region of interest.

This leads to the following time critical algorithm for computing solvent surfaces:

ComputeSurface (in Cf , in Atarget)
n  0
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Aactual  0
while Aactual � Atarget do

foreachAi 2 C(n;Cf )

GenSurface (Ai

S
Neighbors (Ai))

Aactual  1 + Aactual

n  n+ 1

return Aactual

ComputeSurface is parameterized withCf and a time critical target parameterAtarget,
the target number atoms to be processed (determiningAtarget is discussed in the next sec-
tion). After initialization the main loop will repeatedly call the procedureGenSurface
with each atom and its neighbors in the concentric ring. The test in the loop will fail when
Aactual > Atarget is reached. The actual number of processed atoms is returned.

For each atom, the procedureGenSurface returns a list of triangles that contribute to
the molecular surface.

The algorithm can be refined by decreasing the granularity of the for-loop for testing
if Aactual > Atarget after callingGenSurface. This refinement will lead to a more
accurateAactual.

3.3 Time critical rendering of solvent surfaces

The time budget for time critical rendering of solvent surfaces is controlled by the number
of triangles that can be rendered per frame. Each atom may or may not contribute trian-
gles to the solvent surfaces. We denote5(Aj) as the number of triangles that atomAj

contributes to the solvent surfaces.
This leads to the following time critical algorithm to render a solvent surface:

RenderSurface (in Cf , in 5target)
n  0

5actual  0

while5actual < 5target do
foreachAi 2 C(n;Cf )

render (5(Ai))
5actual  5actual + 5 (Ai)

n  n+ 1

return 5actual

RenderSurface is parameterized withCf and the time critical target parameter5target,
the target number triangles (determining5target is discussed in the next section). The main
loop will repeatedly renders the triangles in concentric rings around the focus cell. The test
of loop will fail when the5actual > 5target. The actual number of rendered triangles is
returned.

4 Determining time critical parameters

The zonal map is implemented in PVR, a bus-based architecture for portable VR applica-
tions, [11]. A PVR configuration consists of one or more processes attached to the bus.
Processes synchronize by publishing events to the bus which dispatches these events to
subscribing processes. Shared memory is used to share data structures.

A sample PVR configuration for the zonal map is shown in figure 2. It consists of 4 pro-
cesses: one file, one compute, one render and head tracking process. In this example, the
file process reads in the molecule PDB data sets from disk and constructs the zonal map data
structure. After the data set is read, the file process will publish theTIME STEPevent to
the bus. The head tracker process manages the head positions, publishingHTRACKevents

5



upon each change. The compute process (subscribed to theTIME STEP and HTRACK
event) recomputes the solvent surface and publishes aNEWSURFACEevent when com-
pleted. The render process redraws the surface (triggered by theHTRACKorNEWSURFACE
event).

Events

S:       NEW_SURFACE
TS:     TIME_STEP
HT:     HTRACK

Process
T:      head tracker
Z:    zonal map
C:      compute surf
R:       render

Z T C R

S TS
HT

HT
SHTTS

Figure 2: PVR zonal map configuration.

In addition to event dispatching, the bus manages the actual running times of a process.
The entire time budget,Ttarget for all the processes is distributed among the time critical
processes; i.e. in the simple case that processes are executed sequentially this would be
Ttarget =

P
i T

i
target.

2 The bus uses the following heuristics in order to realize the
constraint in equation 2: When

T i
target=T

i
actual > 1:1

thenT i
target is increased byT i

actual � 1:1. When

T i
target=T

i
actual < 0:9

thenT i
target is decreased byT i

actual � 0:9.
Given each time budgetT i

target, the bus also determines time critical parameters. In
the case of the compute surface algorithm the new target number of atoms,Atarget, will be
adjusted asT i

target � Aactual. In the case of the render surface algorithm the new target
number of triangles,5target, will be adjusted asT i

target � 5actual.

5 Results

The timings have been done on a 4 CPU SGI Onyx2 with InfiniteReality graphics using
PVR.

Table 1 shows timings for the computation and rendering of the molecular surface for
various molecules. A probe-radius of 0.14 nm was used for the computation of the sur-
face. The molecules for which we have made these studies are crambin (1crn), photoactive
yellow protein (2phy), chloroperoxidase(1vnc), FABD44.1/Lysozyme complex (1mlc).3

The third column gives the number of triangles that have been generated for the complete
surface. Column four and five show the render and compute times for the rendering and
generating complete surface. Column six gives the measured number of triangles that are
rendered given a target time of 0.035 seconds.

Table 1 experimentally provides the motivation of using the zonal map and time critical
computing for large, time dependent molecular configurations:

2More complicated cases with two or more parallel processes are possible by changing the entire budget.
Ttarget = max(T0; T1)+T2 is an example of distributing the entire time budget among two parallel processes
T0, T1 sequentially followed byT2.

3The data of these configurations can be obtained from the Protein Data Bank at http://www.rcsb.org/pdb.
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PDB atoms triangles render (s) compute (s) TC render (0.035 s)
1crn 327 16624 0.01 0.4 16608
2phy 976 44306 0.04 0.9 44012
1vnc 4485 177037 0.14 5.4 35373
1mlc 8582 356086 0.33 11.1 35366

Table 1: The number of surface triangles for various molecules. Column 3 shows the
number of triangles for the complete surface. Column 4 and 5 show the render and com-
pute times for the complete surface. Column 6 shows the number of triangles that can be
rendered with a target time of 0.035 seconds.

� The compute time for the complete surface of a moderately large molecular configu-
ration is orders of magnitude too high to be able to generate in a virtual environment.
This might be somewhat amortized by using a parallel version of the surface gener-
ation algorithm.

� Generating the surface takes substantially longer than the rendering of the surface
(measured on a SGI Onyx2). Applying level of detail or simplification algorithms to
the generated surface will only decrease the render time of the surface.

Figure 3 and 4 experimentally illustrates the dynamic behavior of the zonal map and
time critical algorithms. In this experiment we rotate the molecule photoactive yellow pro-
tein (2phy) with respect to a fixed point. This simulates a situation in which the user’s line
of sight is fixed while the molecule is rotated 360 degrees. A new focus cell is computed
for each new angle. The X-axis in each plot denotes the rotation angle. In figure 3, the
Y-axis for the plots denote (a) the frames per second, (b) the number of triangles rendered
(dashed line) versus the number of visible triangles (solid line) for the complete surface.
(c) the number of triangles rendered (dashed line) versus the number of visible triangles
(solid line) using the zonal map.
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Figure 3: Time critical surface rendering with a varying viewing angle, subject to the time
critical parameter5target

The goal of the experiment was to maintain a constant frame rate of 20 frames per
second by adjusting5target when necessary:

1. Plot A shows that the actual frame rate for rendering can be kept constant.

2. Plot B shows that the number of visible triangles (solid line) varies between 7K and
10K triangles.4 The difference between rendered and visible triangles is due to the

4The number of visible triangles has been computed by coloring triangles with identifier information and
reading this information from pixels in the frame buffer.
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way algorithm generates and tessellates the convex spherical, concave spherical, and
toroidal surface patches.

3. Plot C shows that actual number of rendered triangles,5actual, varies between 11K
and 15K per frame (dashed line). The number of visible triangles (solid line) varies
between 4K and 6K triangles.

Comparing plot B and C shows that the number of triangles rendered with the zonal
map is significantly less that the number of triangles rendered for the complete sur-
face.

In addition, the percentage of visible triangles differs substantially in plot B and C.
In the case of the complete surface, approximately 22% of the rendered triangles
are actually visible, while in the case of the zonal map, approximately 40%. This
suggests that the effective amount of work done while using the zonal map is higher
than without using the map.

In figure 4, the Y-axis for the plots denote (a) the frames per second, (b) the number of
atoms used (excluding neighbors). (c) the number of triangles generated per second. The
target time was set to 5 frames per second.
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Figure 4: Time critical surface generation with a varying viewing angle, subject to the time
critical parameterAtarget

The goal of the experiment was to maintain a constant frame rate of 5 frames per second
by adjustingAtarget when necessary:

1. Plot A shows that the actual surface generation frame rate can be kept constant.

2. The actual number of atoms,Aactual, contributing to the surface can be kept con-
stant.

3. The generated number of triangles varies substantially. This is due to areas in the
molecule in which the positions of the atoms are dense, resulting in excessive small
cavities and many overlapping van der Waals radii.

Plots B and C shows that the number of triangles is not an accurate measure to use
for a time critical parameter and that the number of atoms is preferred.

These results show that the user can control the target number of frames for generating
and rendering the surface. Users can independently set the surface generation and the
rendering frame rates. In particular, the update rate of a molecular dynamics simulation is
very different than the update rate of the renderer.

Figure 5 shows the result of the zonal map when applied to rendering the solvent sur-
face of chloroperoxidase(1vnc). The image on the left shows the complete solvent surface
consisting of 177K triangles. The image on the right use the zonal map. The surface con-
sists of 41K triangles, and can be rendered at 10 frames per second. The focus cell is
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located at the small spot in the middle of the right image. A wire frame representation is
used to show the parts of the molecule for which no surface is rendered. Although it is less
apparent from the projections in figure 5, the distance from the eye point to the wire frame
is large compared to the distance to the focus cell.

Figure 5: Solvent surface rendering without zonal map (left) and with the zonal map (right)
for the 1vnc protein. The shown surfaces have 177K and 41K triangles. The focus cell is
draw as a small spot in the right image. A wire frame shows the parts of the protein for
which no surface is rendered.

6 Conclusions

There are a vast number of visualization methods to represent molecules in a virtual envi-
ronment. However, the time needed to generate surfaces of large, time dependent, molecu-
lar configuration is orders of magnitude too high. Applying level of detail or simplification
algorithms to the generated surface will only decrease the render time of the surface. In
this paper we have presented the zonal map, a data structure used for time critical com-
puting of molecule representations. The governing idea is to use the user’s line of sight to
define a region of interest on which time critical algorithms can be applied. We have given
examples of time critical algorithms for generating and rendering a molecular surface. By
comparing the number of rendered triangles we have shown how the time critical versions
of the algorithms compare to the non-time critical versions.

There are three lessons we have learned from this work. First, uniform frame rates can
be realized for the time critical computation and rendering of solvent-accessible surfaces
of protein molecules. Second, by allowing an external controller to determine time critical
parameters, many combinations of time critical algorithms can be coordinated. Third, as a
side effect of view dependent data culling, substantial savings on the amount of work are
obtained when computing and rendering surfaces. In addition, the number of visible trian-
gles in the region of interest can approach the number of visible triangles of the complete
surface.

In the future, we will investigate how the zonal map can be used in interactive simula-
tion. For example, we envision that the viewing direction can be used for steering adaptive
grid refinement techniques, in which fine grain grids are used in the region of interest and
coarse grids are used elsewhere.
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