Dynamic Scheduling for Large-Scale Distributed-Memory Ray Tracing

Paul A. Navrátil1, Donald S. Fussell2, Calvin Lin2 and Hank Childs3

1Texas Advanced Computing Center, The University of Texas at Austin
2Department of Computer Science, The University of Texas at Austin
3Lawrence Berkeley National Laboratory

Figure 1: The datasets used in this paper. From left to right: the Visible Female, Richtmyer-Meshkov instability, particle density of an n-body cosmological simulation, Viatronix abdomen CT scan.

Abstract
Ray tracing is an attractive technique for visualizing scientific data because it can produce high quality images that faithfully represent physically-based phenomena. Its embarrassingly parallel reputation makes it a natural candidate for visualizing large data sets on distributed memory clusters, especially for machines without specialized graphics hardware. Unfortunately, the traditional recursive ray tracing algorithm is exceptionally memory inefficient on large data, especially when using a shading model that generates incoherent secondary rays. As visualization moves through the petascale to the exascale, disk and memory efficiency will become increasingly important for performance, and traditional methods are inadequate.
This paper presents a dynamic ray scheduling algorithm that effectively manages both ray state and data accesses. Our algorithm can render datasets that are larger than aggregate system memory, which existing statically scheduled ray tracers cannot render. For example, using 1024 cores of a supercomputing cluster, our unoptimized algorithm ray traces a 650GB dataset from an N-Body simulation with shadows and reflections, at about 1100 seconds per frame. For smaller problems that fit in aggregate memory, but are larger than typical shared memory, our algorithm is competitive with the best static scheduling algorithm.

1. Introduction
Ray tracing is an important method for creating high quality images, because it offers a broad range of physically-based shading options, including shadows, reflections and interactions with participating media. Such effects, which are often found in movies and photo-realistic images, are increasingly used for scientific visualization, because they help viewers better understand spatial relationships in data [GP06]. Of course, any method, including ray tracing, that must realistically simulate global illumination will be much more computationally expensive than the simpler methods that are traditionally used for real time graphics on GPUs.

© The Eurographics Association 2012.
To speed up ray tracing, it is tempting to process rays in parallel. This parallelism, however, is only efficient when it makes effective use of the memory system. Ideally, the parallel tasks would operate on the same memory-resident data, because if the working set grows larger than available memory, contention and thrashing significantly reduce overall performance. Unfortunately, traditional recursive ray tracers cannot bound the size of their working sets because after the first generation of rays (“primary” or “camera” rays), divergent rays in subsequent ray generations typically travel through different regions of space accessing a large amount of object data, leading to dramatically increased working sets.

For small data sets, the performance impact of incoherent secondary rays can be masked by a shared memory system, where the working sets of all parallel tasks can be kept resident. However, most large scientific simulations are now run on distributed memory supercomputers [TOP11] and produce ever-increasing amounts of data per timestep [JR07]. Such data are typically too large to be relocated for analysis and are typically too large for a single shared-memory resource. As a result, the machine used to produce the data must be the same machine to ray trace the data. Further, it is impractical, and sometimes impossible, to pre-compute highly-tuned acceleration structures for these large datasets: The pre-processing would require significant additional machine-time and disk space, and the resulting acceleration structure would consume significant additional DRAM, sometimes factors larger than the original dataset [DGBP05]. As visualization moves to the petascale and beyond, disk- and memory-efficient algorithms will be essential for good performance.

To date, most parallel ray tracing research has been limited to either ray tracing on shared-memory machines [PWL*98, BSD*06] or to ray casting (tracing only first-generation rays) on distributed memory architectures [CDM06, PYN*99, HEC10]. Recent work on distributed-memory ray tracers [RJ96, RCJ99, WSB01, DPH*03, DGBP05, IBH11] has demonstrated only modest scaling and has been hampered by various system limitations, including limited interconnect bandwidth and limited disk I/O bandwidth.

In the serial realm, Pharr et al. [PKGH97] reformulate the ray tracing solution to allow more flexible scheduling of ray-object intersection calculations. This formulation groups rays and data into coherent work units, known as ray queues, which present a trade-off: They increase locality (ray coherence) at the cost of increased memory state. In the parallel realm, the tradeoffs are much more complex because of the additional need to consider load balance. In addition, Pharr et al.’s use of disk to cache excess ray state can become intractable in a massively parallel environment due to I/O costs, specifically file system contention from hundreds to thousands of processes performing extra I/O for rays both frequently and consistently throughout the rendering.

This paper extends this idea of flexible scheduling to support parallel ray tracing. The result is a novel approach to distributed memory ray tracing that uses dynamic ray scheduling to improve memory locality while maintaining load balance. The basic idea is to reorder ray traversal and intersection calculations based on the data that are resident on each processor. By building locally coherent work units of rays and data, our ray tracer has the flexibility to schedule these work units across the parallel environment to achieve better overall system performance. We show that dynamic scheduling of rays and data can improve performance for large datasets where disk I/O limits performance. Our algorithm is able to ray trace, with shadows and reflections, a 650GB n-body dataset on a 1024 node cluster, which a statically scheduled ray tracer could not render at all. For a smaller dataset that a static scheduler can complete, our dynamic scheduler reduces data loads by 10× to 48×. Our scheduler also exhibits better performance than static strategies for volumetric ray casting.

The remainder of this paper proceeds as follows. We discuss related work in Section 2. We present our approach in Section 3. We describe our testing methodology in Section 4, and we present our results in Section 5. We then conclude with a discussion of future work.

2. Related Work

In this section, we place our approach in the context of prior work and other approaches to large-scale ray tracing.

2.1. Improving Memory Access Coherence

The importance of using data coherence to improve rendering performance has been known for over thirty years [SSS74]. However, it was only recently discovered that by reordering ray computations and by queueing rays with data in a spatially localized manner, the number of accesses to data on disk can be significantly reduced [PKGH97]. The same principle improves memory performance [SCL08] and cache performance [NFLM07]. Each of these works demonstrates that the additional ray coherence is achieved at the cost of additional state to be maintained. Ray reordering alone can improve SIMD-instruction utilization [BWB08], but it does not achieve the same level of spatial coherence as reordering and queueing together, particularly for incoherent secondary rays.

2.2. Shared-Memory Ray Tracing

Most parallel ray tracers assume a shared address space architecture [PWL*98, PPL*99, RSH05, BSD*06, WMG*07, WPS*03]. While these systems achieve impressive rendering performance, the shared address space does not map to
supercomputer clusters, and it tends to hide rather than expose load balance concerns from the programmer. Explicitly out-of-core ray tracers [WDS04, GMG08] also target shared memory systems, and their caching structures, if extrapolated to the distributed memory case, are similar to the distributed shared memory caching techniques described below.

2.3. Distributed-Memory Ray Tracing

In distributed memory, non-queueing ray tracers face a tradeoff between coherence—achieved by tracing ray groups that pass through contiguous pixels—and load balance—achieved by tracing disparate pixels in hopes of balancing the rendering work [SG88]. These systems typically optimize performance by relying on an expensive preprocessing step that improves data coherence, such as a low-resolution rendering pass to pre-load data on the processes [GP90], or an expensive pre-built acceleration structure to guide on-demand data loads [WBS03, WSB01].

DeMarle et al. [DGBP05, DGP04, DPH03] use distributed shared memory to hide the memory complexities from the ray tracer. Their system achieves interactive performance for simple lighting models, but disk contention ruins performance if the scene does not fit in available memory. Moreover, their results rely on a preprocessing step to distribute the initial data, a step that typically takes several hours for a several gigabyte dataset. Izé et al. [IBH11] update this approach using the Manta ray tracer [BSP06] and modern hardware, but they experience similar memory and scaling limitations while retaining the expensive preprocessing step.

Reinhard et al. [RCJ99, RJ96] distribute data across the cluster and assign tasks to processes based on load. This approach keeps camera and shadow rays on the originating process, while passing reflection and refraction rays to a process that contains the data required to process them.

To balance load, the Kilauea system [Kat03, KS02] distributes the scene across all processes, but it replicates each ray on each process. This system requires scene data to fit entirely in aggregate memory, and it is unclear whether its small, frequent ray communication will scale beyond the few processes reported. It is also unclear whether the system can accommodate scientific data that does not have pre-tessellated surfaces.

To date, distributed memory ray tracers that queue and reorder rays have only been implemented on specialized hardware [DK00] and on a single workstation with GPU acceleration [AL09, BBS*09, AK10], solutions which are not feasible for the large datasets produced by supercomputing clusters.

2.4. Large-Scale Direct Volume Ray Casting

Recent work in large-scale ray casting uses a fixed data decomposition to render images across hundreds-of-thousands of processes [CDM06, HEC10, PYR09]. These approaches process the entire dataset in core using a domain decomposition, rendering each sub-domain simultaneously and then composing the results into the final image. This approach, which is a form of speculative execution, is effective because there is a fixed and regular amount of work to perform in the absence of reflections. When reflections are included, however, this fixed data approach is prone to load imbalance. Further, the speculative rendering wastes work when generated sub-domain images are rejected by the final image composition pass.

3. Algorithm Overview

This section describes the specific challenges for distributed-memory ray scheduling, the baseline approaches we modeled, and our dynamic scheduling algorithm.

3.1. Scheduling Considerations

While serial ray scheduling implementations tradeoff increased locality with additional state, moving to a distributed parallel environment adds load balancing to the list of concerns. With this added variable, it is not clear how one can apply a serial scheduling algorithm in a parallel environment. A successful parallel schedule will strike a balance among locality, state size and load balance to provide both memory efficiency and high utilization. Because the characteristics of ray computations can change over the course of generating a single image, such as from tracing coherent camera rays to incoherent diffuse reflections, we expect that a dynamic schedule will provide improved performance compared to a static baseline. Pseudocode for the tested schedules can be found in Figures 3 – 6.

3.2. Static Ray Scheduling Baselines

To establish a performance baseline, we implement two static schedules that represent direct extensions of a Pharr-like approach to the parallel domain: an image-plane decomposition, where a subset of camera rays and their child rays are traced to completion on each processor; and a static domain decomposition, where domains are assigned to a particular process and rays are sent among processes as the rays move across domains.

Static Image-Plane Decomposition — rays are evenly divided among processes by contiguous image-plane decomposition, and data is loaded on each process as ray computation requires. At each scheduling step, each process selects the domain with the most local rays queued. This schedule optimizes for load balance, but it may exhibit poor locality. This strategy is similar to previous image coherence strategies [BSP06, DGBP05, DGP04, DPH03, GP90, PSL*98, PSL*99, WBS03, WSB01]. This schedule also corresponds to the demand-driven component of the schedule.
ProcessQueue(queue)
{
 while (! queue.empty()) {
 r = q.top();
 q.pop();
 PerformRayOperations(d, r, q);
 if (! RayFinished(r)) Enqueue(queues, r);
 else ColorFramebuffer(r);
 }
}

Figure 2: Pseudocode for ProcessQueue(), used in each schedule pseudocode (see Figures 3 – 6). PerformRayOperations() includes traversal, intersection, shading and spawning new rays.

ImagePlaneTrace()
{
 rays = GenerateRays();
 queues = EnqueueRays(rays);
 while (! queues.empty()) {
 q = FindQueueWithMostRays(queues);
 d = LoadDomain(q.domain_id);
 ProcessQueue(q);
 queues.delete(q);
 }
 MergeFramebuffers();
}

Figure 3: Pseudocode for Static Image-Plane Decomposition Schedule.

used by Reinhard et al. [RCJ99, RJ96]; and it directly parallelizes a Pharr-like approach by using multiple serial instances run in parallel, where each seeded with a subset of camera rays. See the pseudocode in Figure 3.

Static Domain Decomposition — the dataset is spatially subdivided, and these smaller domains are distributed among the available processes, typically in round-robin order. A process can be assigned multiple domains if there are more domains than processes, or it can be assigned no domain if there are more processes than domains. Domain data is loaded at first use, rather than prefetched. Rays are sent to the process that contains data needed for computation. At each scheduling step, each process selects the assigned domain with the most local rays queued. This schedule optimizes for locality, but it may exhibit poor load balance. This strategy is similar to previous domain decomposition strategies [DK00, DS84, KNK*88] and to the data parallel component of the scheduling strategy in Reinhard et al. [RCJ99, RJ96]. This decomposition also corresponds to the data distribution used in large-scale volume renderers [CDM06, HEC10, PYR*09]; and it directly parallelizes a

DomainTrace()
{
 rays = GenerateRays();
 queues = EnqueueRays(rays);
 last_d = NONE;
 done = FALSE;
 while (! done) {
 if (! RayFinished(r)) Enqueue(queues, r);
 else ColorFramebuffer(r);
 }
}

Figure 4: Pseudocode for Static Domain Decomposition Schedule.

Pharr-like approach by using multiple serial instances run in parallel, where each is assigned a set of domains and rays are sent among the processes. See the pseudocode in Figure 4.

3.3. Dynamic Scheduling Algorithm

Our dynamic scheduling algorithm combines the benefits of the image-plane and domain decompositions to adapt to the changing characteristics of a ray tracing rendering. Our algorithm begins with an image-plane distribution of rays, with potentially duplicated domains across processes if many rays are concentrated in a particular domain. As the rendering progresses, the schedule shifts to a domain-decomposition style where rays are sent between processes and data remains resident. In contrast to the approaches above, our algorithm takes real-time feedback from the rendering to improve the scheduling for coherence and maintain high utilization.

Dynamic Schedule — rays are evenly divided across processes. After the initial ray distribution, each scheduling step sends rays to processes that already contain the domain data required for intersection. After swapping rays, each process operates on the domain with the most rays waiting for it. Processes that have domain data not needed by any rays may be assigned a new domain that is immediately needed by current rays. See the pseudocode in Figures 5 and 6.

The advantage of our dynamic schedule is its ability to reorder rays and defer computation until the required data has been loaded into memory. We expect that the dynamic schedule will see a reduced number of domain loads when
ScheduleNextRound(loaded_domain, queues) {
 foreach q in queues
 queue_info.insert(q.domain_id, q.size());
 SendQueueInfoToMaster(loaded_domain, queue_info);
 if (isMaster()) {
 ReceiveQueueInfo(loaded_domains, queue_infos);
 foreach p in ProcessCount()
 foreach q in queue_infos[p]
 to_schedule.insert(q.domain_id);
 is_loaded.insert(loaded_domains[p], p);
 foreach p in ProcessCount()
 if (!to_schedule.contains(loaded_domains[p]))
 to_evict.insert(p);
 to_schedule.insert(loaded_domains[p], p);
 foreach domain_id in to_schedule
 if (is_loaded.contains(domain_id)) {
 proc_id = is_loaded[domain_id];
 schedule.insert(proc_id, domain_id);
 } else { to_assign.insert(domain_id); }
 while (!(to_assign.empty() || to_evict.empty())) {
 domain_id = to_assign.top();
 proc_id = to_evict.top();
 schedule.insert(proc_id, domain_id);
 to_assign.pop();
 to_evict.pop();
 }
 SendScheduleToAll(schedule);
 }
 ReceiveSchedule(schedule);
 return schedule[MyProcessId()];
}

DynamicRayWeightedTrace() {
 rays = GenerateRays();
 queues = EnqueueRays(rays);
 q = FindQueueWithMostRays(queues);
 d = LoadDomain(q.domain_id);
 last_d = q.domain_id;
 done = FALSE;
 while (! done) {
 if (q.domain_id != last_d) {
 d = LoadDomain(q.domain_id);
 last_d = q.domain_id;
 }
 ProcessQueue(q);
 queues.delete(q);
 q = ScheduleNextRound(last_d, queues);
 done = NoProcessHasRays();
 }
 MergeFramebuffers();
}

Figure 5: Pseudocode for ScheduleNextRound(), called in the dynamic schedule.

Figure 6: Pseudocode for Dynamic Ray-Weighted Schedule. ProcessQueue() is defined in Figure 2 and ScheduleNextRound() is defined in Figure 5.

4. Methodology

This section describes our experimental methodology, including the hardware platform, the datasets, and the rendering methods that we used to evaluate our scheduling strategy.

4.1. System Configuration

All experiments are run on Longhorn, a 2048 core, 256 node cluster hosted at the Texas Advanced Computing Center. Each node contains two four-core Intel Xeon E5540 “Gainestown” processors and 48 GB of local RAM. All nodes are connected via a Mellanox QDR InfiniBand switch, and we use MVAPICH2 v1.4 for our MPI implementation. Our ray tracer is implemented within VisIt [CBW+11], a visualization tool designed to operate in parallel on large-scale data. We use the VisIt infrastructure to load data and to generate isosurfaces; we implemented all code related to ray tracing and ray scheduling. To focus on the effects of the schedules, we turn off all caching within the VisIt infrastructure, so that only one dataset is maintained per process. Each load of non-resident data accesses the I/O system.

All MPI communication in our implementation is two-way asynchronous. This implementation decision impacts dynamic schedules most, since they have the highest degree of communication among processes.

4.2. Datasets

We perform a scaling study of our approach using datasets of various size and granularity from four domains: the visible female dataset from the National Library of Medicine, the Richtmyer-Meshkov instability dataset from Lawrence Livermore National Laboratory, a particle density field from an n-body cosmological simulation and a high-resolution CT scan of an abdominal cavity from Viatronix. The particular data sizes and decompositions on disk are presented in Table 1. Sample images of the data are given in Figure 1.

For each dataset, we extract an isosurface using VisIt’s VTK-based isosurfacing and internal BVH acceleration structure, and we then ray trace the returned geometry using two directional lights and, for the n-body particle data, two-
Table 1: Dataset Sizes and Decomposition

<table>
<thead>
<tr>
<th></th>
<th>Resolutions</th>
<th>Decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Female</td>
<td>512 × 512 × 1734</td>
<td>24 domains</td>
</tr>
<tr>
<td>Richtmyer Meshkov</td>
<td>2048 × 2048 × 1920</td>
<td>960 domains</td>
</tr>
<tr>
<td>CT Scan</td>
<td>512^3</td>
<td>125 domains</td>
</tr>
<tr>
<td>Cosmology</td>
<td>512^3</td>
<td>512 domains</td>
</tr>
</tbody>
</table>

bounce reflections. While the isosurface extraction and BVH generation is performed each time the dataset is loaded from disk, the cost is small relative to the I/O cost. These costs are all included in the rendering times in Section 5. We do not save the BVH since that would incur additional disk and I/O costs. In addition, we use the coarse acceleration structure from the spatial decomposition implied by the disk image of each dataset, since large simulation-derived datasets are typically stored across multiple files. For the n-body particle density field, we also perform direct volume ray casting, as described by Levoy [Lev88, Lev90].

5. Results

This section evaluates our three scheduling strategies on the datasets described in Section 4. Our primary results are based on rendering 2048 × 2048 images of each dataset. In addition, we provide results that estimate the impact of a more optimized ray tracer by rendering 512 × 512 images of each dataset, which keeps data access costs about the same while reducing the ray computation cost. The difference between the 2048 × 2048 results and the 512 × 512 results approximates improved ray operation performance, as ray operations are a smaller fraction of total execution time.

We find that the image-plane schedule performs best for cases where ray operation costs (traversal and intersection) outweigh data I/O costs. Each process runs continuously, since there is no synchronization, and because I/O costs are small compared to ray operation costs, there is little penalty for redundant data loads. However, when I/O costs outweigh ray operation costs, typically the case for large datasets, the redundant data loads overcome the benefit of continuous parallel execution. As a result, the image-plane schedule performs significantly worse than the domain and ray-weighted schedules. Figure 7 demonstrates this effect on the small abdominal CT scan dataset. When few primary rays are cast, the I/O costs are a significant portion of overall runtime, and the image-plane schedule performs poorly. However, when many primary rays are cast, the I/O costs shrink relative to the ray operation costs, and the relative performance of the image-plane schedule improves. The static image-plane schedule can be as much as 78% faster than dynamic scheduling, since the I/O costs are amortized over many ray calculations. The results of Figure 7 are an outlier in two respects: First, our tracer is unoptimized, which artificially inflates the cost of ray calculations, and second, the abdominal CT scan isosurface is our smallest dataset, and our technique is targeted at much larger data. Nevertheless, this result suggests that if the data can reside completely in memory, an image-plane decomposition is a competitive technique. We see this effect exclusively on our smaller datasets: for the larger datasets discussed below, the I/O costs always dominate the total runtime, and the image-plane schedule performs poorly.

When rendering scenes larger than the memory available to a single process but that can still fit within aggregate memory, the domain and dynamic ray-weighted schedules perform significantly better than the image-plane schedule. In particular, the domain schedule performs best when the available aggregate memory can hold the dataset, so that each process receives one data domain. Since each domain is resident on a process, there is no I/O beyond the initial load. This effect can be seen in Figure 8. For the Richtmyer-Meshkov instability dataset, the ray-weighted schedule runs 124% faster than the domain schedule at 64 processes, but the domain schedule runs 64% faster at 1024 processes, where each process receives a single domain.

When rendering scenes that are larger than available aggregate memory, dynamic scheduling provides significant

© The Eurographics Association 2012.
performance gains, as shown in Figure 9. When data load costs dominate execution time, which will be increasingly true as simulations and datasets increase, the dynamic ray-weighted schedule improves performance 8× to 14× over static schedules. When ray computation costs are large, the dynamic ray-weighted schedule still improves performance 3× to 5× over static schedules.

The performance gains of dynamic scheduling are primarily due to its ability to reduce data domain loads from disk. Figure 10 shows that ray-weighted dynamic scheduling can reduce data loads by 10× to 48×, regardless of ray computation load. We note that the image-plane schedule always touches more domains as the number of processes increases, since each process must load a domain if even one ray requires it. Under the domain schedule, a process will repeatedly swap among its assigned sub-domains. This swapping only stops when there are sufficient processes available to assign a single domain to most processes, as is the case with the Abdominal CT scan dataset. We also note some oscillation in the result trends, particularly for the domain schedule and for small processor counts. This occurs because the order in which domains are processed depends in part on the total number of processors available, which affects the order in which child rays are both generated and processed and results in different data access patterns; also, the round-robin domain assignment for the domain schedule causes each processor to receive a different set of domains, which can cause a particular process to load more data.

5.1. Scaling

To test the scalability of our approach, we ran the dynamic schedule on large versions of our datasets (exact details are in Table 1). The static schedules failed to complete on these larger datasets. The domain schedule fails when the ray queue becomes too large for a particular process to contain all queued rays along with the currently-loaded sub-domain. The image-plane schedule fails to finish within runtime limits on Longhorn. Figure 11 shows how the ray-weighted dynamic schedule performs on large datasets. We believe that the increased runtime for the largest number of processes tested is due to increased communication overhead while available parallelism from the data was exhausted.

Figure 12 compares strong scaling speedup for the three schedules. Dynamic ray-weighted scheduling exhibits monotonically increasing speedup until the scaling limit of the problem size is reached. The slope of the speedup line might be improved with ray calculation optimizations and interprocessor communication optimizations for exchanging rays among processes.
5.2. Effects of Decomposition on Disk

Because the I/O system has a significant impact on performance, we evaluate the performance of different approaches to decomposing the dataset on the disk. We organize the n-body datasets with two levels of subdivision, and we find that dividing the data into many spatially distinct sub-domains can improve scheduling performance. If there are too few sub-domains, the flexibility of the scheduler is limited, but if there are too many sub-domains, the data become fragmented, which limits the number of rays queued at each domain. Empirically, a good balance occurs when the number of sub-domains is several times the number of processes used to render them. The execution times presented in Table 2 are for direct volume ray casting.

6. Future Work and Conclusion

In this paper, we have presented a dynamic scheduling approach to large-scale distributed memory ray tracing. Our ray-weighted dynamic schedule is robust across many data sizes and rendering modes, and it provides an order of magnitude speedup over static scheduling methods when data access costs dominate the execution time. In addition, our dynamic schedule can render datasets that cannot be rendered by a static schedule. Our ray tracer has not been thoroughly optimized, and we have argued that as ray calculation costs are reduced through optimization, the gap between dynamic and static schedules will further increase.

We have just begun to explore the space of possible dynamic schedules. Further work is warranted to identify schedules that achieve particular system goals. In particular, it may be possible to schedule a sub-domain across several available processes, though this may increase both I/O and communication costs. A dynamic schedule could also speculatively load data based on anticipated ray travel, particularly for an animation sequence where rendering information from the previous frame is available. We anticipate that moving to a one-way communication model will further
Figure 12: Schedule Speedup — Performance of image-plane schedule, domain schedule and dynamic schedule for direct volume ray casting and ray tracing an isosurface of a 5123 n-body particle density field (higher is better). The isosurface render includes shadow rays for two directional lights and 16× sampled, two-bounce diffuse reflections.

increase the performance benefit of dynamic schedules over static schedules.

Acknowledgments

Thanks to Kelly Gaither, Karl Schulz, Keshav Pengali, Bill Mark and the anonymous reviewers for their helpful comments. We also thank Ilian T. Iliev and Paul Shapiro for the n-body particle data. This work was funded in part by National Science Foundation grants ACI-9984660, EIA-0303609, ACI-0313263, CCF-0546236, OCI-0622780, OCI-0726063, and OCI-0906379; an Intel Research Council grant; and an IC2 Institute fellowship.

References

