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Abstract

Successful in-situ and remote visualization solutions must have minimal storage requirements and account for

only a small percentage of supercomputing time. One solution that meets these requirements is to store a compact

intermediate representation of the data, instead of a 3D volume itself. Recent work explores the use of attenuation

functions as a data representation that summarizes the distribution of attenuation along the rays. This represen-

tation goes beyond conventional static images and allows users to dynamically explore their data, for example,

to change color and opacity parameters, without accessing the original 3D data. The computation and storage

costs of this method may still be prohibitively expensive for large and time-varying data sets, thus limiting its ap-

plicability in the real-world scenarios. In this paper, we present an efficient algorithm for computing attenuation

functions in parallel. We exploit the fact that the distribution of attenuation can be constructed recursively from a

hierarchy of blocks or intervals of the data, which is a highly parallelizeable process. We have developed a library

of routines that can be used in a distance visualization scenario or can be called directly from a simulation code to

generate explorable images in-situ. Through a number of examples, we demonstrate the application of this work

to large-scale scientific simulations in a real-world parallel environment with thousands of processors. We also

explore various compression methods for reducing the size of the RAF. Finally, we present a method for computing

an alternative RAF representation, which more closely encodes the actual distribution of samples along a ray,

using kernel density estimation.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The growing power of parallel supercomputers has en-
abled scientists to model increasingly complex physical phe-
nomena. Scientific simulations generate output that is usu-
ally volumetric, large-scale, multi-dimensional, and time-
varying. Visualizing such data sets may be a time-consuming
and resource-intensive task, especially if the data is unstruc-
tured or the rendering is performed at high-resolution or em-
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ploys an expensive lighting model, such as global illumina-
tion. This problem is exacerbated when the data is visualized
remotely or when the rendering or interaction with the data
is performed on low-end devices.

A large body of work is dedicated to reducing the amount
of data that needs to be generated, stored, transferred over
the network, and accessed to visualize a data set. Some of the
recent and practical methods include in-situ and distance vi-
sualization. When the data is visualized in-situ, it is rendered
while the simulation is running. In this case, only an image
of the data is stored and not the 3D data itself, which results
in significant space savings. When the visualization is per-
formed remotely, a powerful cluster performs the expensive
rendering computations. Then, only the result of these com-
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putations - an image - is served to the user. In both of these
approaches, the user is presented with a static image. The
lack of explicit 3D information in a static image prevents the
user from changing the properties of the data depicted in it.
For example, a user cannot modify the transfer function after
an image has been rendered.

A number of existing solutions enable exploration in
transfer function space by generating a collection of images,
where each image is rendered with different transfer function
settings. Transfer function changes are then simulated by
synthesizing new images from the training set. Other image-
based rendering solutions focus on providing fast transfer
function changes by caching view-dependent samples. Both
of these approaches are not practical for in-situ and distance
visualization. Rendering each time step multiple times with
different parameters can be time-consuming, especially if
the users expect the ability to make transfer function changes
of fine granularity or within a large range. Caching view-
dependent samples for each time step may also be pro-
hibitively expensive in terms of storage space.

Another approach to preview or exploratory visualization
is to use intermediate representations of volume data. As an
example, Tikhonova et al. [TCM10b] develop a novel ap-
proach for interactive visualization and exploration based on
Ray Attenuation Functions (RAF), which encode the distri-
bution of samples along each ray. This representation can
be thought of as a compact cache of attenuation values. The
RAF not only reduces the computational complexity of data
visualization and exploration, but also enables users to de-
fer these operations to a later time. Even though this repre-
sentation is very compact, it is powerful enough to enable
the users to dynamically filter information presented on the
screen. For example, users can modify opacity and color of
the features depicted in volume rendered images. However,
the application of this approach to in-situ and remote visu-
alization demands efficient solutions to the following two
challenges: (1) a compact intermediate data representation
that can be efficiently stored on disk or distributed over a
network; (2) an efficient mechanism for obtaining such a
representation, even for large-scale data.

In this paper we address both of these challenges. We pro-
vide an efficient and practical algorithm for computing at-
tenuation functions in parallel for very large datasets. We
extend the RAF representation to interval attenuation func-
tions (IAF). The IAF are computed for every part of a large
data set in a distributed environment and then the local re-
sults are combined into a global data representation. Thus,
the running time of the RAF computation algorithm is re-
duced from O(n3) to O(n3/p+C), where n is the number
of voxels, p is the number of processors, and C is composit-
ing (O(log(p)) steps) time. Each processor performs com-
putations on O(n3/p) voxels. We demonstrate that this pro-
cess can be implemented in a real-world parallel environ-
ment with relative ease. We develop a library of routines that

can be used in the distance visualization scenario or can be
called directly from a simulation code to generate explorable
images in-situ. In addition, since the attenuation functions
encode image-like data, they can be stored compactly using
conventional data reduction and image compression strate-
gies, such as quantization and lossless PNG compression.
We also use statistical modeling of the ray attenuation func-
tions to obtain compression that better preserves the quality
of the information stored in the RAF. We observe that at-
tenuation functions are weighted histograms that represent
the distribution of attenuation along a ray traversing a vol-
umetric object. Therefore, we can leverage parametric and
non-parametric models for probability distribution functions
to encode the RAF more efficiently.

The ability to obtain the RAF faster and to encode
them more efficiently is crucial for in-situ and remote vi-
sualization. While simulation time dominates the computa-
tional time of large-scale scientific studies, our methodol-
ogy allows scientists to allocate computation time to pre-
visualization and storage of attenuation functions. We envi-
sion our contribution will enable scientists to store more of
the data they are currently forced to discard. Since the in-
termediate representation is explorable, we also expect that
the combination of the intermediate representations and the
saved volume data will enrich their exploratory experience.

Using our technique, users can easily steer a simulation
by computing compact representations of their large-scale
data while the simulation is running. They can quickly ex-
periment with different transfer function parameters on their
laptop or mobile device. Once they are satisfied with the set-
tings, they can instruct the system to use them for the rest of
the simulation. Our technique can also be used for remote or
distance visualization. Instead of waiting for a remote clus-
ter to volume render an image and to transfer it over the net-
work, the users can work with an intermediate representa-
tion and instruct the remote system to volume render a high-
resolution image only when absolutely necessary.

2. Related Work

Data Reduction Techniques. Previous solutions focus on
reducing the amount of data that needs to be generated,
stored, transferred over the network, and accessed to vi-
sualize and to explore large-scale data sets. Data reduc-
tion techniques are most commonly used for reducing the
data to a more compact representation for efficient subse-
quent analysis and visualization. Some of the most common
methods include subsampling in the spatial or temporal do-
mains (i.e., skipping time steps), scalar and vector quantiza-
tion, transform-based compression, and feature extraction.
The choice of an appropriate method depends on the stor-
age space constraints, network bandwidth, the acceptable
amount of error and precision in visualization, and some-
times on the parallel domain decomposition used in a par-
ticular simulation code. It is also possible to employ several
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data reduction methods together (e.g., quantization and sub-
sampling) to reduce the data to an even greater extent.

Typically, data reduction is a post-processing step. The
output size of scientific simulations can also be reduced in-
situ. The in-situ approach is particularly effective because
it decreases resource requirements for all subsequent data
transmission, storage, and processing tasks. However, the re-
duced volume data still has to be visualized using a 3D algo-
rithm, such as direct volume rendering, which requires many
(often redundant) accesses to volume data. Another solution
is to extract physically-based features of interest, which are
generally much smaller than the original data. This requires
extensive domain knowledge, especially for time-varying
data sets. An overview of data reduction methods in the con-
text of in-situ processing is provided in [MWYT07].

Image-based Rendering. Image-based rendering meth-
ods provide an alternative to storing 3D data. Most of these
methods generate a collection of images or intermediate lay-
ers that can be used to explore one or several volume render-
ing parameters. For example, He et al. [HHKP96] and Marks
et al. [MAB∗97] propose the pre-computation of a collection
of images, each of which contains a different combination of
opacity and color settings. Users can browse such a collec-
tion as an alternative to direct manipulation in 3D space. To
alleviate the need for generating a large number of images,
these approaches can be improved with automated analy-
sis [WQ07] or effective user interfaces [RPSH08, RBG07].
An alternative to exploring the image-space of volume ren-
dering is to use intermediate results. These can be cached re-
sults from volume data [MCP91,LP03], compressed runs of
structured [SCM03] or unstructured [SLSM06] volume data,
or alpha layers extracted from a set of images [TCM10a].
Although in the same spirit of these approaches, other layer-
based techniques, such as semantic layers [RBG07], opac-
ity [RSK06] and feature peeling [MMG07] are designed for
improving the visibility of features in 3D volume rendering.
As image-based representations, these can also be useful for
caching intermediate rendering results.

These approaches are not always practical for in-situ and
distance visualization. The pre-computation of a training set
for multiple opacity and color combinations is prohibitively
expensive for these scenarios. Peeling approaches require
access to the full 3D data when opacity values change, and
image caches get invalidated when opacity changes result
in a cache miss. In this paper, we focus on attenuation his-
tograms as intermediate representations and show that they
can be efficiently computed for in-situ visualization, are
compact, and can be used to explore opacity and color map-
pings of volume data.

Parallel and Distributed Rendering. In this paper, we
focus on large-scale data sets, generated by parallel scientific
simulations. Our goal is to develop an intermediate represen-
tation as well as an efficient algorithm to compute it in the
parallel or distributed scenario. Typically, parallel rendering

solutions consist of the following stages: data partition and
distribution, rendering, image compositing, and image de-
livery. The three well-known parallel rendering approaches
include sort-first, sort-middle, and sort-last, defined by Mol-
nar et al. [MCEF94]. Due to its scalability and the simplicity
of its load balancing strategy, sort-last rendering is widely
used by the visualization community [AP98, EP07], to cite
a few. Sort-last rendering requires a final image composit-
ing stage which could be very expensive due to the amount
of inter-processor communication involved. The most com-
monly used image compositing methods, developed for sort-
last parallel volume rendering, are direct-send [Neu94] and
binary swap [MPHK93]. These two methods require differ-
ent numbers of messages exchanged among the N composit-
ing processors. The direct-send method requires all-to-all
communication and the number of exchanged messages is
bounded by O(N2). The binary swap method balances the
compositing workload using a binary tree style compositing
process, thus reducing the number of required messages to
O(Nlog(N)). However, the binary swap method needs N to
be a power of two. In this paper, we use the 2-3 swap parallel
image compositing algorithm by Yu et al. [YWM08], which
is a generalization of the binary swap algorithm and a subset
of the Radix-k algorithm [PGR∗09]. The 2-3 swap algorithm
requires only O(Nlog(N)) messages and can use an arbitrary
number of processors. The algorithm involves a multistage
process and partitions the processors into groups using the 2-
3 compositing tree. At any image-compositing stage, a pro-
cessor communicates only with the other processors in its
group, thus reducing the number of message exchanges. The
2-3 swap method scales well to thousands of processors and
has been applied in the in-situ visualization system for real-
world large-scale combustion simulations [YWG∗10].

3. Parallel Preview and Exploration Framework

A previewing and exploration system for visualization
should enable users to quickly visualize their data and to im-
mediately see the result of a change in visualization param-
eters. These capabilities are essential for steering a simula-
tion in the in-situ scenario. Remote visualization users can
experiment with different visualization parameters on their
local machine and only request the system to render a high-
resolution image, when absolutely necessary.

As described in Sec. 2, many existing approaches rely on
a collection of images to achieve an efficient image-based
solution, but offer limited exploration capabilities. In our
approach, we use an intermediate representation of volume
data, which can be thought of as a view-dependent summary
of attenuation information. This allows us to simulate new
images with different rendering parameters, without access-
ing the original data.

The algorithm in [TCM10b] is implemented on the GPU;
however, the computation of the RAF is still sequential for
each ray. Therefore, the algorithm has limited application to
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large-scale visualization, where a volume might not fit en-
tirely in CPU or GPU memory. In this paper, we develop an
efficient and practical algorithm for computing the RAF in
parallel, which assumes that the data is split among p proces-
sors in volume segments of arbitrary shape and size. We also
show that the resulting functions can be stored efficiently us-
ing even more compact representations. In particular, we ex-
ploit existing image compression, data reduction, and statis-
tical modeling techniques to reduce the storage requirement
of the RAF. We also introduce a method for constructing an
alternative RAF representation through the use of KDE.

To develop a parallel algorithm, we introduce Interval At-

tenuation Functions (IAF), which summarize the attenuation
information for a given ray segment. We demonstrate that the
full RAF can be built in parallel from a collection of IAF.

3.1. Interval Attenuation Functions (IAF)

The RAF approximate the volume rendering integral by
summarizing the attenuation due to each intensity value for
a number of data ranges. According to the volume render-
ing integral [Max95], the color resulting from compositing
volume data is:

C =

∫ N

0
C(t)τ(t)e−

∫ t
0 τ(s)ds

dt, (1)

where C(t) is the radiance or color and τ(t) is the attenuation
of a sample t along a ray, with t ranging from 0 to N. When
discretized, this equation becomes:

C =
N

∑
i

C(i)α(i)
i−1

∏
j=0

(1−α( j)), (2)

where α(i) is the opacity of a sample along the view direc-
tion and ∏

i−1
j=0(1−α( j)) is the attenuation due to all sample

points in front of a sample i, and N is the number of samples
along a ray. Grouping the intensity values into discrete bins,
the above equation can be approximated as follows:

C ≈
Nbins

∑
k=1

C(k) ∑
{i|i=0,1,...,Nbins}ANDbin(i)=k

α(i)
i−1

∏
j=0

(1−α( j)),

where bin(i) is a function, assigning an intensity value of
a sample i to a bin k, and Nbins is the number of bins. The
inner sum, the Ray Attenuation Function (RAF), describes
the distribution of attenuation along a ray with respect to an
intensity value. Fig. 1 shows the process of accumulating
the attenuation of intensity values into a finite set of bins.
To understand our IAF computation algorithm, let’s take

another look at the light transport equation for a volumetric
model. For a given interval (l,h) in the intensity domain, the
accumulated attenuation is the combined contribution of all
samples with an intensity value that falls within that interval:

a(l,h)≈
N

∑
i=0

l<V (i)≤h

α(i)
i−1

∏
j=0

(1−α( j)), (3)

Figure 1: Ray Attenuation Functions (RAF) are obtained

by accumulating the attenuation of intensity values grouped

into a finite set of bins.

Figure 2: Computation of Interval Attenuation Functions.

Left: In a sequential framework, the attenuation function

must be computed for an entire ray. Right: In a parallel

framework, the attenuation function can be computed in par-

allel, for several intervals. The IAF are then combined to

create the full attenuation function.

where α(i) is the opacity of a sample along a ray, V (i) is the
scalar intensity value at that point, and N is the number of
samples.

This suggests, that the IAF can be computed hierarchi-
cally, where the function for a large interval can be ex-
pressed as a linear combination of any number of functions
of smaller intervals. Therefore, the ray in Eq. 1 can be split
in two intervals (t ∈ [0,M) and t ∈ [M,N)) and the equation
can be rewritten as:

C =

∫ M−1

0
C(t)τ(t)e−

∫
t
0 τ(s)ds

dt +

e
−

∫ M−1
0 τ(s)ds

∫ N

M
C(t)τ(t)e−

∫
N

M
τ(s)ds

dt (4)

The above relationship can be discretized as a sum of prod-
ucts of attenuations of N samples along a ray. In this case, the
ray is split into two sets of samples, where i∈ {0, . . . ,M−1}
and i ∈ {M, . . .N}:

C =
M−1

∑
i=0

C(i)α(i)
i−1

∏
j=0

(1−α( j))+

M−1

∏
j=0

(1−α( j))
N

∑
i=M

C(i)α(i)
i−1

∏
j=M

(1−α( j)) (5)

These attenuations can be grouped into bins, in order to ap-
proximate color, as shown in [TCM10b]. Moreover, we can
define an interval attenuation function for an interval [L,M],
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which adds up the contributions of all samples in the interval
[L,M] that fall within a bin k:

F[L,M](k) =
M

∑
i=L

Bin(i)=k

α(i)
i−1

∏
j=L

(1−α( j)) (6)

so that the composited color along a ray interval can be ap-
proximated as:

M

∑
i=L

C(i)α(i)
i−1

∏
j=0

(1−α( j))≈
Nbins

∑
k=1

C(k)F[L,M](k), (7)

Therefore, Eq. 4 becomes:

Nbins

∑
k=1

C(k)F(k) =
Nbins

∑
k=1

C(k)F[0,M−1](k)+

M−1

∏
j=0

(1−α( j))
Nbins

∑
k=1

C(k)F[M,N](k), (8)

and then it becomes clear that the attenuation function can
be defined recursively as:

F[0,N](k) = F[0,M−1](k)+
M−1

∏
j=0

(1−α( j))F[M,N](k) (9)

In other words, the IAF of an interval, composed of two
sub-intervals, can be defined in terms of the IAF of each
sub-interval, with the attenuation contributions of the second
sub-interval (further into the volume from the eye position)
modulated by the total attenuation of the first sub-interval.
By induction, each sub-interval can be computed as a com-
bination of smaller intervals. Without loss of generality, let
us assume there are P sub-intervals. The attenuation of the
ith sub-interval is denoted as:

A(i) =
Ni−1

∏
j=0

(1−α( j)), (10)

where Ni is the number of samples in a sub-interval. Thus,
the total IAF for a bin k can be composited as:

F(k) =
P

∑
i=0

F(i,k)
i−1

∏
j=0

A( j), (11)

where F(i,k) is the IAF of the ith sub-interval for a bin k, and
can be obtained using Eq. 6.

We can see that the above compositing operation is as-
sociative. For example, assume that there are four sub-
intervals, their IAF are denoted as F0, F1, F2, F3, and their
attenuation values are denoted as A0, A1, A2, A3. The accu-
mulated IAF of the first two sub-intervals is:

F01 = F0+A0F1 (12)

and the accumulated attenuation value of the first two sub-
intervals is:

A01 = A0A1 (13)

Similarly, the accumulated IAF of the last two sub-intervals
is:

F23 = F2+A2F3 (14)

Thus, the, total RAF calculated from F01 and F23 is:

F = F01+A01F23

= F0+A0F1+A0A1F2+A0A1A2F3, (15)

which is same as the result obtained by evaluating Eq. 11
in sequential fashion. We can also see that the sequence of
the operands of the compositing operation is in the visibility
order, which can not be changed, i.e. the compositing oper-
ation is not commutative.

3.2. Parallel Algorithm for Attenuation Functions

Based on the above formulation, we can build a parallel algo-
rithm for computing attenuation functions. Our algorithm re-
duces the running time of the computation of ray attenuation
functions from O(n3) to O(n3/p+C), where n is the num-
ber of voxels, p is the number of processors, and C is com-
positing time, where compositing is performed in O(log(p))
steps. Each processor performs computations on O(n3/p)
voxels. The derivation of our block-based algorithm and the
details of our parallel algorithm are as follows.

We construct the RAF on the same machine used to run a
given simulation. Thus, we directly use the domain decom-
position used in a simulation to compute the IAF, thus avoid-
ing unnecessary data replication. We assume the data is par-
titioned in a block-based fashion among p processors, which
is a typical scenario in our target simulations [CCdS∗09].
To achieve seamless IAF results, the data along the partition
boundaries is duplicated among the neighboring processors.
Each processor needs to propagate boundary information to
its 26 neighboring processors in 3D. We employ the diago-
nal communication elimination method [DH01] to minimize
the communication costs associated with this task. Using this
method, a processor communicates with only 6 of its neigh-
bors for boundary exchange.

After exchanging boundary data, each processor evaluates
Eq. 6 on its corresponding intervals to obtain Fi, along with
its local accumulated attenuation Ai. After this phase com-
pletes, each processor has an attenuation value and an array
of IAF values for each pixel.

The next step is to composite the local IAF into the fi-
nal result. The naive strategy is for a single processor to first
gather the local IAF and the attenuation values from all pro-
cessors, and then to loop through all the pixels to compute
the final RAF values for each pixel, using Eq. 11. However,
N − 1 processors are idle during this compositing process
and the desired parallelism is least exploited. Instead, we
treat the IAF compositing task as a typical vector reduction
problem, i.e., we gather the attenuation functions hierarchi-
cally. The associative property of the IAF compositing oper-
ation allows us to re-parenthesize the compositing operator
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(a) (b) (c) (d) (e)

Figure 3: Transfer function operations for a turbulent combustion simulation (HO2 variable) using the RAF. (a) Image recon-

struction using the attenuation functions with the original transfer function. (b) and (d) Opacity modulation and re-colorization.

(c) and (e) Ground truth volume rendered images of (b) and (d), respectively.

to exploit concurrency. This is similar to the well-studied
parallel image compositing problem. From the various so-
lutions for parallel image compositing, we choose the 2-3
swap method by Yu et al. [YWM08]. Rather than propagat-
ing RGB tuples, we propagate a tuple of N components of
the IAF bins. The hierarchical computation of the attenu-
ation function is depicted below, for four intervals, where
t1 − t3 are levels in the hierarchical reduction:

t1 t2 t3
(F0,A0)

(F0 +A0F1,A0A1)
(F1,A1)

(F0 +A0F1 +A0A1(F2 +A2F3),
A0A1A2A3)

(F2,A2)
(F2 +A2F3,A2A3)

(F3,A3),

4. Results

In our experiments, we used a turbulent combustion sim-
ulation performed at Sandia National Laboratories (SNL).

Our test environment is the Cray XT5 at the National Cen-
ter for Computational Sciences (NCCS) at Oak Ridge Na-
tional Laboratory (ORNL). The XT5 contains 18,688 com-
pute nodes. Each node contains dual hex-core AMD x86_64
Opteron processors running at 2.6GHz, 16GB memory, and
a SeaStar 2+ router. In this combustion simulation, each core
is assigned a region of 27× 40× 40. We tested three differ-
ent numbers of cores: 240, 1,920, and 6,480, with the core
configuration of 15× 8× 2, 30× 16× 44, and 45× 24× 6,
respectively.

Table 1 lists the volume sizes and timing results. All vari-
ables for volume data are double floating point (eight bytes).
We use 32-bit floating point for the RGBA and depth chan-
nels, and for the RAF values. We also use 1,0242 image res-
olution. The timing for simulation, I/O, volume rendering,
and RAF computation was measured for one time step. Dur-
ing I/O time, the simulation code stores the simulation data
into storage devices. We can see that volume rendering and
RAF computation time accounts only for a small fraction of
the total simulation and I/O time. For example, if we perform
volume rendering and RAF computation at each simulation
time step for 6,480 cores and 1,0242 image resolution, vol-
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Number of processors 240 1920 6480

Simulation time 8.7204 9.3393 9.5573

I/O time 9.4563 26.051 52.565

Total volume rendering time 0.3817 0.6155 0.7359

Boundary voxel exchange 0.0042 0.0059 0.0064

Ray casting 0.0226 0.0148 0.0095

Image compositing 0.3549 0.5948 0.7200

Total IAF computation time 1.2775 1.3938 1.3973

Boundary voxel exchange 0.0026 0.0066 0.0068

IAF construction 0.0806 0.0729 0.0450

IAF compositing 1.1943 1.3143 1.3455

Table 1: The timing breakdown (in seconds) for different

processor counts with 1,0242 output image resolution.

Figure 4: Reconstruction error (avg. pixel difference) be-

tween the images reconstructed from the original RAF vs.

images reconstructed from the compressed and then decom-

pressed RAF. We use a heat map to show the variation in er-

ror for a combustion (max error: 7/255) and supernova (max

error: 8/255) simulations. The error is greater in locations

with most overlap of various features.

ume rendering time is approximately 7.70% of the simula-
tion time, and the RAF computation time is approximately
14.62% of the simulation time; I/O time is more than five
times the simulation time. In practice, we usually perform
in-situ visualization less frequently (every 10th time step),
so the visualization time can be two orders of magnitude less
than the overall simulation time.

Fig. 3 shows the results of exploring color and opacity
mappings using the RAF for the HO2 variable. Fig. 3 (a)
shows the reconstruction result with the original transfer
function. Fig. 3 (b) and (d) show the effect of opacity mod-
ulation and re-colorization. Fig. 3 (c) and (e) are the ground
truth images obtained using direct volume rendering with the
transfer functions in (b) and (d), respectively. We can see that
the in-situ RAF results enable us to explore and highlight
structures of interest as a post-processing step and without
accessing the original simulation data.

4.1. Compression Methods for the RAF

An important consideration for reducing the size of data used
in scientific studies is whether the compression is lossless or
lossy. Loss of data may not always be acceptable; in fact,
scientists usually prefer lossless compression methods that
preserve the accuracy of their original results. However, due
to storage space constraints and network bandwidth limita-
tions, it is a common practice to store only a subset of the
time steps generated by scientific simulations. Sometimes,
hundreds of time steps are skipped. Thus, it is important to
note that discarding time steps or storing only static images
of time steps instead of the original data is, in essence, a
lossy compression itself. Therefore, compared to completely
discarding all or some intermediate time steps, compressing
them in a lossy manner is a substantial improvement. We
consider methods in both lossy and lossless compression
as candidates for reducing the size of the RAF intermedi-
ate representation. In particular, since the data stored in the
RAF exhibits image-like qualities, we employ such classic
data reduction and image compression methods as quantiza-
tion and lossless PNG compression. We also use statistical
modeling of the attenuation distribution to reduce the size
of the RAF representation. Finally, we present a method for
constructing an alternative RAF representation, using kernel
density estimation.

Conventional Data and Image Compression. Quantiza-
tion is a commonly used data reduction method. It is the pro-
cess of approximating a continuous range of values by a rel-
atively small finite set of discrete values. In our study, we
round single or double precision floating point values (32
and 64 bits, respectively) to 8 bits, which results in 4× to
8× compression.

In our experiments, lossless PNG image compression pro-
duced best compression ratios, without a significant loss of
visual quality. To take advantage of spatial consistency, in-
stead of storing consecutive RAF values per each pixel (say,
16 values for every pixel), we store the values for each “bin"
in the RAF as a single-channel image. Fig. 4 shows the re-
construction error (avg. pixel difference) between the im-
ages reconstructed from the original RAF vs. images recon-
structed from the compressed and then decompressed RAF.
We use a heat map to show the variation in error for a com-
bustion (max error: 7/255) and supernova (max error: 8/255)
simulations. The error is greater in locations with most over-
lap of intricate semi-transparent features. The size of the re-
sulting PNG image for the first example is 754KB, which re-
sults in approximately 54× compression in comparison with
storing the original RAF (here, 16 floating point values per
pixel for an 800×800 image). The size of the resulting PNG
image for the second example is 631KB, which results in ap-
proximately 64× compression.

Parametric Model Fitting. The goal of parametric model
fitting is to estimate the distribution parameters of a given
attenuation distribution. For a given pixel, we can think of
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(a)

(b) (c)

Figure 5: (a) Reconstruction error (avg. pixel difference) be-

tween the images reconstructed from the original RAF vs.

the mixture of Gaussians, as we reduce/increase opacity of

all intervals for the OH and vorticity variables of a combus-

tion simulation. Opacity modulation of 0 corresponds to no

opacity change and is the base error. While the error stays

very small, we see a smooth increase in error as opacity is

reduced/increased further. (b) and (c) Plots of the mixture of

Gaussians for a single pixel (100, 300) in the second image

for fixed (b) and estimated (c) c.

the RAF as a histogram, where the entire intensity value
range is divided into N uniform bins. Histograms, how-
ever, are usually not smooth and assume the nearest neigh-
bor assignment of data to bin values, which is very sensi-
tive to the number and placement of the discrete bins. On
the other hand, parametric models better represent an under-
lying distribution, using a finite number of parameters, i.e.
there is a known upper bound on the required storage space.
Since our data is image-based, our mathematical model of
choice is the mixture of Gaussian functions of the form:
G(x,A,µ,σ) = Ae−(x−µ)2/2σ2

, where A is the amplitude of
the curve, and µ and σ are the mean and standard deviation
of the curve, respectively. Thus, the RAF per pixel can now
be represented as: F(x) = ∑

K
i=0 G(x,Ai,µi,σi).

Each sample along a ray contributes to the computation of
the RAF for that ray. Since a ray may intersect only a few of
the features in a data set, we usually do not encounter sam-
ples from each interval in the entire data range for a single
pixel. Thus, the number of Gaussians in the mixture for each
ray can be estimated from the number of features a ray in-
tersects or the number of spikes/peaks in the RAF values for
that pixel. We scan the values in the RAF and extract the am-

plitude A and mean µ for each peak. We can either use a fixed
standard deviation or estimate it from the original RAF. We
estimate the σ for each Gaussian in the mixture by cluster-
ing the RAF values. Each cluster includes the corresponding
peak along with the neighboring RAF values. The values in a
cluster cannot overlap any neighboring peaks. This strategy
is easy to implement and works well for a small number of
bins in an attenuation function (say, 16 values). For a RAF
containing a larger number of bins, say 64 or more, we use
the k-means algorithm to partition the RAF values into clus-
ters. The Gaussian parameters are obtained as the mean and
standard deviation of each cluster.

We achieve compression by storing the parameters for
each Gaussian in the mixture, instead of the original RAF.
Later, when the data is visualized, we reconstruct the RAF
by estimating each value in the RAF from the stored pa-
rameters for the mixture of Gaussians. Fig. 5 shows the re-
construction error (avg. pixel difference) between the im-
ages reconstructed from the original RAF vs. the mixture
of Gaussians, as we reduce/increase opacity of all intervals
for the OH and vorticity variables of a combustion simula-
tion. We use a transfer function with 7 distinct peaks. Opac-
ity modulation of 0 corresponds to no opacity change and
is the base error. While the error stays very small, we see
a smooth increase in error as opacity is reduced/increased
further. Fig. 5(b) and (c) shows the result of fitting a mix-
ture of Gaussians for a single RAF, corresponding to the
pixel with coordinates (100, 300) in the second image for
fixed (b) and estimated (c) c. The accuracy of image recon-
struction using the RAF with opacity modulation, as com-
pared to the ground truth volume rendered images, is studied
in [TCM10b].

To use one example, the size of our RAF representation,
corresponding to the second image in Fig. 5(a) is 16 values
per pixel for an 800 × 800 image. Storing two values per
Gaussian (fixed σ) results in approximately 3.37× compres-
sion and storing three values per pixel (variable σ) results in
approximately 2.25× compression, without a major loss of
quality. The data can be further compressed using the data
reduction and image compression methods described above.

4.2. Non-parametric Model Fitting

As opposed to parametric techniques, non-parametric model
fitting methods can be used with arbitrary distributions. One
of the most commonly used non-parametric techniques is
kernel density estimation (KDE) [Sco92, Sil98, WJ95]. In
kernel density estimation, the contribution of each data point
is smoothed out over a local neighborhood of that data point,
according to the following formula:

f̂h(x) =
1

n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K(
x− xi

h
), (16)

where K is the kernel (we use a Gaussian kernel) and h is a
smoothing parameter, or bandwidth.
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(a) Original RAF (16 values) (b) KDE (16 estimates) (d) KDE (8 estimates)

Figure 6: Comparison of image reconstruction from the original RAF (a) vs. KDE estimates (b) and (c). (c) Image reconstruc-

tion from only 8 KDE estimates, which results in 2× space savings without a major loss in quality.

We use KDE to compute an alternative RAF representa-
tion (N estimates), which more closely represents the distri-
bution of samples along a ray. We use constant bandwidth,
for simplicity. Figure 6 compares the results of image re-
construction from the original RAF vs. KDE estimates. In
Figure 6(c), we reconstruct an image using only 8 KDE es-
timates, which is 2× less than the number of values used in
(a) and (b). There is no major loss of quality. Using KDE
becomes necessary for larger data sets and for transfer func-
tions of higher frequency.

5. Limitations and Future Work

The IAF computation algorithm, presented in this paper, is
general. It does not make any assumptions about the data and
can be adopted to different scientific volumetric representa-
tions. Currently, we assume that volume data is stored in a
regular grid, as it is common in scientific simulations. How-
ever, our technique also applies to less structured data, such
as volumes discretized in unstructured meshes, or particle
data, often used in smoothed particle hydrodynamics. The
additional challenge in RAF computation for these types of
data is handling ray traversals through the data efficiently.

Similar to the limitations described in [TCM10b], the de-
gree of exploration available to users is bounded by the
amount of information that can be encoded in the RAF. Due
to attenuation, entire intervals in a volume may be poorly
represented in the RAF, in which case it is not possible to
retrieve the occluded features by means of attenuation mod-
ulation. A possible solution is to detect regions where attenu-
ation reaches zero, similar to the opacity peeling techniques.
This is the focus of our future work.

Attenuation functions are computed for a given view, so
the intermediate representation is only valid for a given
viewpoint. However, due to the compactness of the represen-

tation, it is now possible to store several RAF for a number
of views. The visualization system can then offer a user the
ability to change the orientation at interactive rates.

6. Conclusion

New approaches to large data visualization are needed to
address the upcoming peta-scale data challenges. Although
previous work has made strides towards computing interme-
diate representations of volume data, the existing approaches
often do not scale to large data sets. In this paper, we present
a parallel algorithm for computing compact intermediate
representations of large volume datasets in an efficient man-
ner. We show that we can achieve parallelism in two ways.
Similarly to the way parallelism is exploited in contempo-
rary graphics processing units, we process every pixel in an
image in parallel. The second, less trivial part, is the ex-
ploitation of the associative property of attenuation along the
viewing rays. We demonstrate that a block-based decompo-
sition of the data helps us compute attenuation functions for
large volume data sets efficiently. Moreover, we demonstrate
a general mechanism for computing attenuation functions in
parallel for less structured data. Our results demonstrate that
the algorithm can produce compact representations of vol-
ume data that can be used for exploration, without much
compromise on the accuracy of the rendering results. We
also present a method for computing an alternative com-
pact data representation, which more closely encodes the
distribution of samples along the rays, and is more suitable
for larger data sets and for transfer functions of higher fre-
quency. Convinced by the results of our algorithm, we be-
lieve that the preview and exploratory techniques similar to
ours will become widespread, because they can be easily
adopted to different scientific data representations and de-
ployed in today’s in-situ and remote visualization settings.
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