
Eurographics Symposium on Parallel Graphics and Visualization (2008)
J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

Parallel Simplification of Large Meshes on PC Clusters

Hua Xiong1, Xiaohong Jiang2, Yaping Zhang1, and Jiaoying Shi1

1State Key Lab of CAD&CG, Zhejiang University, China
2Colledge of Computer Science, Zhejiang University, China

Abstract
Large meshes are becoming commonplace with the advance of 3D scanning, scientific simulation and CAD tech-
nology. While there are many algorithms proposed to simplify these large meshes, the time of simplification process
is usually very long, especially for those algorithms based on iterative edge collapse. To address this problem, we
propose two parallel schemes to speed up simplifying large meshes on a PC cluster. The first parallel simplification
scheme partitions a large mesh into small sub-meshes, simplifies these sub-meshes in parallel in an in-core way
and finally stitches the simplified versions together. The second scheme generates multiple mesh streams, applies
stream simplification to them in parallel in an out-of-core way, and composes the final simplified mesh streams. We
have implemented these two parallel simplification schemes and the experimental results show that our methods
are able to speed up the iterative simplification of large meshes by a factor of 8 to 19 on a cluster of 24 PCs.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems]: Distributed/network graph-
ics I.3.6 [Methodology and Techniques]: Graphics data structures and data types

1. Introduction

With the advance of 3D scanning, scientific simulation and
CAD technology, large meshes containing over 10 million
primitives are becoming commonplace [IL05] [CMRS03]
[YSG05]. These large meshes can display details of the orig-
inal models, making them valuable in many applications
such as scientific visualization, life science, bioinformat-
ics, culture heritage, city planning, virtual museum, and etc.
Limited by the main memory capacity, the CPU and GPU
performance of common PCs, however, processing and ren-
dering these large meshes have great challenges. Many ac-
celeration and optimization techniques have been proposed
to interactively explore these massive data sets, including
parallel rendering, out-of-core approaches, image-based ren-
dering, visibility culling, mesh simplification, multiresolu-
tion techniques, mesh compression, mesh layout optimiza-
tion, and etc. Mesh simplification and multiresolution tech-
niques are two of the most efficient approaches to achieve
interactive rendering speed. But previous algorithms usually
require rather long pre-processing time for large meshes,
even constructing only one simplified version of the input
mesh. Speeding up the pre-processing of mesh simplifica-
tion and multiresolution construction becomes an important
topic. This not only benefits downstream mesh processing

applications, like editing, texturing, and visualization, but
also makes system debugging more convenient.

In this paper, we present two parallel schemes to speed up
simplifying large meshes on a PC cluster. These two parallel
schemes are based on the mesh cutting and the mesh stream
processing concepts respectively. As will be introduced in
the related work section, many simplification algorithms for
massive meshes are based on the mesh cutting and the stream
proceesing concepts. Our parallel schemes and implementa-
tions will be a good extension to these existing algorithms.
Besides, we also propose some techniques to improve the
quality and the efficiency of parallel simplification, includ-
ing resource management, dynamic task management, and
data locality optimization. The main contributions of this pa-
per are followings:

(1) We propose a parallel simplification scheme for large
meshes based on the mesh cutting concept. The input mesh
is partitioned into many small pieces at first, i.e. the sub-
meshes, using a graph partition based algorithm. All sub-
meshes are then distributed to the available PCs in a cluster
and are simplified in parallel in an in-core way. The simpli-
fied sub-meshes are gathered during the run-time and finally
are stitched together.

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

(2) We propose a parallel simplification scheme for large
meshes based on the mesh stream processing concept. We
generate multiple mesh streams of the input mesh by sorting
the mesh primitives and adaptively subdividing its bounding
volume. These streams are then distributed to the cluster PCs
and simplified in parallel in an out-of-core way. The simpli-
fied mesh streams are finally composed together.

(3) To enable balanced parallel simplification, we present
a benchmark based resource management scheme and a dy-
namic task management scheme. We also present a tech-
nique to process the boundaries caused by mesh cutting and
space subdividing. This technique facilitates the stitching
process which is usually unavoidable for parallel massive
mesh simplification.

2. Related work

With 3D meshes becoming too large to fit into the main
memory, many out-of-core algorithms have been proposed
to operate on these large data sets, such as out-of-core sim-
plification, out-of-core construction of multiresolution rep-
resentations, out-of-core rendering, out-of-core remeshing,
and etc. Currently the main approaches to simplify large
meshes can be classified as: cutting the mesh into small
pieces, designing external memory data structures, and pro-
cessing the mesh in a streaming or a batch way.

Mesh cutting approaches partition the input large mesh
into many small pieces called sub-meshes, each of which
can be totally simplified in the main memory. This kind of
approaches is perfectly suitable for large meshes with reg-
ular spatial distribution of primitives such as terrain mod-
els [Hop98]. For other general large meshes, space subdivi-
sion based mesh cutting [Pri00] or graph partition based
mesh segmentation [YSG05] may be employed. Bound-
aries among partitioned sub-meshes are usually simplified
in a hierarchical manner by using a different partition in
each iteration. But for meshes with very irregular primitive
distribution, like some heavily folded CAD models, mesh
cutting methods usually result many isolated sub-meshes
and boundary vertices [Sha06], boundary maintenance and
stitching will cost a lot of time.

Approaches based on external memory data structures
usually build an out-of-core representation for indexing
global primitives of the input large mesh and also a compact
in-core skeleton of the representation. A mapping between
the out-of-core representation and the in-core skeleton is de-
signed carefully to achieve efficient data management. Dur-
ing the simplification, these approaches only load the needed
geometric primitives into the main memory through either
an explicit or an implicit data scheduling scheme [DP02]
[CE97]. Based on this concept, simplification methods us-
ing iterative edge collapse [CMRS03] and vertex clustering
[SG05] have been implemented.

Batch processing approaches usually work on the trian-

gle soup representation. The triangle soup is generally sim-
plified through multiple passes of out-of-core scanning and
sorting of primitives. A simplification algorithm combining
this concept with the vertex clustering method has been im-
plemented [Lin00]. Furthermore, streaming simplification
methods require the primitives of the input mesh is stream-
able, i.e. with good data locality of the primitives with re-
spect to their storage positions. This property can be ob-
tained by many ways, including spatial sorting [WK03],
using streaming mesh representation, i.e. interleaving ver-
tices and triangles with vertices finalization information
[ILGS03], and etc. By using an in-core buffer and scanning
the streamable mesh primitives, the whole input mesh can
be simplified progressively without being totally loaded into
the main memory.

3. Cutting based parallel simplification

The first parallel simplification scheme we proposed is based
on the mesh cutting concept. The general process consists
of three steps: (1) mesh cutting, i.e. cutting the input large
mesh into small sub-meshes each of which can be loaded
and simplified in the main memory. (2) parallel simplifica-
tion, i.e. distributing the partitioned sub-meshes to the clus-
ter PCs and simplifying them in parallel using iterative edge
collapse operator. (3) sub-meshes stitching, i.e. gathering the
simplified sub-meshes and merging them together. The ba-
sic idea of this approach, i.e. cutting-simplifying-stitching,
is straightforward and has been implemented in a serial way
by many researchers. But to efficiently extend this idea to a
parallel environment with distributed memory, each step has
some problems to be attacked. We will present these prob-
lems and our solutions in following sections.

3.1. Mesh cutting

Many mesh partition algorithms have been put forward to
help digital geometry processing for large meshes [Sha06].
One kind of methods is to subdivide the bounding volume
of the mesh with planes, such as a uniform grid, an octree,
and etc. Another kind of methods is to segment the mesh
surface based on its primitive connectivity. The partition re-
sults of these two kinds of methods are mainly affected by
the geometry and the topology of the mesh respectively.

In order to enable balanced parallel simplification for all
PCs and control the simplification quality of the sub-meshes,
the partitioned sub-meshes should be nearly equally sized in
term of the triangle count. Apparently, the space subdivision
methods are hard to meet this requirement even if they pro-
ceed recursively. Besides, the boundary vertices and trian-
gles should be as few as possible. This desirable property
not only helps improve the quality of the final simplified
mesh but also facilitates the stitching process. Considering
all above constraints, we adapt the cluster decomposition
method based on graph partition [YSG05]. The steps of the
mesh cutting algorithm are:

c© The Eurographics Association 2008.

34



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

(1) Compute the bounding box of the mesh by scanning
the vertex list. Subdivide the bounding box with a uniform
grid (with dimension of 2nx2nx2n). Scan the vertex list to
compute the vertex count and the average vertex position
in each grid cell. The uniform grid can be kept in the main
memory by only storing non-empty cells and hashing these
cells with their linear indices in the grid as the hash keys.

(2) Construct a graph whose nodes represent the non-
empty cells and are weighted by the vertex count in each
cell. Edges are established between a node and its k-nearest
neighboring nodes. We use the METIS graph partitioning
library [KK98] to recursively decompose the constructed
graph into clusters of cells. The METIS library gives nearly
uniform cluster size and can minimize the count of edge cuts.

(3) Assign vertices to clusters according to the cell index
of each vertex. We use a vertex map file to record the clus-
ter index and the local index in a cluster for each vertex.
This map file will help resolve triangles and determine which
cluster a triangle belongs to in the next step. All vertices in
a cluster are extracted and stored into a separate vertex file.

(4) Partition the triangles into clusters. If all three vertices
are in the same cluster, the triangle is assigned to the cluster.
Otherwise, it is a boundary triangle crossing two or three
clusters. The vertices of the boundary triangles are marked
as boundary vertices in the vertex map file. Edges connecting
with a boundary vertex are not eligible for edge collapse.
All triangles in a cluster are also extracted and stored into a
separate triangle file. This file is merged with the vertex file
into the final sub-mesh file. Because boundary vertices will
not be removed during the simplificaton of a sub-mesh, we
keep them at the beginning of the sub-mesh file. However,
all boundary triangles (with their vertex records) are stored
in a separate file to help stitch sub-meshes.

The mesh cutting result of the Thai Statue model is given
in Figure 1. The mesh cutting step usually costs only a few
percentage of the whole process time and is not a bottleneck
of the system, so we do not parallelize it.

3.2. Balanced parallel simplification

The mesh cutting makes the parallel simplification viable.
Each sub-mesh is small enough to be simplified in the
main memory using iterative edge collapse and quadric er-
ror metrics [GH97]. Two problems in the parallel simpli-
fication process may affect the performance greatly. The
first one is the resource management of a PC cluster, es-
pecially for those heterogeneous PCs clusters whose nodes
may have quite different main memory capacity and CPU
performance. The second one is the simplification task man-
agement. Only balanced task distribution and execution can
fully exploit the power of the PCs cluster. To address these
problems, we propose a benchmark based resource manage-
ment scheme and a dynamic task distribution scheme.

Figure 1: Mesh cutting result of the Thai Statue model. The
resolution of the uniform grid is 512x512x512 (n=8). The
count of clusters is 512.

3.2.1. Resource management

Knowing the performance of each PC before parallel sim-
plification is important to achieve workload balancing. We
use a benchmark mesh to evaluate the performance of each
PC. This benchmark test constructs related data structure for
simplifcation and performs half edge collapse till all trian-
gles are removed. We think the simplification throughput
(the ratio of the triangle count to the simplification time) can
indicate the PC’s performance. Using this performance pa-
rameter, a straightforward static method for task distribution
is to partition sub-meshes into sets which have approximate
estimated simplification time. However, the run-time perfor-
mance may result rather different simplification time, espe-
cially in a Grid environment whose node may run multiple
tasks simultaneously. Instead, we propose a dynamic task
management scheme and use the performance parameter to
control the size of the input buffer for each PC.

We use a controller PC to monitor the status of each PC
and to allocate and release the PC resource during the simpli-
fication course. Each PC reports its status by sending a ’heart
beating’ message to the controller over a period of time. If a
PC breaks down, its unfinished tasks will be taken back amd
re-assigned to other available PCs by the controller. This re-
source management scheme is easy to extended to a Grid
environment.

3.2.2. Dynamic task management

Based on the resource management scheme, we present a
dynamic task management scheme to achieve more bal-
anced parallel simplification than the static task distribution
method. During the simplification course, each PC dynam-
ically applies for sub-meshes from the controller and re-
turns the simplified versions to it. To prevent the cluster PCs

c© The Eurographics Association 2008.

35



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

from being idle, each PC maintains two buffers, i.e. the in-
put buffer and the output buffer, to cache the sub-meshes
before and after simplification. If the occupancy ratio of the
input buffer falls below a threshold (we use 0.8 in our exper-
iments), the PC applies for a batch of sub-meshes to renew
the input buffer. The simplified sub-meshes are inserted into
the output buffer and are returned to the controller while the
output buffer is not empty. The PC performance parameter
is used to limit the maximum size of the input buffer as that
all PCs will finish the simplification at the same time if all
the input buffers are full. These two kinds of buffers also
help hide the data transmission latency. This dynamic task
management scheme is illustrated in Figure 2.

input buffer

m0 m1 m2...
output buffer

m0 m1 m2 ...

input buffer

m0 m1...
output buffer

m0 m1 ...

PC0

PCn

.
.
.

.
.
.

m0

m1

mc

Controller
distribute

collect

Figure 2: The dynamic task management scheme for bal-
anced parallel simplification. The controller dynamically
distributes sub-meshes to the input buffers of cluster PCs.
When a sub-mesh is simplified, it is inserted into the output
buffer and is collected by the controller. Please note that the
input buffer size of a PC is determined by its performance.

3.3. Stitching and post-processing

When all sub-meshes are simplified and are returned to the
controller, they are stitched together and the boundary is
simplified further. As we have described before, boundary
vertices are marked in each sub-mesh and boundary triangles
are stored in a separate file. This technique greatly facilitates
the stitching process.

By scanning the vertex list of each simplified sub-mesh,
the vertices are merged together directly. The starting index
and the range of vertices of each sub-mesh are also recorded.
We then scan the triangle lists, change their vertex indices to
the new ones and merge them. Finally, we add the boundary
triangles to the final simplified mesh. Because the bound-
ary vertices are keep at the beginning of their sub-mesh file,
their relative order does not change during the simplifica-
tion process. It is easy to compute the new vertex indices of
boundary triangles from their vertex records, i.e. the cluster
index and the local index. Figure 3 gives an illustration of
the data structure for boundary stitching.

Because all the edges connecting with boundary vertices

are disabled to collapse, the final simplified mesh may have
non-uniform distribution of triangles, especially along the
boundaries of sub-meshes. To solve this problem, we apply
another pass of simplification to those edges connecting with
boundary vertices only. And its simplification ratio is the
same as that of the sub-meshes. The final simplified mesh
is usually small and thus the boundary simplification can be
performed totally in the main memory.

cluster0

cluster1

cluster2

sub-mesh0

v0 v1 v2 ...

t1 t2 ...

sub-mesh1

v5 v6 v7 ...

t6 t7 ...

boundary triangles

c0 c2 c2

v0 v3 v4

.
.
.

c0 c2 c0

v0 v4 v1

v0

v3

v1

v4

t4

t1
v2

v5

v6

v7

t2

t6

t3 t4

t7

t3

Figure 3: Illustration of boundary stitching. Triangles span-
ning two or three clusters are boundary triangles and their
referenced vertices are marked as boundary vertices, shown
as filled circles. Boundary vertices are stored at the head
of the vertex lists. Boundary triangles are stored separately
with records of vertices’ cluster indices and local indices.

3.4. Experimental results

We present the experimental results of the cutting based par-
allel simplification in this section including the parallel sim-
plification performance and the task management efficiency.
Our test environment is a cluster of 24 PCs. Each PC has two
2.4GHz CPUs and 1GB of RAM. All PCs are connected by
a Gigabit Ethernet.

3.4.1. Parallel simplification performance

To evaluate the performance of the mesh cutting based par-
allel simplification approach, we tested our system on all 24
PCs and compared the results with the simplification per-
formance on a single PC. As shown in Table 1, the maxi-
mum speedup of our system is 19. We used the edge collapse
method as in [Pri00] to simplify sub-meshes. The stand-
alone PC implementation also operated on the same set of
sub-meshes, but simplified them one by one. Compared with
the result of [WK03], in which they reported about 33 min-
utes to simplify the David 1mm model of 56M triangles to
1 percentage, it cost our stand-alone PC implementation 81
minutes to simplify the Lucy model to 1 percentage. How-
ever we can simplify this model in 6 minutes using 24 PCs.

c© The Eurographics Association 2008.

36



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

Table 1: Results of the mesh cutting based parallel simpli-
fication approach. The task distribution time is included in
the partition time and the time of gathering simplified sub-
meshes is included in the stitching time.

Meshes Thai Statue Lucy
#Triangle in 10,000,000 28,055,742
#Triangle out 200,052 280,102
Percentage (%) 2 1
#Sub-mesh 512 1024
Partition 0:00:41 0:03:26
Simplification 0:00:32 0:01:31
Stitching 0:00:16 0:00:45
Total time 0:01:29 0:05:42
Single PC time 0:27:45 0:80:24
Speedup 19:1 14:1

3.4.2. Task management efficiency

By changing the count of sub-meshes, we tested the simpli-
fication efficiency of our dynamic task management scheme
and compared it with the static scheme. We kept the prim-
itive count of each sub-mesh invariant and randomly added
some sub-meshes from the initially partitioned sub-mesh set.
We used a heterogeneous PC cluster. 16 of the 24 PCs were
kept. The remaining 8 PCs were replaced by PCs of one
800MHz CPUs and 512MB of RAM. As show in Figure 4,
with the increase of the count of sub-meshes, the simplifi-
cation time difference between the dynamic and the static
task management schemes became more obvious. This can
be explained as the static scheme tends to inaccurately esti-
mate the workload of task sets. The experimental result also
shows that our scheme has good scalability with respect to
the mesh size. But for the static scheme, its performance de-
clines greatly when the count of sub-meshes increases.

0
200
400
600
800

1000
1200
1400
1600
1800

512 1024 2048 4096
Sub-mesh count

S
im

pl
ifi

ca
tio

n 
tim

e 
(s

ec
on

d)

Static scheme Dynamic scheme

Figure 4: Comparison of task management efficiency. Our
dynamic task management scheme shows better perfor-
mance to drive balanced parallel simplification.

4. Stream based parallel simplification

Recently, many stream based methods have been put forward
to facilitate simplifying large meshes [IL05] [ILGS03]

[WK03]. These methods progressively load a batch of prim-
itives (including vertices and triangles) into the main mem-
ory, simplify them and output the simplified primitives to a
disk file. Compared with the mesh cutting based approaches,
they do not require the stitching step and can simplify a large
mesh by scanning its disk file once. Our second parallel sim-
plification scheme is based on this kind of methods. The gen-
eral process includes three steps: (1) mesh stream genera-
tion, i.e. creating multiple streams of the input mesh each of
which is suitable for stream simplification on a PC. (2) paral-
lel stream simplification, i.e. distributing the mesh streams to
the cluster PCs and performing simplification on all streams
in parallel. (3) stream composition and post-processing, i.e.
collecting simplified mesh streams, composing the final sim-
plified mesh and processing the boundaries further.

4.1. Mesh stream generation

One prerequisite of parallel stream simplification is to gen-
erate multiple mesh streams for the cluster PCs. Our stream
generation method is also based on mesh partition because
of its efficiency. But compared with the sub-meshes of the
mesh cutting based approach, the count of mesh streams is
much fewer. Because each stream can totally reside on the
disk and can be simplified by sequentially scanning. This is
enabled by improving their data locality. One may partition
the mesh using the graph partition algorithm as introduced
before and then improve the data locality of each sub-mesh
individually. We employ another method which optimizes
the data locality of the input mesh first. The streams can be
simply generated by space subdividing the bounding volume
of the optimized mesh.

4.1.1. Data locality optimization

An important concept for large meshes processing, espe-
cially for those out-of-core approaches is data locality, i.e.
the temporal and spatial proximity of primitives access. Ac-
cessing a large mesh with poor data locality usually results
lots of cache misses and degrades run-time performance
[NBS06] [YLPM05]. For those large isosurfaces generated
by the marching cube method and those massive meshes ob-
tained by sequential 3D scanning, their primitives are usu-
ally built up layer by layer resulting good data locality. Some
methods have been put forward to optimize mesh data local-
ity, including geometrical sorting, topological sorting, space
filling curves, spectral sequencing, and etc.

We adopt the geometrical sorting for its simplicity. The
vertices are sorted along the longest coordinate axis of the
bounding box. An index map is used to record the vertex in-
dices before sorting and to update the triangle list. Triangles
are sorted using its smallest vertex index as the sort key. For
extremely large meshes, out-of-core method can help this
process as in [Lin00]. Figure 5 shows the result of the data
locality optimization.

c© The Eurographics Association 2008.

37



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

Figure 5: Mesh data locality optimization. Shading color
displays the triangle sequence before (left) and after (right)
the geometrical sorting.

4.1.2. Adaptive space subdivision

The geometrical sorting approach introduces a natural way
to generate multiple mesh streams, i.e. space subdividing
the bounding box of the input mesh. To achieve balanced
parallel stream simplification, we employ an adaptive space
subdivision according to the available PCs in a cluster. The
adaptive space subdivision proceeds in following steps:

(1) Given the count of the available PCs n, partition the
triangles into n batches with equal number of triangles in
each batch. In fact, this is equivalent to subdividing the mesh
along the longest coordinate axis of its bounding box.

2) For each batch of triangles, compute the smallest and
the largest vertex index, extract vertices between this range
from the vertex file, increase their reference counters, and
update the triangles’ vertex indices.

3) Merge the vertices and triangles into a mesh stream.
Denote those vertices whose reference counter is not equal
to 1 as boundary vertices and triangles referencing them
as boundary triangles. Usually, the reference counter of a
boundary vertex is 2 because the proximity of space subdi-
vision regions.

The stream generation result of Lucy model is given in
Figure 6. While this method is easy to implement, it is not
suitable for large meshes with very irregular primitive distri-
bution. We think the way of mesh stream generation should
depend on the type of the application and the input mesh.

4.2. Parallel stream simplification

For the generated streams, each cluster PC performs
streaming simplification using an algorithm similar to the

Figure 6: Stream generation result based on the data local-
ity optimization and the adaptive space subdivision for the
Lucy model. The stream count is 24.

stream decimation algorithm proposed by Wu and Kobbelt
[WK03]. The main difference of our algorithm is that we
adopt the indexed triangle format instead of the triangle
soup. So it does not need to reconstruct the mesh connectiv-
ity through hashing vertices with their coordinates. Once the
one-ring neighbors of a vertex are all identified, edges con-
necting with this vertex but not connecting with any bound-
ary vertices are eligible for collapse. We assume that the sim-
plified sub-mesh can be totally kept in the in-core buffer.
So only the INPUT and DECIMATION operations for the
stream are actually needed. This simplifies the streaming
simplification process.

4.3. Stream composition and post-processing

When all the cluster PCs finish simplification of the assigned
mesh streams, they return the simplified versions to the con-
troller PC for stream composition. The composition process
is similar to the stitching process of the mesh cutting based
approach. But it is simpler because the places where the
mesh streams connect are spatially ordered. And with this
constraint, the composition process can be also parallelized
by using the parallel image composition concept from the
parallel rendering literature. Similarly, boundaries are finally
simplified to remove those densely tessellated areas of the
merged mesh.

4.4. Experimental results

We present the experimental results of the stream based
parallel simplification approach in this section. We im-
plemented the stream simplification algorithm proposed in
[WK03]. It cost us about 26 minutes to simplify the Lucy
model to 1 percentage on a single PC. Compared with their

c© The Eurographics Association 2008.

38



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

Table 2: Results of the mesh stream based parallel simpli-
fication approach. The task distribution time is included in
the stream generation time and the time of gathering and
stitching streams is included in the composition time.

Meshes Thai Statue Lucy
#Triangle in 10,000,000 28,055,742
#Triangle out 200,013 280,172
Percentage (%) 2 1
#Streams 24 24
Generation 0:00:32 0:02:12
Simplification 0:00:12 0:00:48
Composition 0:00:08 0:00:25
Total time 0:00:52 0:03:25
Single PC time 0:08:20 0:25:45
Speedup 9:1 8:1

results, our approach obtained a speedup factor of 8, as
shown in Table 2. All the PCs with two 2.4GHz CPUs and
1GB of RAM were used.

5. Discussion and analysis

For the cutting based parallel simplification scheme, we do
not parallelize the mesh cutting step. This is because the
graph partition based method is of high run-time efficiency
and is not a bottleneck in our experiments. But for extremely
large meshes, the cutting step may affect the overall system
performance. For this case, we can first partition the input
mesh into several large blocks in space and execute the pro-
posed mesh cutting algorithm for each block in parallel.

Similarly, if the sub-meshes stitching step is heavily
loaded, we can also parallelize this step. This is because the
simplified sub-meshes are returned during the simplification
course. We need to maintain a neighbor table and the status
of neighbors for each cluster. Once a neighboring cluster is
simplified and is ready for merging, the controller PC sends
these two sub-meshes to available cluster PC for stitching.
We think many parallel image composition algorithms from
the parallel rendering literature will be very helpful to reduce
the network transmission and the overall stitching time.

For the stream based parallel simplification scheme, the
data locality improvement step may be a bottleneck for ex-
tremely massive meshes. If adopting the geometric sorting
method, one can modify the serial algorithm to a parallel
version easily as followings: (1) cutting the input mesh into
blocks. (2) out-of-core sorting each block in parallel. (3) ex-
ecuting parallel merge sort for each pair of blocks. While for
other methods such as topological sorting and spectral meth-
ods, it is non-trivial to find an efficient parallel solution. We
think this may be a potential limitation of this scheme.

6. Conclusion and future work

We have presented two parallel simplification approaches
based on the mesh cutting and the mesh stream processing
concept respectively. For the first scheme, we have presented
how to partition the input mesh into sub-meshes with bal-
anced primitive count, how to perform dynamic task distri-
bution and parallel simplification on a PC cluster, and the
technique to stitch the simplified sub-meshes together. For
the second scheme, we have presented methods of generat-
ing multiple mesh streams and performing simplification on
these streams in parallel. We have implemented these two
schemes and the experimental results have shown a speedup
factor of 8 to 19 on a cluster of 24 PCs.

We expect to experiment with our system with more mas-
sive geometric data sets and to further improve its perfor-
mance. There are some avenues for future work. The GPU
processing ability has been improved quickly. Combining
with its parallel processing units [DT07] and even as-
sembling a GPU cluster, interactive simplification of large
meshes might be obtained. Multiple mesh streams genera-
tion is still worthy of further study. Recently, many spectral
methods for mesh processing and analysis have been pro-
posed [ZvKD07]. It may give us good heuristics for this
purpose. Besides, construction of a multiresolution represen-
tation for a large mesh usually costs much pre-processing
time. We hope our work can foster research in this direction.

7. Acknowledgements

This work is supported by the National Grand Fun-
damental Research 973 Program of China under Grant
No.2002CB312105 and the NSFC project of “Digital
Olympic Museum” under Grant No.60533080. We would
like to thank the Stanford Graphics Group for providing the
data sets.

References

[CE97] COX M., ELLSWORTH D.: Application-
controlled demand paging for out-of-core visualization.
In Proceedings of IEEE Visualization 1997 (1997),
pp. 235–244.

[CMRS03] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R.: External memory management and sim-
plification of huge meshes. IEEE Transactions on Visual-
ization and Computer Graphics 9, 4 (2003), 525–537.

[DP02] DECORO C., PAJAROLA R.: Xfastmesh: Fast
view-dependent meshing from external memory. In IEEE
Visualization (2002), pp. 363–370.

[DT07] DECORO C., TATARCHUK N.: Real-time mesh
simplification using the gpu. In Symposium on Interactive
3D Graphics (I3D) (Apr. 2007), vol. 2007, p. 6.

c© The Eurographics Association 2008.

39



H. Xiong, X. Jiang, Y. Zhang & J. Shi / Parallel Simplification of Large Meshes on PC Clusters

[GH97] GARLAND M., HECKBERT P. S.: Surface sim-
plification using quadric error metrics. In Proceedings of
ACM SIGGRAPH 1997 (1997), pp. 209–216.

[Hop98] HOPPE H.: Smooth view-dependent level-
ofdetail control and its application to terrain rendering. In
IEEE Visualization 1998 (1998), pp. 35–42.

[IL05] ISENBURG M., LINDSTROM P.: Streaming
meshes. In Proceedings of IEEE Visualization 2005
(2005), pp. 231ĺC–238.

[ILGS03] ISENBURG M., LINDSTROM P., GUMHOLD S.,
SNOEYINK J.: Large mesh simplification using process-
ing sequences. In Proceedings of IEEE Visualization 2003
(2003), pp. 465–472.

[KK98] KARPIS G., KUMAR V.: A multiresolution rep-
resentation for massive meshes. Journal of Parallel and
Distributed Computing 48, 1 (1998), 96–129.

[Lin00] LINDSTROM P.: Out-of-core simplification of
large polygonal models. In Proceedings of ACM SIG-
GRAPH 2000 (2000), pp. 259–262.

[NBS06] NEHAB D., BARCZAK J., SANDER P. V.: Trian-
gle order optimization for graphics hardware computation
culling. In Proceedings of ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2006), pp. 207–
211.

[Pri00] PRINCE C.: Progressive Meshes for Large Mod-
els of Arbitrary Topology. Master’s thesis, University of
Washington, 2000.

[SG05] SHAFFER E., GARLAND M.: A multiresolution
representation for massive meshes. IEEE Transactions on
Visualization and Computer Graphics 11, 2 (2005), 139–
148.

[Sha06] SHAMIR A.: Segmentation and shape extraction
of 3d boundary meshes. In State-of-the-art Report, Euro-
graphics (2006), pp. 137–149.

[WK03] WU J., KOBBELT L.: A stream algorithm for the
decimation of massive meshes. In Proceedings of Graph-
ics Interface 2003 (2003), pp. 185–192.

[YLPM05] YOON S.-E., LINDSTROM P., PASCUCCI V.,
MANOCHA D.: Cache-oblivious mesh layouts. In Pro-
ceedings of ACM SIGGRAPH 2005 (2005), pp. 886–893.

[YSG05] YOON S.-E., SALOMON B., GAYLE R.: Quick-
vdr: Out-of-core view-dependent rendering of gigantic
models. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4 (2005), 369–382.

[ZvKD07] ZHANG H., VAN KAICK O., DYER R.: Spec-
tral methods for mesh processing and analysis. In Proc. of
Eurographics State-of-the-art Report (2007), pp. 1–22.

c© The Eurographics Association 2008.

40


