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Abstract

The capability to visualize large volume datasets has applications in a myriad of scientific fields. This paper
presents a large data visualization solution in the form of distributed, multiresolution, progressive processing.
This solution reduces the problem of rendering a large volume data into many simple and independent problems
that can be straightforwardly distributed to multiple computers. By completely decoupling rendering and display
with image caching, we are able to maintain a high level of interactivity during exploration of the data, which is
key to obtaining insights into the data.

Categories and Subject Descriptors (according to ACM CCS): 1.3.2 [Computer Graphics]: Distributed/network
graphics, remote systems; 1.3.3 [Computer Graphics]: Picture/image generation; 1.3.8 [Computer Graphics]: Ap-
plications

Keywords: image caching, interactive visualization, isosurface, multiresolution data, parallel and distributed
rendering, progressive visualization, volume visualization

1. Introduction

Scientists nowadays can simulate fairly sophisticated physi-
cal phenomena or chemical processes at high fidelity using
massively parallel supercomputers. Each simulation run can
generate a vast amount of data which can easily overwhelm
most of the data analysis and visualization software tools.
Compressing the data would defeat the original purpose of
performing the high-resolution simulation. Rendering and
viewing the highest possible resolution of the data directly,
if not impossible, would lead to long wait time unless a suf-
ficiently powerful parallel computer and a dedicated high-
speed network are used. Considering those who wish to use
visualization on their large data can have a wide variety of
computational power, a true solution should be able to fully
take advantage of their system however large or small it is.
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The system should be distributed to take advantage of clus-
ters, which are becoming more common due to their rela-
tively low cost. An approach that can somewhat relieve the
computational and hardware requirements is to visualize the
data using progressive refinement. This is especially attrac-
tive when the scientist is exploring their data to search for ei-
ther known or unknown features in the data. In such data ex-
ploration mode, it is very important to maintain a high level
of interactivity.

In this paper, we present an interactive visualization sys-
tem based on progressive refinement and distributed render-
ing. Progressive refinement is made possible with a hier-
archical multiresolution representation of the volume data.
A particular level of interactivity is guaranteed by 1) com-
pletely decoupling rendering and displaying using an image
caching approach [LP03], 2) using a multiresolution repre-
sentation of the volume data, and 3) distributing the render-
ing calculations to multiple computers. When using this sys-
tem to visualize a large data set, the user can always receive
immediate visual feedbacks as he browses in the spatial do-
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main of the data, and as the user pauses the system continu-
ously and progressively refines the visualization by switch-
ing from a coarser level of the data to a finer level. The main
contribution of our work is to integrate a set of techniques
introduced in [LP03] and [PLF*03] into a coherent system.
The results of our performance study using a cluster com-
puter and a terascale dataset show the practical value of our
system especially in a remote visualization setting.

2. Related Work

As stated before, one of the main problems of the visu-
alizations of large dataset is the fact that the data cannot
be stored in main memory. Prohaska et al. [PHKHO04] han-
dle this problem by using remote data storage. This storage
was designed to support very efficient access of subvolumes.
Throughput was increased by taking care of several high-
level operations remotely and transferring the results over
the network. Threading is used to allow for data access while
the current data is being rendered. After the data is loaded,
3D texture rendering can be used to render the image.

Guthe et al. [GWGS02] used a preprocessing step to con-
vert the data into a hierarchical wavelet representation. The
data is decompressed during rendering and uses hardware
texture mapping for the actual rendering. This was later im-
proved upon by adding empty space skipping and occlu-
sion culling [GS04]. Wang et al. [WGS04] also preprocessed
the data into a multiresolution hierarchy using the wavelet
transform. This hierarchy is partitioned and distributed over
several nodes. Visualization is completed by traversing the
wavelet tree and reconstructing data blocks. The results from
the nodes are then composited. Akiba er al. [AMCOS5] take
the wavelet based mulitresolution representation of the data
and partition it into blocks. These blocks are packed into
a more compact form on the fly according to the transfer
function. This packing and the rendering are both hardware
accelerated to achieve fast data reduction and visualization.

Abhrens et al. [ALS*00] address the problem of render-
ing times by providing the ability to render large datasets in
parallel. This is achieved by adding parallelism to the visual-
ization toolkit(VTK) [SML96]. This allows a scientist using
VTK to easily upgrade to their version and benefit from the
new parallel abilities. Since it is using VTK, modules can be
added to give the scientist more power over how the scene
is rendered. Engel et al. [EEH"00] give scientist the power
to visualize by using high end remote servers to visualize
medical data on a local desktop.

When dealing with multiple levels of detail, Lamar et al.
[LHJ99] used an adaptive octree texture visualization. Cells
near the region of interest were high resolution while those
far away were low. Weiler et al. [WWH"00] showed how
to use a hierarchy to insure smooth interpolation between
resolution levels. Our work differs from these previous ef-
forts since we break the problem into many simple render-
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Figure 1: The overall structure of MLIC. The display and
dispatch access the shared memory from different processes.
The dispatch communicates with the remote rendering en-
gines and updates the cache with the images that they return

ing problems. This allows us to not depend on a specific ren-
dering algorithm or hardware rendering in order to remain
interactive.

3. Base Technologies

Our work started by building upon previous projects at
Lawrence Livermore National Laboratory. One of these
projects is MLIC [LPO03], which stands for Multilayered Im-
age Caching. MLIC was a visualization system that uses
the concept of image caching to decouple the displaying
of images from the rendering. The other project was Vi-
SUS [Pas04], which gives us a series of tools for efficiently
loading and visualizing large mulitresolution datasets. We
briefly describe these two projects in this section.

3.1. MLIC

As seen in Figure 1, MLIC is divided into the display, the
dispatch, and the rendering engines. The dispatch and dis-
play communicate through a set of queues stored in shared
memory. During a single display cycle, the display first up-
dates the image cache with any new images from the done
queue. It then draws what is currently in the image cache,
and checks to see if more images are required to meet the
user requested image quality. Any required work is then put
into the work queue, and the cycle repeats. The dispatch
checks the work queue and distributes the required work
to the cluster of remote rendering engines. When the en-
gines return the result is placed by the dispatch into the done
queue.

Even though MLIC was designed to more cleverly uti-
lize computing resources, it fails to handle large data sets.
The actual rendering is decoupled from the displaying of the
final images by using a process for the displaying of subim-
ages currently in the cache, along with a process for dis-
patching work to the rendering engines. This allows the user
interface of the display and the displaying of images to re-
main interactive at all times. This interactivity granted the

(© The Eurographics Association 2006.



Strasser, Pascucci & Ma / Distributed Image Caching

Figure 2: A 2D and 3D example of how the image cache
surrounds the camera. Figure provided by [LP03]

user the ability to browse the data as the image is contin-
ually improved over time. The resolution of the screen can
be modified at any time, though the resolution of the subim-
ages is fixed so the system only takes advantage of a high
resolution display when there are many sub images. Actual
rendering was taken care of by VTK [SML96].

The design of MLIC’s image caching is to have a sta-
tionary camera with images placed around the camera like
a cube. Each side of the cube corresponds to a viewing frus-
tum for that direction in space. At first this a single image is
rendered using this frustum. Then the frustum is spit down
one axis like a KD-Tree. Each split doubles the number of
images and each individual sub-frustum corresponds to a
smaller section of space. This will give us the power to load
only the data required to render a subimage, letting us load
higher resolution versions of the data as the size of the sub-
frustums decreases. [LP03] provided a figure to visualize the
cache around the camera as seen in Figure 2.

This project works well as a base due to several reasons. It
already works in a distributed environment. The system par-
allels the multiresolution idea, so fewer subimages for low
resolution data and many subimages for high/full resolution.
Finally the independent nature of the rendering engines al-
lows us to treat the rendering of subimages as a traditional
simple rendering problem in a divide-and-conquer sense.

3.2. ViSUS

ViSUS stands for Visualization Streams for Ultimate Scala-
bility. It provides a suite of tools which allow a user to visu-
alize and browse large simulations on nearly any computer.
ViSUS streams data to the users computer as fast or as slow
as the computer will allow. Slower computers will be able
to visualize very coarse data in real time and improve to a
higher resolution when desired. Higher end computers may
be able to start at a higher resolution, decreasing the time it
takes to finish the final image.

ViSUS is also capable of streaming data to the user as it is
being simulated. This allows scientists to begin to visualize
and browse the data during the simulation, and if needed,
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Figure 3: A figure of the modified remote rendering engines.
Information is sent from the dispatch and analyzed. The en-
gine then asks for the required data at a specific resolution
from ViSUS. This data and information is then passed on to
a renderer. The result image is then sent back to the dispatch

refine the parameters of the simulation if they see fit possibly
saving valuable computer time.

To enable more efficient access to large data, ViSUS uses
a Z-order space filling curve [PLF*03] to avoid loading data
that is not required for a requested subvolume. Data is also
loaded progressively, loading the data from coarse to fine.
This data can be visualized at the coarse resolution as the
data continues to stream in.

ViSUS offers many tools for the user, but all rendering is
limited to power of the users machine. More information on
ViSUS can be found at the project website [Pas04].

3.3. Combining the projects

We combined the two projects to utilize the parallel and dis-
tributed nature of MLIC while taking advantage of the useful
data tools given to us by ViSUS. To accomplish this, ViSUS
was taken off the displaying computer and moved to the clus-
ter. The remote rendering engines were redesigned, remov-
ing VTK, and adding an interface to the ViSUS data loading
libraries. With this change, the rendering engines are now
composed of 3 important sections. The core, ViSUS, and the
renderer. The core of the engine refers to part that deals with
in incoming request and sending that information to ViSUS,
which is used to load the required data at the requested reso-
lution. The core also sets up a non-multiresolution environ-
ment for the renderer, giving us more options on what the
actual renderer can be. A diagram of this new design can be
seen in Figure 3.

With the combination of the two previous projects
we have VMLIC (ViSUS enabled Multilayered Image
Caching).

4. VMLIC

VMLIC takes an image and splits it into multiple images
by splitting the frustum corresponding to that image along
each axis. These new sections correspond to specific areas
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in space and, in turn, correspond to specific sections of data.
We can now take advantage of this fact, and load differ-
ent resolutions of the data based on the size of the section
needed. Once the section has been identified, it is put into a
queue to be rendered by one of the remote rendering engines.

Once one of the remote rendering engines retrieves this in-
formation, it calculates what section of data is required, and
then determines what resolution of the data can be fit given
a memory constraint. The data is then loaded using the Vi-
SUS library. Now the information given originally from the
dispatch is converted to make it relative to the new section
of data loaded.

This information is passed onto the renderer to be ren-
dered. After rendering, the result is sent back to the dispatch.
The dispatch takes this subimage and stores it into the image
cache. Now when the final image is displayed, the subimage
will be displayed along with any other subimages already in
the image cache.

Increasing the number of subimages displayed will in-
crease the overall picture quality in two ways. First increas-
ing the number of subimages increases the resolution of the
final image, since the subimages have a fixed size. This
of course cannot increase the resolution beyond what the
Display is capable of. Secondly, increasing the number of
subimages decreases the size of the sections the subimages
correspond to. This allows higher resolution versions of the
dataset to be loaded. Examples of increasing the number of
subimages can be seen in Figure 4. It is clear that the system
is capable of showing both low resolution(data and pixel) as
well as high resolution final images.

4.1. Rendering

This process breaks the large scale rendering problem down
into many small rendering problems. These images are ren-
dered individually and have no knowledge of each other. The
actual renderer of these images has no multi-resolution re-
quirements, and can be a simple standard renderer. This al-
lows the use of algorithms and renderers that may not seem
to be possible with large datasets. With this in mind, the sys-
tem was designed to be renderer independent with only a
small set of restrictions.

What we call, renderer independence, was achieved by
designing the new remote rendering engines to format the
information from the dispatch, along with the data from Vi-
SUS in a way that hides the mulitresolution nature of the
problem. We wanted it to have a divide-and-conquer feel to
it. Taking a large complicated problem, and turning it into
many small simple problems.

On an implementation level, the engines were designed
with a skeleton rendering class designed to be inherited
from. It has a small set of simple functions (to set the dataset,
viewing frustum, etc.) that are easily overloaded. The user

Figure 4: An example of the same scene with different
numbers of subimages. It is clear to see that as the number
of subimages increases, both the resolution of the data and
images quality are greatly increased. The increasing order
is: Top left, Top right, Bottom left, Bottom right.

simply creates a subclass of of this renderer (which can ei-
ther contain the actual rendering code, or call functions in a
desired renderer) and builds the system with it. When test-
ing this idea, a simple ray casting isosurface renderer was
written. This ray caster did not take into account anything
involving the "big picture" and was easily integrated into the
remote rendering engines. Another renderer was later tested
that took advantage of graphics hardware and 3d textures.

4.2. Browsing

As stated before, one of the powers of this system is it’s abil-
ity to browse and navigate through data while it renders. Fig-
ure 5 gives an example of looking around within the dataset
while it renders. The use of the subimages as impostors al-
lows for several types of navigation that do not require re-
placing the subimages already in the image cache. These
types of navigation are camera rotation and zooming.

The reason zooming falls into this category is rather ob-
vious. The system simply zooms in on the subimages. Cam-
era rotation is also rather simple. This is not to be confused
with data rotation, but rotating the camera direction while
the camera location is fixed. This is only really useful when
the location of the camera is very near, or actually within the
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Figure 5: An example of navigating through the dataset. The user first rotated the camera and increased the data resolution.
The example follows the user as the camera is repeatedly zoomed and the data resolution increased again. The display remains

interactive as these images are rendered.

Rendering Engines | Total Time | Images per Second
16 85.5637 6.5382
24 58.4335 9.7204
32 44.3990 12.7930
40 35.6591 15.9286
48 31.7465 17.8917
56 27.4257 20.7105

Table 1: A table showing numbers using the ray casting iso-
surface renderer. The resulted image created was at near full
data resolution.

data itself. All other forms of navigation require the entire
cache to be rerendered.

What this allows, is the user to locate possibly interesting
information on the final image at low resolution. Then rotate
that information to the center and zoom in. The user can now
increase the number of subimages for this section by a large
amount, allowing for a final image to be rendered at near full
data resolution.

5. Testing

We have tested VMLIC on a 56-node cluster with a Quadrics
switch interconnect. Each node has 2GB of memory and an
Intel Xeon 2.8 GHz processor. Our tests were conducted us-
ing between 16 and 56 nodes. The dataset used in testing
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was generated from the Richtmyer-Meshkov instability sim-
ulation [MCC™02] with 2048 x2048x 1920 voxels. ViSUS
is commonly used in an out-of-core environment, because
of this the data is read from a fileserver over the network,
rather than stored on the local disk of each rendering engine.

For our performance study, frames-per-second does not
work as an accurate measurement of this system because of
the decoupling of the rendering and the display. Images are
rendered remotely on the cluster and placed into the image
cache. When the display draws to the screen it simply uses
the images currently in the cache. As stated before this leads
to the system as a whole being interactive, even though it
may be actively rendering images. For the same reason, the
size of display is also independent of the performance. In-
stead, we recorded the number of images rendered per sec-
ond, and the number of images rendered per second per re-
mote rendering engine.

The test itself corresponds to the system starting after di-
viding the scene into subimages 5 times. We then timed how
long it took for the system to subdivide to a total of 10 sub-
divisions. The starting point for this test was used because
in the early stages, only a few remote rendering engines can
be used at a time(since the are only a small amount of im-
ages to be updated). This situation only occurs when the sys-
tem starts, or the image cache is cleared. A total of 568 sub-
images were required to be rendered and transfered over the
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Rendering Engines | Overhead | Images per Second
16 15.7298 36.1098
24 10.5001 54.0947
32 7.9486 71.4591
40 6.5462 86.7678
48 5.5466 102.4050
56 4.8330 117.5253

Table 2: A table displaying the overhead of the system. This
data was created by having the renderer return instantly, giv-
ing us an idea on how the actual system itself performs. The
test involves the data loading and sending of 568 sub images.
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Figure 6: A chart showing the number of images per second,
relative to the number of remote rendering engines. The bot-
tom line corresponds to the first full render test, while the top
line corresponds to the second test with no rendering. This
chart shows us that the system does in fact scale very well.

network. The primary renderer used for this testing was a
software ray casted isosurface renderer.

Table 1 shows the results when the system fully renders
the scene. As you can see the total time to render the final
image with fifty-six rendering engines was around 27.5 sec-
onds. The renderer tested is not commonly used in large data
visualization and is slow. These tests lead us to believe that
the renderer we were using was a large bottleneck for the
system. For this reason, we also felt that it was important
to test the system without any actual rendering taking place.
This would give us an idea of the actual performance of all
the other components. Table 2 shows these results. Using
fifty six rendering engines, the system completes the previ-
ous test in around 4.8 seconds or around 117 subimages up-
dated per second. These value confirmed that our software
render was indeed a large bottleneck. Our Preliminary test-
ing of a 3D texture based hardware renderer finished the test
in under 6.4 seconds, corresponding to around 89 subimages
per second.

Engines | Images per Second per Engine
16 2.2568
24 2.2539
32 2.2330
40 2.6919
48 2.1334
56 2.0986

Table 3: This table gives us an idea on how the system scales
by looking at the number of subimages rendered per second
for each rendering engine.

5.1. Scalability

An important aspect of all distributed system is how the sys-
tem scales when more processors are used. Figure 6 gives us
a view of the number of images per second, relative to the
number of remote rendering engines. This graph shows us
that the system scales well enough that a simple graph like
this cannot display how much performance we are losing.

We calculated another value to help us view the scalabil-
ity. Before, we kept track of the number of sub images ren-
dered per second and the number of rendering engines. From
this we find the number of subimages rendered per second,
per generator. This gives us an idea of how much work each
rendering engine is doing relative to the number of total en-
gines. Table 3 shows us these values for a range of 16 to 56
total rendering engines.

The resulting graph and table show us that the scalabil-
ity is not perfect, which of course is expected. We feel that
the performance loss is relatively minor and mainly due to
the fact that sometimes there are fewer images that need to
be rendered, than there are rendering engines. This is true
during early parts of the rendering, and even partially true
during medium quality renderings when dealing with a large
number of remote rendering engines. During actual brows-
ing, and when dealing with actual camera movement, we ex-
pect that the scalability to be even better.

A test was also performed to check for a possible per-
formance bottleneck due to the network traffic. This test was
conducted without the loading of data or the rendering of im-
ages. It simply tests how long it takes to send all the required
images over the network. Forty eight rendering engines were
used and a total of 568 128x128 images were transfered to
build a final image that would be at near full data resolu-
tion. This test took 0.3821 seconds. This lets us believe that
the network itself is not a large bottleneck and not likely a
scalability issue for the number of engines we used.

6. Conclusion and Future work

We have introduced the VMLIC system. This system
is capable of interactively browsing large multiresolution
datasets through the use of image caching. We are able to
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update the cache in a timely manner by distributing the work
over many remote rendering engines. This system does not
depend on the actual rendering algorithm used, and is ca-
pable of integrating algorithms that would otherwise not be
able to render large data.

More testing regarding the VLMIC system can also be
done. More renders can be tested as well as testing how VM-
LIC can be adapted to clusters based on the power of each
node. VMLIC contains several variables that can be mod-
ified based on the hardware. These variables include how
much data is loaded to render each subimage along with the
size of the actual subimage. As stated before, this also in-
cludes the actual rendering algorithm. As a user’s system
changes, VMLIC can possibly change along with it to main-
tain the level of interactivity desired.

The idea behind renderer independence has opened a door
for new research. Taking a rendering method incapable of
high resolution data and adapting it to work with our system
is a definite next step. This can include very specific algo-
rithms used by scientists who are currently forced to use the
renderers included with other large data visualization sys-
tems. Renderers in these systems may not give them the an-
swers they need.

The idea behind image caching and breaking a large
multi-resolution problem into a small single resolution prob-
lem has more applications than just scientific visualization.
We feel that this idea could be expanded to handle not only
data, but high resolution models or meshes.
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