
Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)
D. Bartz, X. Pueyo, E. Reinhard (Editors)

Physical cloth simulation on a PC cluster

F. Zara† and F. Faure‡ and J-M. Vincent†

† Laboratoire d’Informatique et de Distribution (ID-IMAG), projet APACHE (CNRS, INRIA, INPG, UJF), Grenoble, France.
‡ Laboratoire GRAVIR, projet iMAGIS (CNRS, INRIA, INPG, UJF), Grenoble, France.

Abstract
Cloth simulation is of major interest in 3D animation, as it allows the realistic modeling of dressed humans. The
goal of our work is to decrease computation time in order to obtain real time dynamics animation. This paper
describes a cloth simulation and addresses the problem of parallelizing the implicit time integration and to couple
a parallel execution with a standard visualization. We believe that this work could benefit to other applications
based on a conjugate gradient solution and other applications of PC clusters.

Categories and Subject Descriptors (according to ACM CCS): G.4.5 [Mathematical software]: Parallel and vector
implementations

1. Introduction

Cloth simulation is of major interest in 3D animation, as it
allows the realistic modeling of dressed humans. Applica-
tions range from textile CAD to video games and interac-
tive web assistants. In CAD softs, cloth simulation decreases
productivity cost thanks to a direct vizualization of cloth ap-
pearance. In multimedia, cloth simulation adds a realistism
to dressed humans.

Cloth is modeled as a network of particles connected by
springs. Several thousands particles are typically needed for
one piece of cloth. One of the biggest challenges of cloth
simulation is to obtain interactivity (25 frames by second).
There are two major steps in the simulation loop. First, we
have to solve a differential equation over time in order to re-
peatedly compute the next state of the system as a function
of the current state. This computation involves a large num-
ber of springs and particles. Spring stiffness requires either
small time steps or sophisticated computations in order to
prevent the system from diverging 3, 2, 20. Then, collisions
have to be detected and processed. This computation is basi-
cally of quadratic time complexity, which is expensive due to
the high number of objects. Consequently, to obtain real time
animation, a huge amount of computation time and memory
are needed.

Now clusters of PCs are on the rise alternative architec-
tures. They provide scalable computing power and are able
to solve big problems of 3D simulation. So we choose to

parallelize simulation algorithms in order to obtain real time,
and we run our application on a PC cluster. This adds a diffi-
culty to the cloth simulation because we have to perform the
physical computations on a parallel architecture computer
and to visualize the results on a separated graphics computer.
Moreover our programs should be scalable to provide the
best performances on several sizes of clusters and achieve
portability in order to be executed on different types of pro-
cessors.

The main problem concerning parallel 3D simulation is
to transform a highly sequential program in a parallel code
for a large number of processors. The nature of time-driven
simulation implies a step by step computation. Parallelism
could be exploited only inside a step of simulation, saying
roughly between two global synchronization points.

Because of clusters development, scalability of parallel
programs is of fundamental importance. In particular, for
irregular applications (numerical treatment of large sparse
matrices), it is not clear that classical parallel methods such
as conjugate gradient are scalable. Parallel libraries, such as
ScaLapack (http://www.netlib.org/scalapack/), seems to be
inefficient for irregular applications, in particular when the
structures of the sparse matrices are modified during the ex-
ecution. This is typically the case for cloth simulation, be-
cause contacts modify the structure of the network of par-
ticles. To avoid this difficulty, we use a dynamic scheduler
with load balancing policies. Depending on the evolution of

c© The Eurographics Association 2002.

105

http://www.eg.org
http://diglib.eg.org

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

the simulation, computation tasks should be automatically
spread on the processors to guaranty a minimal throughput.

Our main contribution is the following. We present a de-
composition of the physical simulation problem based on a
structuration of the object space. This leads to a paralleliza-
tion of the simulation step: an implicit time integration based
on a conjugate gradient algorithm. Moreover, we present a
practical solution to interactively visualize a simulation per-
formed on the cluster using a separated graphics computer.
We believe that this work could benefit to other applications
of PC clusters. In this paper, we do not address the problem
of collision detection 14, 18, 20, but the global architecture
of the program allows modifications to implement collisions
detection.

Our program is designed for clusters up to one hundred
PCs. First experiments on our one hundred basic PC cluster
run about 100,000 particles. We predict that this code could
scale to a million of particles on the same architecture.

The paper is organized as follows. Section 2 presents the
previous work made in computer animation on deformable
objects simulation and in parallel computation. Section 3 de-
tails our PC cluster architecture and parallel programming
interface. Section 4 describes the physical model and its im-
plementation as an ODE solution. Section 5 shows our asso-
ciated parallel data structures and algorithmic schemes. Sec-
tion 6 presents how we display particles positions computed
on the cluster of PC. Then we show results in section 7. We
finally discuss future work in section 8.

2. Previous work

In computer animation, particles systems have proven to be
an appropriate model for fast physically based simulation of
deformable objects 3, 2, 5, 7. These models require an ordi-
nary differential equation to be solved.
Meier and Eigenmann 13 have analyzed the computational
structure of several different congugate gradient schemes for
solving elliptic partial differential equations, using a parallel
implementation on the Cedar hierarchical memory multipro-
cessor. Demmel, Heath and van der Vorst 8 have explained
iterative algorithms for solving linear systems of equations
considering dense, band and sparse matrices on parallel ar-
chitectures.
With the work of Baraff and Witkin 3, implicit integra-
tion methods designed to solve differential equations, have
proven to allow the use of large time steps without loss of
stability. Desbrun et al. 9 have proposed a stable, real-time
algorithm for animating cloth-like materials using a hybrid
explicit/implicit algorithm.
Last year, Hauth and Etzmuss 10 have presented theorical
analysis to exploit special properties of the mechanics of de-
formable objects. Romero and Zapata 15 have detailed a so-
lution for cloth and other non-rigid solid simulations on par-
allel computers. They have developed an application, which

combines data parallelism with task parallelism on 8 proces-
sors.

3. Experimental context

3.1. Hardware

The dynamic simulation of our 3D object consists in com-
puting along time, positions and velocities of sample points
and to display the associated surface. If the object has N ver-
tices, we have to compute 3N + 3N values, which are po-
sitions and velocities coordinates at each timestep. We then
have to visualize 3N coordinates. When the object is com-
plex, that is when N is nearby 100 000 (for more realistic
simulation), the goal of real time becomes illusive because
of the amount of computation to perform and moreover we
have memory problems due to the amount of data. The mem-
ory used by our model is nearby 4×3N ×25 bytes, this cor-
responds to a flow of 30 Mb/s for a frame rate of 25 Hz.

In order to decrease computation time of each frame of
simulation, we chose to make parallel algorithms, using the
parallel programming interface Athapascan developped in
the ID-IMAG laboratory for the APACHE project. The ap-
plication runs on a cluster of 216 HP e-vectra (pentium III,
733 MHz, 216 Mo, 15 Go) for the i-cluster (INRIA, HP)
project and the LIPS (INRIA, BULL) project (see figure 1).

Computation is performed in parallel on the cluster, and
the results are brought up on screen of a standard computer,
using the library GLUT (OpenGL Utility Toolkit). Conse-
quently we have to control the flow between the cluster and
the computer used for visualization, in order to obtain real
time (25 Hz).

Figure 1: Architecture: reality center and cluster together.

3.2. Parallel environment programming Athapascan

Parallel hardware, like a cluster, provides a computation
more power than using a mono or multi-processors computer
and cheaper than using a Cray. In fact, in the eighties, paral-
lel hardware corresponded to construction of vectorial pro-
cessors (Cray), adapted to a kind of applications and more

c© The Eurographics Association 2002.

106

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

specialy to regular problems. However these system are very
expensive. Therefore in the nineties, parallel computer have
been elaborated using powerful standard processors and a
fast interconnection network.

In order to use this kind of parallel architecture easily, we
have used the parallel programmation environment Athapas-
can. Athapascan is an environment designed for program-
ming parallel computers. It implements a parallel program-
ming model based on a shared memory. A parallel code can
be generated that allows parallel and distributed executions
on a wide class of parallel architectures (multi-processors
computers, cluster of PC). Thus we only have to write once
our program, and then it can be executed on all kind of paral-
lel architecture. This environment consists of two modules:

• Athapascan-0 6 is a multi-threaded, portable, parallel pro-
gramming runtime system for distributed architectures,
which can be available for all platforms where a POSIX
threads kernel and a MPI communication library have
been installed. It is designed to solve efficently large ir-
regular problems.

• Athapascan-1 17 is the application programming interface
of Athapascan. It is structured in three layers. The first
one is the application programming interface which is
seen by user. It enables to generate parallel or sequential
code at compile time, depending on the scheduling an-
notations. The second layer is the parallel library which
implements the programming interface to achieve parallel
and distributed executions. The third layer is the schedul-
ing library which provides various scheduling policies
and facilities to develop new ones. The parallel and the
scheduling libraries are implemented upon Athapascan-0.
Athapascan-1 is a high level interface in the sense that
no reference is made to the execution support: the syn-
chronization, communication and scheduling operations
are entirely supported by Athapascan-1. Moreover it is
an explicit parallelism language: the programmer indi-
cates himself the parallelism of its algorithm perform-
ing asynchronous procedure calls via Athapsacan-1 key-
words. The granularity of the computation and the data
are also specified by user through classical procedure and
type definition.

An Athapascan-1 program is a set of tasks dynamically
created which share some objects. In order to use this par-
allel environment, we only have to split our simulation in
a set of computation tasks and to find which objets have
to be shared by processors of the cluster. The Athapascan-
1 interface provides a data-flow language: the execution is
data driven and determinated by the availability of the shared
data, according to the access mode. In a parallel context, this
implies that synchronizations between concurrent computa-
tions are made in order to ensure that the access to the shared
data are consistent with the algorithm. That is to say that date
of execution of a task is automatically determined by the sys-
tem in order to ensure that the versions of the shared objects
it owns are sementically coherent.

4. Physical cloth simulation

In this part, we shortly describe the physical simulation of
cloth 2, 11, 5, 7. It consists in computing the motion of a large
number of particles in interaction. The principal stages of the
animation are:

• Ordinary differential equation (ODE) integration,
• collision processing.

Here we focus on the first stage. In order to apply large
time step, we use an implicit integration method 3.

4.1. Physical model

(x,y,z)

f

Cloth is modeled as a tri-
angular mesh of particles
connected by springs (fig-
ure 2). We have N particles
in a 3D-space. A force f is
applied to each particle.

Figure 2: Triangular particles mesh connected by springs

The acceleration of the ith particle of our simulation is
given by the fundamental dynamics rule, x′′i = fi/mi, where
fi is the force applied to this particle and mi its mass. The
forces exerted are the gravity, the springs forces and the
airdamping. If we define the diagonal matrix M by M =
diag(m1,m1,m1, ...,mN ,mN ,mN), where m1, ...,mN are the
masses of the particles, we have:

x′′ = M−1 f (x,x′).

Euler’s method can be used to calculate system state evo-
lution during time:

x(t0 +h) = x0 +hx′0
x′(t0 +h) = x′0 +hx′′0 ,

where x0,x
′
0,x

′′
0 are position, velocity, and acceleration of

particles system at time t0, respectively and h the stepsize
parameter.

This method can be unstable when h is big or when the
stiffness is large. Thus we use another method called implicit
Euler method. To calculate the state of system and its veloc-
ity by an implicit method, we define velocity v as v = x′.
Hence we have:

d
dt

(

x
x′

)

=
d
dt

(

x
v

)

=

(

v
M−1 f (x,v))

)

.

To simplify notation, we define ∆x = x(t0 +h)− x0, ∆v =
v(t0 +h)− v0 and force f0 = f (x0,v0).

David Baraff and Andrew Witkin show 3 by applying a
Taylor series, that this system becomes:

(

M−h
∂ f
∂v

−h
∂ f
∂x

)

∆v = h

(

f0 +h
∂ f
∂x

v0

)

, (1)

c© The Eurographics Association 2002.

107

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

which we have to solve to obtain ∆v. We then easily compute
∆x = h(v0 +∆v).

To sum up, when we use Euler’s implicit method we have
to evalue f0, ∂ f

∂x and ∂ f
∂v , to construct a linear sparse system,

to solve it in order to compute ∆v, and then to update x and
v.

To solve the linear system, we apply the conjugate gra-
dient method which easily uses the sparsity of the matrix,
since it only adresses the matrix through its product with a
vector.

Implementation 1 shows the computations made at each
step of the simulation.

Implementation 1 Simulation step
ComputeForces();
ComputeAccelerations();
CreateEquationSystem();
SolveSystem();
UpdateVelocitiesAndPositions();
CollisionsProcessing();

5. Parallel cloth simulation

In this part, we first present two strategies to parallelize a
simulation of particles (a spatial split of space simulation and
a space dividing). Second, we describe the data structure.
Third, we explain the conjugate gradient method to solve the
sparse linear system.

5.1. Spatial split of space simulation vs space dividing

The currently traditionnal parallel programming approaches,
as communicating processes and data parallelism, can easily
exploit hardware parallelism when the computation can be
split into smaller equally weighted computation processes,
with good data locality. This type of parallel computation is
called regular. Simple mapping and scheduling algorithms
can be used to exploit satisfactorily the hardware paral-
lelism. The same does not happen if the computations do
not have equivalent sizes (or they are not previously known)
or do not have good data locality properties. Parallel compu-
tations like that are called irregular.

Our cloth simulation is an irregular problem. Indeed us-
ing an implicit integration method, we have to solve a sparse
linear system to compute velocities. Moreover in processing
collisions, weighted computation is not the same according
to the cloth zone considered. For this reason, we use the par-
allel programming environment Athapascan which permits
to parallelize irregular problem. Indeed we can create paral-
lel task which have not the same computation size.

There are two main strategies to parallelize a simulation
of particles. The first one is to split space in boxes which
contain parts of the object which we want to simulate 4 (see

figure 3.a). These boxes are distributed to the processors. But
the particles are not attached to a given processor.

The second strategy is to split the particles in the object
space (see figure 3.b). The particles system is split in parti-
cles blocks, which can be dynamically assigned to proces-
sors 15 by Athapascan.

a : Space division

Blocks of size n

Block 0

Block 2

Block 4

Block 1

Block 3

Block 5

b :Object division

Figure 3: Spatial split of space simulation vs space dividing.

We chose to use the second strategy in order to parallelize
our cloth simulation. This strategy is more adaptated to irreg-
ular problems. The number of particles is the same in each
block, so we can assume that we have the same computation
load for each block.

We don’t lose any information in splitting the system in
blocks. Indeed we have a data structure which binds blocks
by knowing neighbouring particles of each system particle
(see figure 3.b). This structure allows us to compute forces
applied to particles which requires position, velocity and ac-
celeration of all its neighbouring.

5.2. Parallelization by data blocks

Using parallel simulation, we can compute the position, ve-
locity and acceleration of many particles at the same time. At
time t, positions, velocities and accelerations of all particles
are stored in 3 different arrays. By splitting each of these ar-
rays into several blocks, each block being an Athapascan-1
shared object, we perform computations on several particles
at the same time.

Let us first focus on position computation. Implemen-
tation 2 describes an algorithmic scheme for the Euler’s
method, used for determining new particles positions.

Implementation 2 General scheme in Athapascan for inde-
pendent operations
// Method declaration
struct Euler {

void operator()(Shared_r_w<Vect3D> BlockPos,
Shared_r<Vect3D> BlockVeloc) {

// Computation of xi(t+h) = xi(t) + h vi(t) }
};
// Parallel computation of the blocks
for(int i=0; i<Number_of_blocks; i++)

Fork<Euler>()(Position[i], Velocity[i]);

c© The Eurographics Association 2002.

108

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

In this example, “Position” refers to the array of particles
position. Practically, positions are stored as blocks in this
array. Thus Position[i] is a block containing the position of n
particles. These blocks are Athapascan-1 shared objects, on
which the “Euler” function is applied.

The “Fork” keyword creates an Athapascan-1 task. The
loop “for” of implementation 2 creates “Number_of_blocks”
parallel tasks on processors. Each processor deals with all
particles contained in one block “Position[i]”.

Let us now focus on the determination of velocities and
accelerations. As shown in section 4, they depend on sev-
eral forces. The force applied to a particle is the sum of
the forces exerted by neighbouring particles and the exter-
nal forces (like gravity, wind, ...).

Consequently, we should store the mesh as a data structure
providing the connection data. Each particle points (using
particles identifier) to its neighbouring particles and to the
associated spring properties (see figure 4).

Particule neighbour

Block 0 Block 1 Block 2

Figure 4: Mesh matrix structure.

Similarly with positions, this structure is split into shared
blocks. We store the particle forces in the split array named
“Force”.

To determine the forces applied to each particle we first
initialize the forces at zero and then accumulate the contri-
bution of each spring. Force blocks are processed in parallel
(see figure 5). The force applied to a particle in a given block
results from interactions within the block, and possibly from
interactions with particles in other blocks. We process them
separately. Local interactions are processed locally within
a computation mode. Block-to-block interactions are pro-
cessed by parallel tasks, each one dealing with a pair of
blocks.

x, v, f, springs

Block0

x, v, f, springs x, v, f, springs

Block1 Block2

Local interactions Block-to-block interactions

Parallel tasks

Data

Figure 5: Computation scheme of forces applied to block 0.

To compute interactions between the blocks i and j, we

only have to put Mat[i] in parameter, giving carrying all
information about connections. We set the access rights of
the force vector to “cumulative write” (suffix cw) (see im-
plementation 3). It allows us to update the force applied to
each particle of the two blocks, by adding the tasks results as
they become available, without prior scheduling. This can be
done because addition is an associative and commutative op-
eration. The interactions between two blocks are computed
only once and then there is no computation redundancy.

Implementation 3 Parallel computation of force
// Method declaration
struct Task_Force {

void operator()(Shared_r<Vect3D> BlockPos1,
Shared_r<Vect3D> BlockPos2,
Shared_r<Vect3D> BlockVeloc1,
Shared_r<Vect3D> BlockVeloc2,
Shared_cw<Vect3D> BlockF1,
Shared_cw<Vect3D> BlockF2,
Shared_r<VectorMatrP> BlockMat) {

// Interaction computation between block1 and block2}
};
// Iteration in main
for (i,j) ∈ Bi × B j do // Considere only cases where i linked to j

Fork<Task_Force>()(Pos[i], Pos[j], Veloc[i], Veloc[j],
Force[i], Force[j], Mat[i]);

5.3. Parallel conjugate gradient

We have to solve a linear system (equation 1) to update par-
ticles velocities. We define A as

A =

(

M−h
∂ f
∂v

−h
∂ f
∂x

)

,

and vector b as

b = h

(

f0 +h
∂ f
∂x

v0

)

.

Since the matrix A is symetric and positive, we use the
conjugate gradient algorithm 16, 19 to solve the linear system
A∆v = b. The algorithm terminates when the error parameter
is smaller than the desired accuracy (see implementation 4).

The conjugate gradient algorithm performs simple al-
gebraic operations: vector sums, dot products and ma-
trix/vector products. Figure 6 illustrates the product of the

sparse matrix
[

∂~f
∂x

]

by a vector. This matrix is symmetric

and its structure is given by the graph. Matrix entries are
blocks of dimension 3 × 3. Diagonal elements correspond
to graph nodes (particles), and non-zero entries correspond
to edges (springs). We thus store the matrix entries similarly
with particle values, for the diagonal entries, or with spring
values, for the other entries. Matrix and vectors are thus split
into blocks, allowing parallelization.

c© The Eurographics Association 2002.

109

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

Implementation 4 Conjugate gradient algorithm for solving
A∆v = b
β← 0; // Error factor initialisation
∆v← 0; // Solution initialisation
R← b−A∆v; // Residual vector initialisation

α← RT R; // Step initialisation

I f (β 6= 0)

T ← R +(α
β)T ; // New direction vector

Else
T ← R; // Director vector initialisation

β← T T AT ; // Error factor update
R← R− (α

β)AT ; // Residual vector update

∆v← ∆v +(α
β)T ; // Solution update

β← α; // Error factor

Until (β < ε) // Iteration until desired precision

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

=

Figure 6:
[

∂~f
∂x

]

× direction vector product.

Figure 7 illustrates the parallel algorithm scheme for this
product. This scheme is similar with the one used to com-
pute forces described in figure 5 and has therefore, the same
parallel implementation. Only the detail of the computa-
tions changes: linear for matrix × vector product, non-linear
(spring’s elongation) for force computation. The product be-
tween matrix blocks and vector blocks are made in parallel,
in the same way as the forces exerted on points by springs
were computed (see implementation 3). Access rights are
set again to “cumulative write” to allow the accumulation of
these forces. Therefore a unique data structure is needed for
the simulation. The terms of the equation system, as well as
the internal vectors of the algorithm, are stored in the blocks
with the positions, velocities and forces.

Block0 Block1 Block2

Data

Parallel product

v, b, r, T, h, A v, b, r, T, h, A v, b, r, T, h, A ∆ ∆ ∆

Figure 7: Parallel algorithm scheme for product of
[

∂~f
∂x

]

×

direction vector.

6. Visualization

One of the difficulties of our cloth simulation, is that it com-
bines a parallel execution with a visualization on a single
computer. The visualization is made using the Glut library
(OpenGL Utility Toolkit).

The whole difficulty rests in the fact that at each simula-
tion step, data are distributed over all computer and must be
gathered on the computer dedicated to visualization.

We make two programs: an Athapascan-1 program (im-
plementation 6) which computes particles states in paral-
lel, and a Glut program (implementation 5) which visualizes
them (see figure 9).

Implementation 5 States particles visualization
Vect3D Position; // Global variable of particles positions
Socket sock; // Socket descriptor

void update() {
// Positions array update with received buffers
Gather(Position, sock);
glutPostRedisplay(); // Request for redraw

}

int main () {
// Get the socket descriptor
Init(sock);
glutDisplayFunc(display); // Visualization
glutIdleFunc(update); // Particles positions update
glutMainLoop(); // Start main loop

}

Implementation 6 States particles computation
Vect3D_Shared Position; // Positions particles array
Socket sock; // Socket descriptor

int main (){
// Get pending socket connection
Init(sock);

while(1) {
SimulationStep();
Send(Position, sock);

}
}

These two programs are connected together using sockets.
The Athapascan-1 program opens a socket and waits for the
visualization program to connect. Then at each simulation
step, the Athapascan-1 program sends particles positions to
the visualization program. A notification receipt is sent as
soon as the whole data is received. Thus only positions tran-
sit through the network.

c© The Eurographics Association 2002.

110

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

7. Results

In order to evaluate the efficiency of the cloth simulation, we
make several simulations with, each time, a different number
of particles and processus and a new size for the blocks. We
fix the number of iterations used to compute the conjugate
gradient to 5.

10 20 30 40 50 60 70 80 90 100 2
3

4
5

6
7

8
9

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

Blocks size

Processor number

Real time in second

Particuls number : 100

0 200 400 600 800 1000 1200 1400 1600 2
3

4
5

6
7

8
9

0
0.5

1
1.5

2
2.5

3

Size blocks

Processor number

Real time in second

Particles number : 1600

1000 2000 3000 4000 5000 6000 7000 8000 9000 2
3

4
5

6
7

8
9

0
2
4
6
8

10
12
14
16
18

1000 2000 3000 4000 5000 6000 7000 8000 9000 2
3

4
5

6
7

8
9

0
2
4
6
8

10
12
14
16
18

Size blocks

Processor number

Real time in second

Particles number : 10 000

2000030000400005000060000700008000090000 2
3

4
5

6
7

8
9

10
15
20
25
30
35
40
45
50
55
60
65

Real time in second

Processor number

Size blocks
Particles number : 90 000

Figure 8: Real time by frame.

We can see that the execution time depends both on the
number of processors and on the size of the blocks. These
experimentations permit to find the suitable size of blocks,
that is to say the granularity of parallelism, so as to optimize
the execution time.

The Athaspacan version we use, as we are writting this
paper, can only run our simulation on a multiprocessors ma-
chine, as can be noticed on 7. This is of course a first step

and we will run the simulation on a cluster of 216 HP e-
vectra PC (pentium III, 733 MHz, 216 Mo, 15 Go) as soon
as Athapascan permits (the use of a newer version of Atha-
pascan will not require any modification of our program).
However, these results show that a great amount of time is
spent in communication for too small blocks size. To us, a
better distribution of particles in the blocks coupled with a
suitable scheduler would consequently improve the results.

8. Future work

Thus we have presented a parallel cloth simulation using a
decomposition based on a structuration of the object space.
Our implementation uses the parallel environment Athapas-
can, which permits to execute our simulation on every kind
of parallel architecture. This work suggests a number of ar-
eas for future research, such as:

Collisions detection and treatment 20 12: Collision detec-
tion between particles has not been implemented yet, but will
soon be added to the application.

Using of the parallel vizualisation interface Net Juggler
1: We plan to use the parallel vizualisation interface Net Jug-
gler 1 which permits a parallel displaying of our animation.
This interface exploits the power of many computers graph-
ics cards, each bringing up on screen a part of the image.
This allows the parallel visualization of a high number of
particles, without using an expensive graphic computer as
an SGI Onix (Silicon Graphics).

Figure 9: 100 particles large cloth maintained at a corner.

9. Acknowledgements

This work was partly financed by the contract of the
“Thématique Prioritaire no4 “Sciences et technologies de

c© The Eurographics Association 2002.

111

Zara and Faure and Vincent / Physical cloth simulation on a PC cluster

l’information, outils et applications” de la région Rhône-
Alpes.”

References

1. J. Allard, L. Lecointre, V. Gouranton, E. Melin, and
B. Raffin. Net juggler guide. Technical Report RR-
LIFO-2001-02, LIFO, Orléans, France, June 2001.

2. W. Stasser B. Eberhardt, A. Weber. A fast, flexible,
particle-system model for cloth. IEE Computer Graph-
ics and Applications, 16:52–59, 1996.

3. D. Baraff and A. Witkin. Large steps in cloth simula-
tion. In Computer Graphics Proceedings, Annual Con-
ference Series, pages 43–54. SIGGRAPH, 1998.

4. P.-E. Bernard. Parallélisation et multiprogrammation
pour une application irrégulière de dynamique molécu-
laire opérationnelle. PhD thesis, Institut National Poly-
technique de Grenoble, France, October 1997.

5. D. Breen, D. House, and P. Getto. A particle-based
model for simulating the draping behavior of woven
cloth. Textile Research Journal, Vol. 64, 11:663–685,
nov 1994.

6. J. Briat and M. Pasin I. Ginzburg. Athapascan-0 User
Manual. Projet APACHE, Grenoble.

7. M. Kass D. Terzopoulos, A. Witkin. Computer graph-
ics techniques for modeling cloth. 1988.

8. J. Demmel, M. Heath, and H. van der Vorst. Paral-
lel numerical linear algebra. In Acta Numerica 1993,
pages 111–198. Cambridge University Press, Cam-
bridge, UK, 1993.

9. M. Desbrun, M. Meyer, and A. H. Barr. Interactive an-
imation of cloth-like objects for virtual reality.

10. M. Hauth and O. Etzmuss. A high performance solver
for the animation of deformable object using advanced
numerical methods. In European Association for Com-
puter Graphics (EUROGRAPHICS’2001), Manchester,
UK, September 2001. ACM.

11. D. Crochemore J. Louchet, X. Provot. Evolutionary
identification of cloth animation models. In Dimitri
Terzopoulos and Daniel Thalmann, editors, Computer
Animation and Simulation’95, pages 44–54. Springer-
Verlag, 1995.

12. A. Mir M. Mascaro and F. Perales. Elastic deforma-
tions using finite element methods in computer graphic
publications. In H. H. Nagel and F. J. Perales, editors,
LNCS, volume 1899, pages 38–47, 2000.

13. U. Meier and R. Eigenmann. Parallelization and per-
formance of conjugate gradient algorithms on the cedar
hierarchical-memory multiprocessor. In Proceedings of
the 3rd ACM SIGPLAN Symposium on Principles &

Practice of Parallel Programming, volume 26, pages
178–188, Williamsburg, VA, April 1991.

14. T. Moller. A fast triangle-triangle intersection test. JG-
TOOLS: Journal of Graphics Tools, 2, 1997.

15. S. Romero, L. F. Romero, and E. L. Zapata. Fast cloth
simulation with parallel computers. In Euro-Par 2000
European Conference on Parallel Processing, pages
491–499, Munich, August 2000.

16. Y. Saad. Iterative Methods for Sparse Linear Systems.
PWS Publishing Company, 1996.

17. Athapascan-1 team. Athapascan-1. Projet APACHE,
Grenoble.

18. N. Magnenat Thalmann. Efficient self-collision detec-
tion on smoothly discretized surface animations using
geometrical shape regularity. Computer Graphics Fo-
rum, 13(3):155–166, 1994.

19. A. Gupta V. Kumar, A. Grama and G. Karypis. Intro-
duction to parallel computing, design and analysis of
algorithms. Benjamin/Cummings, 1994.

20. P. Volino and N. Magnenat Thalmann. Implementing
fast cloth simulation with collision response. In CGI’00
Computer Graphics International, Geneva, June 2000.

c© The Eurographics Association 2002.

112

