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Abstract
Although modern graphics hardware has strong capability to render millions of triangles within a second, huge
scenes are still unable to be rendered in real-time. Lots of parallel and distributed graphics systems are explored
to solve this problem. However none of them is built for large-scale graphics applications.
We designed AnyGL, a large-scale hybrid distributed graphics system, which consists of four types of logical
nodes, Geometry Distributing Node, Geometry Rendering Node, Image Composition Node and Display Node. The
first two types of logical nodes are combined to be a sort-first graphics architecture while the others compose
images. A new state tracking method based on logical timestamp is also pro-posed for state tracking of large-scale
distributed graphics systems. Besides, three classes of compression are employed to reduce the requirement of
network bandwidth, including command code compression, geometry compression and image compression. A new
extension, global share of textures and display lists, is also implemented in AnyGL to avoid memory explosion in
large-scale cluster rendering systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems-
Distributed/network graphics; I.3.4 [Computer Graphics]: Graphics Utilities-Software support, Virtual device in-
terfaces; C.2.4 [Computer-Communication Networks]: Distributed Systems-Client/Server, Distributed Applica-
tions;E.4 [Coding and Information Theory]: Data compaction and compression

Keywords: Large-scale Cluster Rendering, Parallel Rendering, Tiled Displays, Image Composition, Remote
Graphics, Virtual Graphics, Logical Timestamp, Geometry Compression, Image Compression, Global Share,
Memory Explosion

1. Introduction

The interactive computer graphics architecture has devel-
oped through four generations in the past two decades1.
Not only the performance improvement of computer graph-
ics hardware exceeds the Moore’s Law, but also modern
computer graphics hardware possesses more transistors than
modern CPU does. However, many applications, such as sci-
entific visualization of large data sets, high resolution dis-
play and photo-realistic rendering, are still unable to run in
real-time on high end of modern graphics hard-ware. Thus,
the main goal of graphics architecture research is to improve
the performance of the overall system architecture.

� Jian Yang and Hui Zhang left Zhejiang Univerisity since June,
2002.

Interactive graphics hardware on desktop costs from tens
to thousands of dollars. Cluster rendering with commod-
ity components becomes new trend to substitute supercom-
puter which costs millions even hundred millions of dollars.
WireGL2� 22 is a good example for high performance dis-
tributed graphics system. Different from WireGL, AnyGL
parallelizes more graphics pipeline stages and adopts a new
state tracking mechanism, logical timestamp, for parallel
rendering on hundreds of nodes to provide high scalabil-
ity. We designed AnyGL, a large-scale hybrid distributed
graphics system. It consists of four kinds of logical nodes,
Geometry Distributing Node(G-node), Geometry Rendering
Node(R-node), Image Composite Node(C-node) and Image
Display Node (D-node) as shown in Figure 1. The G-nodes
take in immediate-mode OpenGL commands, pack and dis-
tribute them to R-nodes according to the bounding box com-
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Figure 1: The main architecture of AnyGL consists of four kinds of logical nodes, Geometry Distributing Node , Geometry
Rendering Node, Image Composite Node and Display Node. OpenGL command streams and framebuffers are
compressed before transmission.

puted by the current model view matrix. The R-nodes re-
ceive the OpenGL command packets from G-nodes, decode
the packets and call their corresponding OpenGL hardware
commands. C-nodes compose the images with the depth val-
ues transmitted from R-nodes. D-nodes reassemble and dis-
play the final images.

G-nodes do same task as clients of WireGL and R-nodes
are similar to pipe servers of WireGL. However they are
different since a new state tracking method named logical
timestamp is implemented in AnyGL. It records the logical
timestamps when the state variables of graphics context are
modified. Each G-node maintains a few of virtual graphics
contexts. Context difference is executed before transmitting
command packets. Each R-node also maintains a few of vir-
tual graphics contexts. R-nodes do software context switches
when they received command packets.

AnyGL fully exploits compression including command
code compression, geometry compression and installable
image compression.

2. Related Works

Molnar et al.3 classified the parallel graphics architecture
into three kinds, sort-first, sort-middle and sort-last, by sort-
ing stages.

2.1. Hardware Architecture

Lots of parallel graphics hardware architectures are built on
complex standalone accelerators to exploit internal paral-
lelism. They always cost thousands even millions of dollars.

SGI’s RealityEngine4 is a sort-middle tiled architecture
which uses a shared high-speed bus to broadcast state com-
mands and primitives. The granularity of task partition is
very fine since RealityEngine broadcasts one triangle each

time and dispatches every 2 scan lines to one rasteriza-
tion processor. Pixel-plane 55 is also a sort-middle tiled
hardware architecture, which distributes primitives from a
retained-mode scene description and composes framebuffers
by high-speed ring network. The rasterization and fragment
stages are executed as SIMD. Eldridge et al.6 described
Pomegranate, a scalable graphics system based on point-to-
point communication. Pomegranate is a sort-anywhere ar-
chitecture, which simulates parallel rendering on five stages,
i.e., geometry processing, rasterization, texture mapping,
fragment and display.

PixelFlow7 is a sort-last architecture. Independent graph-
ics pipeline renders a fraction of the scene into independent
framebuffer. PixelFlow composes these framebuffers into a
single image for final display. The Evans Sutherland Free-
dom 30008 and the Kubota Denali9 are also examples of
fragment sorting architectures. The two architectures pro-
cess one triangle only once in stages of geometry and rester-
ization. Sort-last architectures will cause significant load im-
balance when geometry objects are large.

To reassemble images on clusters, Compaq Research de-
veloped a system called Sepia to perform image compo-
sition using ServerNet-II networking technology10. Sepia
reads color and depth buffers over system bus and composes
pixels by fast framebuffer access PCI cards.

2.2. Software System

In the research road map of parallel graphics architecture,
lots of software parallel graphics systems are designed and
implemented for different applications.

An OpenGL stream codec toolkit, GLS11, tracks, packs,
con-catenates and decodes OpenGL commands into streams,
which provides the basic idea of OpenGL command packing
for remote rendering. GLR12 furthers this idea to do OpenGL
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remote rendering as C/S model so that low-end graphics
workstations exploit the rendering capacity of supercom-
puter’s graphics system by sending OpenGL commands to
supercomputer and reading back color buffers from super-
computer for display.

GLX13 and X Window provide necessary protocols for
OpenGL rendering on X Windows. Small portion of state
commands are tracked in GLX such as pixel formats and
framebuffers. Parallel Mesa is another good example for
sort-last graphics architecture17. The multi-projector sys-
tem of Princeton is a sort-first graphics system23� 31. Only
one application process emits triangles to remote rendering
nodes. It focuses on OpenGL commands distributing and
tiled rendering. Igehy et al.21 studied parallel rendering of
order immediate-mode API in Argus and described a par-
allel graphics programming interface which breaks up the
bottleneck of serialization host interface.

WireGL2� 22 has solved several crucial problems of cluster
rendering on commodity components including bucket ren-
dering, distributed rendering and real-time image reassem-
bling. "Dirty bits" is introduced to track OpenGL states on
both client and server sides. "Lazy update" synchronizes
graphics contexts for immediate-mode OpenGL API. Vir-
tual context difference and software context switch will be
completed in a few milliseconds in general cases. Lightning-
214 reassembles multi-DVI20 video sources into the final im-
ages which provides high-resolution display for WireGL.
The parallel programming interface is also implemented in
WireGL. But the scalability of WireGL is limited to 32
nodes.

Peter Kipfer15 designed distributed lighting networks.
CORBA is employed to render object-oriented scenes with
complex physical lighting. MUDVE16 is another distributed
rendering system based on CORBA. It subdivides VRML
scene in object space and transmits VRML nodes to remote
rendering nodes. Color and depth buffers are composed by a
master node.

2.3. Scalability

Almost all distributed and parallel graphics systems are chal-
lenged by the serialization host interface except for the par-
allel graphics programming interface described by Igehy et
al.21. The interface allows applications to input triangles by
multi-processes and to render primitives in order.

Bus bandwidth challenges RealityEngine on high scala-
bility since all information must be broadcast. Fragment pro-
cessing approximates to linear speed-up for PixelFlow7.

Although in Argus24 texture share in texture mapping
stage is studied, memory explosion still exists for textures
and display lists in distributed graphics applications. AnyGL
develops global share extensions for textures and display
lists to avoid memory explosion in distributed and parallel
graphics systems.

To obtain high scalability, state tracking based on logical
timestamp is designed in AnyGL and three kinds of com-
pression are implemented to reduce the bandwidth require-
ments for geometry and image transmission through net-
work.

3. Architecture of AnyGL

3.1. Geometry Distributing Node

In AnyGL, OpenGL commands are divided into four cate-
gories, primitive commands, state modification commands,
remote remapping commands and special commands which
differs with WireGL2.

Primitive commands are the most frequently called com-
mands such as glVertex, glNormal, and glBitmap etc. They
do not modify the state variables of graphics context and are
simply packed into OpenGL command buffers. A physical
packet is divided into two logical buffers19, one is for pack-
ing OpenGL command codes and the other is for packing the
parameters of OpenGL commands. Some different protocol
packets are designed in AnyGL for geometry compression
and image compression. When geometry compression is
configured in AnyGL, geometry packets will be compressed
before sending them to remote nodes. (Source code of pack-
ing and unpacking functions are derived from WirGL2)

State modification commands are not packed into com-
mand buffer directly. State tracking based on logical times-
tamp is designed to track OpenGL state changes. Before
sending out a geometry buffer, context difference computes
the state changes of virtual graphics context and transfers
these changes into OpenGL commands which are packed
into OpenGL stream packet. See Section 4 for details of
tracking states based on logical timestamp.

Remote remapping commands are the commands related
to display list, texture and vertex array. Each texture has a
unique ID generated by OpenGL. When each G-node gen-
erates a texture with nID, each R-node will generate several
different textures with same texture ID. This will confuse R-
nodes to set correct current texture by nID. A scheme is ap-
plied in AnyGL to map textures to different local texture ob-
ject IDs using their G-node ID and texture IDs. This means,
textures, display lists and vertex arrays have different defini-
tions on G-nodes and R-nodes.

Special commands consist of WGL(GLX) functions,
glClear, glFlush, glFinish and SwapBuffers. Errors will oc-
cur when glClear and glFinish are called by several pro-
cesses within a frame. Generally, these commands are broad-
cast to all R-nodes.

There are two kinds of OpenGL extensions for parallel
graphics programming in AnyGL. One is parallel graphics
programming interface first implemented in Argus by Igehy,
the other is the global share interface for display lists and
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texture objects in cluster rendering. See Section 5 for details
of global share interface extension.

G-node determines the destination R-node of command
packet according to the bounding boxes computed from a
set of glVertex commands and bounding boxes are normal-
ized before transmission. G-nodes store the screen subdivi-
sions of G-nodes. When a command packet spans several G-
nodes, not only the packet must be transmitted to all spanned
R-nodes, but context difference must be executed each time
before transmission.

3.2. Geometry Rendering Node

When a R-node receives an OpenGL command package
from G-node, it first determines whether context switch is
needed. If it receives two continuous packages from two dif-
ferent G-nodes, software context switch must be exploited
to set the correct OpenGL hardware context for following
rendering. Four kinds of OpenGL commands are executed
in their different ways.

Primitive commands call the corresponding OpenGL
hardware API directly since they do not modify the graphics
context.

State commands are tracked on R-nodes. Similar to state
tracking on G-nodes, R-nodes adopt logical timestamp to
record the calling of state modification commands.

Special commands such as glClear, SwapBuffers execute
only once for each frame. Swapbuffers executes until all pre-
viously received commands have been executed. Now only
fixed pixel format is supported. To synchronize SwapBuffers
for all G-nodes, C-nodes and D-nodes, a global barrier oper-
ation is executed before calling hardware Swapbuffers.

Object remapping. When a new texture is defined in the
R-node, the texture is created and mapped to its original ob-
ject by its G-node ID and texture ID. Then the R-node sets
it active. When there is another texture with same ID from
a different G-node, they will be distinguished by different
local texture ID. A same scheme is used for display list.

The color buffer and depth buffer are read back by calling
glReadPixels and sent to C-nodes or D-nodes.

3.3. Image Composite Node

It is not necessary for C-nodes to be equipped with graphics
accelerated cards since they only receive image and depth
data from R-nodes. To reduce the requirements of network
bandwidth, each C-node corresponds to a small area of the
screen.

The C-node is the core of sort-last architecture. It main-
tains a color buffer and a depth buffer. When it receives a
glClear command, it clears the color buffer and fills depth
buffer with the maximal depth value. Within each frame,

it will receive image and depth data from its connected R-
nodes. The first received image and depth data are directly
copied to its local color buffer and depth buffer. Later the
color buffer is composed according to the depth function of
current context. When all buffers are composed and Swap-
Buffers commands are received, the C-node copies the im-
age to window and sends it to the D-nodes.

3.4. Display Node

The D-node reassembles color data from R-nodes and C-
nodes and displays it on the final display devices such as
screens, projectors or other output devices.

Display node assembles images with software and serves
as a visualization server in AnyGL. The requirement of net-
work bandwidth is smaller than that of C-nodes since they
only receive color data from C-nodes and R-nodes.

4. State Tracking Based on Logical Timestamp

OpenGL graphics pipeline has a state machine which is
maintained as graphics context. The change of graphics con-
text must be tracked for parallel OpenGL so that OpenGL
commands will run under the correct context. OpenGL state
modification commands change the value of OpenGL con-
text variables. WireGL19 uses "dirty bits" to indicate the state
modification and "lazy update" to track context modification.
However it is not suitable for large-scale parallel rendering
applications.

To gain high scalability, state tracking based on logical
timestamp is used in G-nodes and R-nodes. Logic timestamp
is the logical value of state modification command calling.
Each state variable corresponds to a logical timestamp. Fig-
ure 2 shows the basic process of the state tracking of logical
timestamp in AnyGL.

State tracking based on logical timestamp consists of
five separate processing functions, state commands tracking,
context difference, context synchronization, software con-
text switch and state tracking of R-nodes. as shown in Figure
2. C-nodes keep the states of pixel format, depth function,
blend function and scissor function so that we focus on state
tracking on G-nodes and R-nodes.

Both virtual graphics context and logical timestamp are
organized into a hierarchy tree for fast comparison of logical
timestamp and quick context difference and context switch.
The virtual context divides states into 18 categories accord-
ing to OpenGL specification25.

4.1. State Tracking On Geometry Distributing Node

Each G-node maintains N+1 virtual graphics contexts or-
dered from 0 to N, where N is the number of R-nodes the
G-node connects. These virtual graphics contexts are created
by same default values. An application virtual context tracks
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Figure 2: State Tracking Based on Logical Timestamp, where (a) is the G-node and (b) is the R-node. Five state tracking
functions are marked by color filling, where (1) is state tracking of G-nodes, (2) is context difference, (3) is context
synchronization, (4) is software context switch and (5) is state tracking of R-nodes.

 

glLightf_state(light, pname, param){ 
check validate of parameters; 
check change of  the light state ; 
if (changed) { 

lights[light].pnamex = param; 
lights[light].pnamex.timestamp++; 
lights[light].timestamp++; 

} 
} 

Figure 3: Pseudocode for state tracking of glLightf on G-
node. Notice that timestamp increase by 1 when state of light
is changed.

the callings of OpenGL modification commands in this pro-
cess and then records logical timestamp. Other virtual con-
texts represent the current virtual contexts of this node on
remote R-nodes. A virtual context is set active when it rep-
resents the destination of command packet transmitting.

When a state modification command is called by an appli-
cation process and the value of the state variable is modified,
the logical timestamp will increase by 1 and the state vari-
able of application virtual context is set to the current value.
But no commands are packed to command buffer. Each state
modification command has a corresponding state tracking
function. Figure 3 shows the tracking of lightf on G-node.

Before geometry packets are transmitted to remote R-
nodes, context difference is executed between application

virtual context and the active virtual context. Context dif-
ference converts different states into packing functions of
OpenGL state commands when the logical timestamp of ap-
plication virtual context and that of active virtual context are
unequal. These OpenGL calls are packed into OpenGL com-
mand buffers and sent to the destination over network so that
only minimum parts of the OpenGL context are packed. Fig-
ure 4 is a portion of context difference of light and material.

When the timestamp of application virtual context con-
text overflows, timestamps of all contexts are hashed to 0
to 1024. Timestamps of application virtual context is set to
1024. If the timestamp is hashed to existing hash item and
the values are unequal, a new item will be inserted into hash
table.

Context synchronization is performed after context differ-
ence. Unlike context difference, application virtual context
is simply copied to active virtual context if the logical times-
tamps of them are unequal. After context synchronization,
the logical timestamp of active virtual context equals to that
of application virtual context.

4.2. State Tracking On Geometry Rendering Node

R-node maintains M+1 virtual contexts, where M is the
number of its connected G-nodes. An application virtual
context represents the current hardware context. Other vir-
tual contexts represent the current graphics contexts of the
connected G-nodes. A virtual con-text is set active when R-
node receives a geometry buffer from the corresponding G-
node whose context the virtual context represents. Software

c� The Eurographics Association 2002.

43



Jian Yang / Design and Implementation of A Large-scale Hybrid Distributed Graphics System

 

glLight_Diff(src, dest){ 
if timestamp of src, dest are equal return; 
if (lighting.timestamp of src,dest not equal & 

dest.lighting.enable) 
pack glEnable(GL_LGHTING); 

else 
pack glDisable(GL_LGHTING); 

if( dst.lighting){ 
for(I = 0; I I< num_lights, I++) 

if(light[I].timestamp of src,dest not equal){ 
pack changed parameters of dest into geom etry 

packet; 
} 

}  
call difference of material; 

} 

Figure 4: A portion of code for difference of light and mate-
rial. The different states are packed into geometry buffers.

context switch occurs when a R-node receives a command
packet from a G-node different with the last G-node. The
process of software context switch is similar to that of con-
text difference while software context switch calls OpenGL
hardware API. If the two logical timestamps of two con-
texts’ corresponding variables are equal, no state modifica-
tion commands will be called. Otherwise, a set of state mod-
ification commands are called to change the hardware con-
text and the logical timestamp of application virtual applica-
tion increases by 1 and the logical timestamp of active vir-
tual context is set equal to that of application virtual context.
When software context switch is completed, the active vir-
tual context is synchronized with application virtual context.
Figure 5 shows a port of code for software context switch
of transformation. When a state modification command is

 

glTransform_switch (src, dest){  
if(transform .timestamp of  src ,dest ar e equal)  

return ; 
if(modelview .timestamp of src, dest not equal ){ 

//call hardware api  
glLoadMartix( dest _model_view);  
src. modelview = dest .modelview;  
src.  modelview .timestamp =  
   dest.  modelview .timestamp;  
} 
call  projection switch  of src , dest;  

} 
  

Figure 5: A portion of code for software context switch of
transformation. Software context switch occurs when times-
tamp of src and dest are not equal.

called, the timestamp of application virtual context will add

1 and R-node calls the hardware state modification calls. The
whole process is very similar to the state tracking of G-nodes
except that OpenGL hardware commands are called while
packing of state commands is called by state tracking of G-
node.

Although the state tracking based on logical timestamp
also uses lazy update of WireGL, this algorithm does not
limit the node number of G-nodes and R-nodes. Further-
more, it is easier of implementing and programming.

5. Compression of Command Code, Geometry and
Image

5.1. Overview of Compression

Many methods are available for data compression. RLE is
very efficient for grayscale image compression. LZW com-
presses text effectively. Quantization is good at numerical
compression. Image compression has been studied for a long
time. JPEG is a popular standard of loss-quality image com-
pression. There are many re-searches on video compression,
where MPEG-4 compresses video in high ratio and good
quality quickly.

Geometry compression has got its focus since Deering27

escribed two problems of hardware rendering as geometry
compression and topology compression. He gave some ba-
sic methods for the compression of normal, color and posi-
tion. Later researches on geometry compression are focused
on topology compression. Buck et al.19 tried normal and po-
sition compressions where only simple linear prediction and
quantization are adopted.

5.2. Command Code Compression

Not only the frequently called commands are primitive com-
mands such as glBegin, glEnd, glVertex, glColor, glNormal
and glTexCoord, but these commands appear in fixed orders
and modes. LZW is used for command code compression
since it dynamically generates dictionary. Command code
compression ratio exceeds 1:4 in lots of examples.

5.3. Geometry Compression

Network bandwidth of 100�200 MB/s such as Myrinet26 is
low compared with that of system bus of 1�2 GB/s. The
low bandwidth challenges the scalability and limits the per-
formance of latest modern graphics hardware. We choose
normal, color and position for compression in AnyGL.

Generally geometry compression will decrease the preci-
sion of geometry primitive attributes. To satisfy the precision
requirements of various applications, programmers can ad-
just geometry compression ratio in AnyGL.

Normal compression described by Deering is imple-
mented in AnyGL. A lookup table is designed for fast nor-
mal compression and decompression.
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Position compression. An adaptive position compression
scheme is used in AnyGL to determine the compressed bits.
AnyGL compresses vertex position before transmission of
command packets. The compression precision will be ad-
justed for user applications. DPCM model is employed to
compress x-y-z positions which are the parameters of glVer-
tex3f. Four types of predictors are designed for 10 kinds of
different OpenGL primitives.

(1)Linear prediction is used to predict the next ver-
tex when the primitives are GL_POINT, GL_LINES,
GL_LINESTRIP, GL_TRIANGLES and GL_QUADS. The
next vertex can be predicted by previous k vertices according
to equation (1).

Pn�λ�Vn�1� ����Vn� k� �
k

∑
i�1

λiVn�i (1)

where Pn is the predicted position of the nth vertex,λ �
�λ1�λ2� ����λk� are the coefficients and V1�V2� ����Vn�1 rep-
resent positions of previous n-1 vertices. (2) Circle predic-

v n-1

Pn

vn-2

vn-3

 

 

Figure 6: Circle law prediction for primitives of
GL_POLYGON and GL_LINE_LOOP. Vn�3, Vn�2 and
Vn�1 are previous vertices, and αisthede f lectionangle�Pn

is the predicted position.

tion. Primitives GL_POLYGON and GL_LINE_LOOP have
same characteristics so that they tend to ’close’ to form an
n-edge polygon. Figure 6 shows the algorithm of this pre-
dictor. Given V1�V2�Vn�1�Pn�1 will continue the trend like
previous vertices, which means stepping forward an average
length with same deflection angle. Equation(2) is used for
calculating Pn.

�Vn�1Pn� �
�Vn�2Vn�1�� �Vn�3Vn�2�

2
(2)

(3) Parallelogram prediction30. Triangle stripes are mostly
used and the parallelogram prediction is good at their pre-
diction as shown in Figure 7 While the parallelogram pre-
diction suggests that a triangle strip tends to step forward
evenly as the vertices issue, quad stripes have the same char-
acteristics. So a quad is predicted by using parallelogram
prediction twice as shown in (d) of Figure 7. The predicted
position is computed by equation(3).

Pn �Vn�2 �Vn�1�Vn�3 (3)

(4) Triangle fan prediction. Triangle fans also tend to close
as a n-edge polygon. As shown in Figure 8, Pn tends to go
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Figure 7: Parallelogram Prediction, where (a) are triangle
strips, (b) is parallelogram prediction, (c) are a quad strips
and (d) represents by using parallelogram prediction twice.
Number 1�9 represent the issue order of these vertices.
Vn�4�Vn�3�Vn�2andVn�1 are previous issued vertices, Pn

and Pn�1 are the predicted positions.
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Figure 8: Triangle Fan Prediction, where (a) shows a trian-
gle fan, (b) is the predicted Pn.

forward a certain angle at the direction which the fan opens.
V1 is the center vertex position of triangle fan and Vn�2 and
Vn�1 are two previous issued vertices. is the deflection angle
of this prediction. Pn is the predicted position. Pn is com-
puted by equation(4).

�V1Pn� �
�V1Vn�1�� �V1Vn�2�

2
(4)

Overflow is an unavoidable problem for numerical quantiza-
tion. The maximum value of the quantization marks quan-
tization overflow occurs. For instance, 10-bits compression
value ranges from 0�1022 while 1023 represents failure of
quantization and new quantization process will be initialized
for following compression.

5.4. Image Compression

There are lots of image compression algorithms which
are developed for many years. RLE and JPEG-LS are
good lossless compression methods for grayscale images.
HUFFYUV28 shows high compression ratio from 1:2 to 1:6
for lossless color image compression in real-time.

VCM29 is employed in AnyGL for image compression on
R-nodes, C-nodes and D-nodes. Programmers can choose
different image compression algorithms or install new com-
pression algorithms. HUFFYUV is the default compression
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algorithm. The name of compression algorithm is embedded
in image transmission protocol packets so that each node is
able to choose corresponding compression algorithm inde-
pendently. The decompression node retrieves the name of
compression algorithm from the packet and initializes com-
pression processing.

6. Global Share Extension for Parallel Graphics

Global share extension is different from the parallel graph-
ics programming interface21 which focuses on solving the
bottleneck of input rate and order immediate-mode API for
parallel rendering. Global share extension emphasizes on the
problem of memory explosion in distributed and parallel ren-
dering.

6.1. Memory Explosion

There is an obvious memory explosion for parallel graph-
ics systems without global share of textures. For example,
a parallel application consists of N G-nodes and N R-nodes
using M different textures. Each G-node stores a copy of
M different textures. However, each R-node must store N
copies of textures generated by each G-nodes and memory
allocation for each R-node is magnified to N times. In sim-
ple words, each R-node will allocate M MB memory to store
textures when each texture occupies 1 MB memory. Display
list slows down the efficiency of parallel graphics applica-
tions for same reason.

Igehy et al.24 have designed texture share scheme at tex-
ture mapping stage for parallel graphics, but no interface
of global share is provided for distributed/parallel graphics.
The problem of memory explosion still exists when an ap-
plication inputs scene from multi-processes. Global share of
textures will speed up the texture access and decrease the
overhead of context switch of textures.

6.2. Global Share Extension in AnyGL

Two extensions are implemented in AnyGL to solve the pre-
vious problem, global share of textures and display lists.
When several processes use same texture simultaneously,
the texture will be defined as global share. Figure 10 shows
the basic scheme for global share. R-node maps the global
share texture to same texture as shown in Figure 9. The
global share extension of textures is marked by the param-
eter GL_GLOBAL_TEXTURE_nD, where n is 1, 2 and 3.
AnyGL adopts similar state tracking method for global share
textures as local textures. R-nodes determine global share
textures are equal only if their global share ID and filter pa-
rameters are equal.

Two kinds of global share managers are implemented
where one resides on G-node and the other on R-node. Ev-
ery G-node can define global share textures separately. The

G_Texture 1

G_Texture 1

G-Node 1
L_Texture 1

L_Texture 1

L_Texture 1

G-node 2

G-node 1

G-Node 2
L_Texture 1

G-Node 1
G_Texture 1

G-Node 2
G_Texture 1

R-node 1

Figure 9: Global Share of Textures. L_Texture is a local
texture and G_Texture represents the global share texture.
Global shared texture G_Texture 1 from G-node 1 and G-
node 2 is linked to same memory location in R-node while
local textures are linked to different memory locations.

transmission of global share textures is similar to that of lo-
cal textures except a global share mark is added to the trans-
mission protocol. When R-node receives a global share tex-
ture definition and the global share texture with same ID ex-
ists, R-node maps this texture to the memory location of the
existing global share texture, otherwise global share man-
ager creates a new texture. Memory explosion is avoided by
global share extension scheme.

Global share of display lists are treated in the similar
method. OpenGL 1.3 does not provide object definitions for
vertex array and display list while OpenGL 2.032 introduces
more object types which application can access.

7. Test Results Analysis

7.1. State Tracking of AnyGL vs. WireGL

Two major parameters are defined for performance mea-
surement of state tracking. They are overhead of context
difference and overhead of software context switch. Con-
text difference and soft-ware context switch are the most
time-consuming processes for state tracking. Context syn-
chronization is always completed within a few hundreds of
nanoseconds. Seven applications are chosen to test the over-
head of state tracking both in AnyGL and WireGL. Three
types of PCs are selected to test the performance of state
tracking. Type A is equipped with a Celeron II 800Mhz
CPU, 100Mhz bus and 256 MB SDRAM memory but no 3D
graphics accelerated card. Type B consists of a Pentium III
600Mhz CPU, 256 MB SDRAM, 100Mhz bus and an ASUS
V6800 VGA card. Type C uses a Pentium IV 1.5Ghz, Intel
850 motherboard, 512 MB RAMBUS and a Geoforce 3 dis-
play card. Table 1 shows the results of context difference on
above hardware platforms. Time is measured in microsec-
onds. Table 2 shows the results of overhead test of software
context switch.

The results show that AnyGL will run as fast as WireGL
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PIII 600Mhz PIV 1.5Ghz
Application AnyGL WireGL AnyGL WireGL
atlantis 5.199 4.657 4.408 4.408
gears 4.502 4.237 3.392 3.620
ideas 5.607 5.036 4.390 4.333
moth 4.193 3.664 3.318 3.077
rc 7.126 6.127 4.995 4.466
worms 4.547 4.547 3.667 3.308

Table 1: Context Difference of AnyGL vs. WireGL (unit: mi-
crosecond ).

PIII 600Mhz PIV 1.5Ghz
Application AnyGL WireGL AnyGL WireGL

max 180.470 306.464 115.254 185.324
min 1.956 1.676 1.118 1.118parview
average 3.867 3.764 2.354 2.365

Table 2: Context Switch of AnyGL vs. WireGL(unit: mi-
crosecond). This application involves lots of transforma-
tions, materials, lightings and polygon modes. All meshes
are represented by triangle stripes and each triangle stripe is
set with individual material. We execute this application with
4 G-nodes and 4 R-nodes. Each G-node sets up its graphics
context individually.

on both context difference and context switch. AnyGL is
able to switch context by software about half million times
within a second. Also approximate linear speed-up of state
tracking is obtained when advanced hardware are adopted
for AnyGL as shown in Table 1 and Table 2.

7.2. Benefits of Global Share Extension

Visualization and simulation applications always use lots of
texture instead of complex meshes, for example, flight sim-
ulators and ship simulators occupy hundred millions bytes
of texture memory for one scene. Global share extension
will decrease the memory allocation of duplicated textures
when cluster rendering is adopted for these applications. It
is true that global share extension is efficient for parallel and
distributed graphics applications. When no global share ex-
tension is adopted, memory are exhausted for cluster terrain
rendering and city walkthroughing.

7.3. Geometry Compression

Tree meshes, teapot, bunny, and dragon, are tested for geom-
etry compression of AnyGL. Teapot and bunny are arranged
as triangles while dragon is organized into triangle strips. To
obtain satisfying visual effects, normal is compressed into
17.66-bits and position is compressed into 36-bits. Table 3
is the compression result per frame. Figure 10 shows the im-
ages rendered by original data and compressed data. Real-
time geometry compression will cause some splits which are
are shown as black points in Figure 10 of (b) and (d) . The

original compressed compression
data size data size rate

teapot 45500 13247 0.29
bunny 2481996 751745 0.30
horse 3330236 1035533 0.31
dragon 33831108 13949870 0.36

Table 3: Result of Geometry Compression. Original data
size is the data size per frame without geometry compres-
sion. Compressed data size is the data size per frame when
op-code is compressed by LZW, normal is compressed into
17.66-bits and position is compressed into 36-bits.

 

Figure 10: Geometry Compression., where (a) and (c) are
pictures rendered by original meshes, (b) and(d) are ren-
dered by geometry compression. Original picture size is 800
X 600.

reason is that a same vertex will be compressed into differ-
ent values when this vertex exists in different triangles. This
fact decreases the usability of geometry compression for dis-
tributed rendering applications unless an artful algorithm is
used to enforce the compressed vertex to be adjusted at pre-
defined 3D grid cell when this vertex is shared by several
triangles.
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Figure 11: Simulation result of AnyGL on 100Mbps
switched network. G-nodes and R-nodes vary by 2, 4, 8, 16,
32.
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7.4. Scalability

Scalability of parallel system is divided into three parts,
component scalability, system size scalability and problem
size scalability. AnyGL shows good scalability in these three
aspects by simulations.

AnyGL shows good capability in component scalability.
AnyGL packs 6,602,667 OpenGL primitive commands per
second on Celeron II 800Mhz, 10,777,125 commands on
Pentium III 600Mhz and 17,084,192 commands on Pentium
IV 1.5hz. The performance of state tracking is increased
with the improvement of the performance of PC platforms
shown in Table 1 and Table 2. Rendering capability speeds
up linearly if latest powerful graphics accelerated adapter is
equipped for AnyGL.

Figure 11 is the simulation result of AnyGL on 100Mbps
switched network. Since we have not built a real system
to verify the scalability of AnyGL, a simulation program
is built to test its performance. A benchmark will be pro-
grammed to verify the scalability of AnyGL on real system
in the near future.

Three kinds of scene size problems are solved in AnyGL.
They are known as number of triangles, texture memory size
and computation-limited applications. Huge scenes consist-
ing of hundred millions of triangles will be packed by multi-
processes at the same time. Some applications require re-
mote rendering at large-scale. Global share extension is good
at minimizing texture memory cost when the application
renders on distributed and parallel graphics architectures.

8. Conclusions & Further Research

AnyGL is designed for large-scale distributed rendering and
parallel rendering based on PC cluster. Several new methods
benefits cluster rendering application on performance and
scalability. First, state tracking based on logical timestamp
breaks up the scalability of G-nodes and R-nodes. Second,
Sort-first and sort-last parallel rendering architectures are
integrated. Three kinds of compressions also will increase
efficiency when limited network bandwidth is used. Global
share extension avoids the problem of memory explosion
when lots of global textures are used in parallel graphics ap-
plications.

Although AnyGL provides a solution for large-scale dis-
tributed rendering, several problems will still exist. Dynamic
configuration will be implemented in future research so that
application will maintain load balance at run time. The fol-
lowing questions will be considered as future research on
cluster rendering and parallel graphics architecture.

The greatest latency occurs during reading back and trans-
mitting of color and depth data. It always takes 10 microsec-
onds or more to read back a 1024 X 768 image for AGP
2X. There are some designs for fast color data transmission
such as Metabuffer18, Lightning-214 and sepia10. Both AGP

and PCI bridges are required for color data composition and
depth data transmission.

Although Chromium33 has introduced streams into clus-
ter rendering, it is not designed for programmable GPUs.
OpenGL 2.032 simplifies the extensions of OpenGL 1.3
and provides a shading language of high level API. New
state tracking method is necessary for parallel rendering of
OpenGL 2.0 and global share extension should be expanded
for the eight types of new objects defined in OpenGL 2.0.

Direct3D is different from OpenGL since it is built on
COM. Thus, it will be interesting to build a cluster rendering
system on Direct3D.

This work is supported by the key project No.
60033010 and the program for Innovative Research Group
No.60021201 of NSF of China.
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