Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)

D. Bartz, X. Pueyo, E. Reinhard (Editors)

A Multi-thread Safe Foundation for Scene Graphsand its
Extension to Clusters

G. VoR, J. Behr, D. Reiners and M. Roth

Centre for Advanced Media Technology, Nanyang Technological University, Singapore, Singapore,
Computer Graphics Center, Darmstadt, Germany,
OpenSG Forum, Darmstadt, Germany,
Fraunhofer IGD, Darmstadt, Germany

Abstract

One of the main shortcomings of current scene graphs is their inability to support multi-thread safe data struc-
tures. This work describes the general framework used by the OpenSG scene graph system to enable multiple
concurrent threads to independently manipul ate the scene graph without interfering with each other. Furthermore
the extensions of the presented mechanisms needed to support cluster systems are discussed.

Categories and Subject Descriptors (accordingto ACM CCS): 1.3.7 [Computer Graphics]: Virtual reality 1.3.2 [Com-

puter Graphics]: Distributed/network graphics

1. Introduction

Scene graphs or in general graph structures are being used
in computer graphics for some time now, as these kind of
structures have proven their usability in a variety of applica-
tion domains. Over the time different scene graph systems
have been written, each with its own focus depending on
its main application domain. Open Inventor! has been pri-
marily used for highly interactive mouse-based applications.
Whereas HP’s DirectModel and SGI’s OpenGL Optimizer
2 are targeted at applications in the CAD area due to their
ability to handle free-form surfaces efficiently. OpenGL Per-
former 3 is currently the most widely used scene graph sys-
tem in the Visual Simulation and Virtual Reality domain due
to its strong focus on speed.

There are still some features that most of today’s scene
graphs do not provide, and one of the more important ones
is multi-thread safe data handling. Performer was the first
scene graph to introduce multi-threading, but only in a spe-
cialized sense. Multi-threading inside Performer is used to
separate the application from the rendering part of the sys-
tem and to further subdivide the rendering pipeline into
culling and drawing tasks. Later versions of Performer intro-
duced the concept of a database thread, used to execute load-
ing operations concurrently and a compute thread to be used

(© The Eurographics Association 2002.

33

by slower simulations. But in general Performer’s threading
model is fixed to the APP-CULL-DRAW setup and as a re-
sult is not easily extendible, as for example only the scene
graph structure itself is multi-thread safe, but data refer-
enced by the nodes like vertex positions is not. Later versions
of Performer introduced the concept of so called “pfFlux”
buffers in order to provide a mechanism for asynchronous
threads to change data stored inside the scene graph. Here
the frame number of the writing thread is used to identify
the different copies of the data stored inside a pfFlux buffer,
and to implement a copy on write strategy based on frame
numbers 4. This results in threads sharing the same frame
number also in sharing the same copy of the data. Other
scene graphs like Optimizer only allow multiple threads on
disjoint parts of the scene graph at the same time. Especially
modern Virtual Reality applications can consist of several
different threads which need to access a consistent database.
Each of these threads has different time requirements, for
example haptic simulations tend to require frame rates up to
several kHz whereas rendering threads run at much lower
rates usually between 10Hz and 60Hz, simulation threads
tend to cover the whole range of update rates. Depending on
the type of thread, data inconsistencies might affect one or
more frames. Drawing threads usually regenerate the whole
image each frame, so flawed data might corrupt one or a few

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Vo, Behr, Reiners and Roth / A Multi-thread Safe Foundation for Scene Graphs

images but these errors will be overwritten as soon as the un-
derlying information is valid again. Iterative algorithms on
the other hand, like some of the simulation algorithms used,
rely on the fact that the results of the previous frame are ac-
curate in order to calculate the current one. In this case the
effects of an inconsistency last longer than the inconsistency
itself and in the worst case drive the whole system into an
unpredictable and unrecoverable state. Another observable
trend is the occurrence of Simultaneous Multi-Threading ca-
pable micro processors, here multiple ready-to-run threads
are kept inside the processor and as soon as one stalls, for
example while accessing main memory, a different one is
scheduled immediately. Furthermore first multi-core proces-
sors like IBM’s latest Power4d CPU5, providing two CPUs
packaged onto one chip, become commercially available.

Thus one of the prime design goals for the OpenSG® scene
graph system was the ability to provide multi-thread safe
data structures to the application. The approach taken is de-
scribed in the following sections.

2. Multi Processor, Shared Memory Hosts

In order to allow multiple threads in a shared memory en-
vironment to work, including both read and write access, in
parallel on the given scene graph without imposing any re-
strictions on the order in which these operations might oc-
cur, each of the different threads must have a unique copy
of at least the data the thread is interested in. Otherwise a
reading thread might for example encounter inconsistencies
while a concurrent write operation on the same part has not
finished. In general the amount of data stored inside a scene
graph exceeds the threshold beyond which its treatment as
a single entity, of which each thread has a full copy and a
complete copy is made while synchronizing two threads, is
feasible. In the following sections we describe the approach
used by OpenSG to minimize data replication, the copy op-
erations needed to synchronize different threads and its ex-
tension from single hosts to clusters.

2.1. Basic Data Structures

On the lowest level data can divided into single value, so
called SingleFields and multi value entities, called Multi-
Field in the following. Fields itself are a well known concept
and were used before in systems like VRML97 8, where each
field stores one or more values of the same type and provides
additional administrative information. Furthermore Multi-
Fields, like C++ Standard Template Library? (STL) vectors
on top of which they are build, use dynamically sized one
dimensional arrays to store their values, thus only references
to the actual data are kept inside the MultiField object in-
stead of the data itself. On the next level fields are grouped
together in a structure called FieldContainer as shown in Fig-
ure 1. FieldContainers, in terms of C++, provide the base
class from which the concrete scene graph elements like
nodes, groups or geometries are derived.

Figure 1: FieldContainer

In the following the term aspect is used to describe the
copy of the scene graph a thread is working on. The technical
reason for the distinction between thread and aspect is that
two threads might share the same copy (eg. aspect) safely iff
they are guaranteed to work on separate parts or otherwise
synchronize each other. In general one thread is bound to
exactly one aspect, but one aspect might be used by more
than one thread at the same time.

2.2. Data Replication

On top of the data structures introduced in the previous sec-
tion different mechanisms to replicate the data for each as-
pect are possible. One way would be to extend the fields.
Using this approach each field is able to store multiple in-
stances of its values, one set for each aspect, and, on ac-
cess, retrieve the right set for the current one. The advantage
of this approach is that it keeps the modifications needed
local to the field implementation at the lowest possible ab-
straction level. The disadvantage is that consecutive memory
locations are used for different aspects, as the values used
by one aspect are interleaved with irrelevant values used by
the remaining aspects. This kind of memory fragmentation
would negatively impact cache hits, which, in the end would
lead to a decrease in the overall system performance. An al-
ternative approach would be to replicate the FieldContainers
instead, so that multiple copies of one container are located
consecutively in memory. As most FieldContainers exceed
the typical cacheline in size, the negative impact of having
multiple copies would be minimal compared to the common
situation where only one copy is available. As a result of this
approach a different pointer must be used to access the cor-
rect instance for each aspect . In order to make this approach
usable and transparent to the surrounding parts of the sys-
tem, in a sense that pointers can be passed around as usual
and can be used within different threads without the burden
of remapping them every time a FieldContainer is accessed
through them, a new pointer type, named FieldContainer-
Pointer or FCPtr for short, is introduced to wrap the required
per aspect mapping into a single object which easily can be
stored and passed around. Each FieldContainerPointer stores
the address of the first copy, the base address, and the size of
the FieldContainer referenced, as shown in Figure 2. To im-
plement the actual mapping the pointer object needs to be

(© The Eurographics Association 2002.

34

\oR, Behr, Reiners and Roth / A Multi-thread Safe Foundation for Scene Graphs

Aspect 0

<
Aspect 1

—
Aspect 2

———

Figure 2: FieldContainer Pointer

able to retrieve the correct copy for the current aspect. To
achieve this an integer index, called Aspectld, is associated
with each aspect in a way that the correct FieldContainer in-
stance can be returned using the following formula :

I nstanceAddress(Aspect)= BaseAddress+ Szex Aspect!d

The Aspectld is the information by which each thread binds
to its active aspect, furthermore the same value must be used
to access every FieldContainer within a given thread. This
opens up the possibility to make use of thread local stor-
age to store this piece of information providing a kind of a
per thread global variable which is accessible from every-
where when needed, especially from within the FieldCon-
tainerPointer class during the mapping process. Thus the As-
pectld must not be passed around by the application or sur-
rounding software layers, again keeping implementation de-
tails local at the lowest possible abstraction level. Efficiently
retrieving the Aspectld is one of the key components of the
custom pointer performance .

Additionally using the feature of C++ to provide custom
implementations of the pointer-to-member (->) and indirec-
tion (*) operators for user defined classes FieldContainer-
Pointers can be used much like built-in pointers, with two
notable exceptions. First of all the built-in type conversion
facilities of C++ (cast operators) might not be available and
must be replaced by custom versions and secondly, in or-
der to ensure that all of the copies are consistent and valid
the standard creation (operator new) and deletion (opera-
tor delete) mechanisms are forbidden and must be replaced
by customized versions. Within OpenSG we use the factory
and prototype patterns to provide the new creation methods
and references counting for lifetime determination, a dif-
ferent, simpler way would be to only overload the built-in
new and delete operators. The factory and prototype pat-
terns where chosen because they better fit the extensibility
requirements of OpenSG. Creating FieldContainer instances

(© The Eurographics Association 2002.

35

through the cloning of a prototype object allows the applica-
tion to change the actual object created at runtime by replac-
ing or changing the corresponding prototype. In this way the
application is able to change the default values of the ob-
jects created or to choose a specialized object, for example
a geometry implemetation which is better adapted to the un-
derlying hardware than the general purpose one, to be used
throughout OpenSG without the need to recompile the li-
braries.

For OpenSG we decided to use a combination of both
approaches, FieldContainers and the corresponding point-
ers are the main, high-level wrappers used to encapsulate
the replication, but, in order to minimize the amount of data
actually copied, a modified, copy-on-write capable MField
implementation is integrated, as described in the following
section.

2.3. Copying

So far we only presented a method to replicate data nearly
transparent to the application, but we did not address the ini-
tial problem of avoiding unnecessary copies. The baseline
observation on which the copy or better the copy preven-
tion strategies are build is that the data stored inside a scene
graph is usually unevenly distributed between the different
parts, especially between Single- and MultiFields, for exam-
ple a typical scene graph for a model of medium complexity
might consist of 2,000 nodes (inner and leave nodes). As-
suming that each node on average takes up 200 bytes this
adds up to roughly 400kbyte of data. The typical number
of triangles used for this kind of model would be around
200,000, at 40 bytes per triangle the geometric data needs
8.0 mbyte of memory, 20 times as much. For different ex-
amples this ratio will vary, but on average the amount of
geometric data will be 10 to 20 times larger than the struc-
tural data of the scene graph. As most of the geometric data
like points or texture coordinates is stored inside MultiFields
this observation could also be used to estimate the ratio be-
tween data stored inside SingleFields and MultiFields. Ad-
ditionally, due to the chosen replication mechanism, only
the pointer to a FieldContainer could be stored inside a Sin-
gleField not the FieldContainer itself, further reducing the
probability of larger SingleFields, as most of the compound
structures must be based on FieldContainers to achieve the
desired multi-thread safeness. Based on these observations
Single- and MultiFields will be treated differently. Of Sin-
gleFields full copies, the field and the value stored, will be
replicated, as they are assumed to be small enough not to
negatively impact the overall memory consumption.

In case of MultiFields advantage of the underlying STL
vector implementation is taken to integrate the data-sharing
and copy-on-write strategies. STL vector objects do not di-
rectly contain the stored values, instead most of the imple-
mentations only store references, most of them three, to an
external memory location (data block), a one dimensional,

Vo, Behr, Reiners and Roth / A Multi-thread Safe Foundation for Scene Graphs

dynamic C++ array containing the actual values. For Multi-
fields replication takes place only for these references not for
the whole external data block. As these external data blocks
are shared between different aspects, they must be copied if
necessary, eg. as soon as a thread starts a write operation to
one of these locations it has to receive his private copy. Fig-
ure 3 shows the situation where aspects zero and one share
the same data block whereas aspect two has its own private
copy, caused by a write operation to this field from one of the
threads using aspect one. The decision when a write opera-

SField

[Fie]

Aspect 0

71

AV
AN

MField

SField
Aspect 1

MFiel

SField

MField Data

Figure 3: MultiField data sharing

Aspect 2

[[0 BE

tion, requiring a private copy, is about to happen can either
be hidden inside the FieldContainer or left to the application.
The disadvantage of trying to hide this decision inside the
FieldContainer is that checks have to be added and executed
for every function that either changes or returns a changeable
reference to a MultiField inside the FieldContainer. In case
of changeable reference things get even worse, as a copy
has to be made even if the particular reference is only used
for reading, as, from the perspective of the FieldContainer,
it is undecidable what kind of operations might be executed
on the returned reference, reintroducing unnecessary copies.
For these reasons it is more efficient to force the applica-
tion to notify a container explicitly in case a write operation
is about to happen, this is how this issue was resolved for
OpenSG.

During the synchronization of two threads containing pri-
vate copies, as shown in the next section, one of these copies
is thrown away and both aspects will reference the same stor-
age location until one of the threads involved starts writing
to this particular field again.

2.4. Synchronisation

Providing separate copies to different threads as they write
to their aspects solves only half of the problem. The other

36

half consists of synchronising them so that the results of
one thread, stored inside his aspect, are able to influence the
remaining thread(s) within the system. During this process
data from the source aspect must be copied to the destina-
tion aspect. Copying all the data is not suitable at all, as even
with the exclusion of the large MultiField data blocks the
memory footprint would be enormous since two instances
of every single FieldContainer must be touched to achieve
a full copy. In practice most of the FieldContainers will not
change for every frame. For most applications there will be
a static part that does not change at all and some dynamic
elements that might change some of their attributes over
time. In general only a small part of the scene graph will
change, thus it is more efficient to keep track of what was
changed and just synchronise these parts. To achieve this
the requirement to notify a FieldContainer in case a write
operation to a MultiField is about to happen, as introduced
in the previous section, is extended in the following ways.
First the application is also required to inform the FieldCon-
tainer as the write operations have finished. At this point the
changed FieldContainer and the information which field was
changed is stored in a thread-specific change list. Further-
more write operations to SingleFields must be indicated too.
At the point of synchronisation the change list is traversed
and only the recorded fields are updated. In case of Single-
Fields the stored value is copied from the source to the desti-
nation aspect, in case of MultiFields the external data block
referenced by the destination aspect is discarded and the cor-
responding references are changed to point to the external
data block of the source aspect.

3. Extension to Clusters

As the common off-the-shelf PC based system is getting
more and more powerful, one observable trend is to replace
the old single large systems by clusters of these common
PCs. From the low-level technical point of view covered so
far ,cluster systems are similar to the single host setup within
the proposed framework, in the sense that data between dif-
ferent locations must be synchronised and with the notion
that it is not intended to offer access to data located on a re-
mote computer through the local pointers using their aspect
mapping mechanism during dereference operations. As be-
fore several copies of the scene graph exist, this time on dif-
ferent computers, and these copies must be synchronized as
each node in the cluster needs access to the same data in or-
der to generate a consistent final output image. To fit clusters
into the given framework the aspect concept is extended to
cover both local as well as remote aspects, whereby remote
aspect denominates the copy of the scene graph located on a
remote, network connected machine. In order to keep remote
aspects up-to-date the local synchronization mechanism is
changed in the following way. During synchronization the
change list is traversed as usual but instead of executing lo-
cal copy operations the field content and the information to
which field it belongs is packed and send over the network

(© The Eurographics Association 2002.

\oR, Behr, Reiners and Roth / A Multi-thread Safe Foundation for Scene Graphs

to the remote machine. On arrival the transmitted informa-
tion is unpacked and applied to the remote copy of the scene
graph. In a similar way changes made to the remote aspect
are packed, send, received and integrated into the local copy.
Thus allowing distributed copies of the scene graph to syn-
chronise each other.

4, Results

Within this work we presented a general data replication
framework to overcome one of the main shortcomings of
current scene graph systems, their inability to provide multi-
thread safe data access. In order to provide a solution to this
important problem a two level approach was proposed. The
replication of store data, nearly transparent for the applica-
tion, was introduced on the FieldContainer level whereas a
copy-on-write strategy on the field level was used to min-
imize the amount of data copied. This copy-on-write strat-
egy was based on the observation that the data stored inside
a scene graph is unevenly distributed between Single- and
MultiFields. To efficiently synchronise different aspects, a
per thread change list in combination with an explicit notifi-
cation mechanism was chosen. Furthermore the applicability
of the chosen synchronisation algorithm in a cluster environ-
ment was discussed.

Build on top of the concepts described herein and success-
fully proving their applicability within in the scene graph
domain, the OpenSG scene graph system has been im-
plemented, for additional information see www.opensg.org.
Figure 4 shows the cluster version of OpenSG driving a four
by four tiled display at the NSCA.

Figure 4: VW Beetle on a tiled screen driven by a cluster
(Mode courtesy Volkswagen, Image taken at NCSA using
their Display Wall-1n-A-Box implementation)

5. Future Work

One remaining problem of the synchronisation method is
that every thread, in principle, receives a full copy of the

(© The Eurographics Association 2002.

data. As some threads will only work on a well-defined sub-
set of the scene graph unnecessary copies might be avoided
if a per thread filter system is used, allowing each thread to
explicitly state in which part it is interested in. This feature
is especially useful for cluster environments as transferring
data over the network is a quite expensive operation. Fur-
thermore measuring the performance impact of the custom
pointer implementation is still work in progress. So far the
work done mainly focused on the scene graph domain, but
the framework in general might not necessarily be restricted
to it. The ideas presented seem to be transferable to other ap-
plication areas with the need of multi-thread safe data struc-
tures, as long as they feature a similar data distribution and
allow the use of Single-, MultiFields and FieldContainers.

Acknowledgements

We would like to thank Prof. Dr. Ing. J. L. Encarnacéo for
providing the environment in which this work was possible
and our colleagues for providing valuable feedback during
the design and implementation phases. Parts of the work
presented herein were funded by the German Ministry for
Research and Education as part of the OpenSGPlus joint re-
search project in the field of virtual and augmented realities.

References

1. P. S. Strauss and R. Carey. An object-oriented 3D
graphics toolkit. ACM Computer Graphics (Proc. of
S GGRAPH '92), 341-349, 1992.

2. sgi. Unleashing the power of sgi’s
next generation visualization technology.
http: //maww.sgi.convsoftware/opti mi zer /whitepaper.html,
2001.

3. J.Rohlfand J. Helman. IRIS Performer: A high perfor-
mance toolkit for real-time 3D graphics. ACM Com-
puter Graphics (Proc. of SGGRAPH '94), 381-395,
1994,

4. sgi. OpenGL Performer Programmer’s Guide.
www.cineca.it/manuali/Perfor mer/ProgGuide24/html/
Perf PG-18.html, 2000.

5. K, Diefendorff. Power4 Focuses on Memory Bandwith.
Microprocessor Report, 13(14), 1999.

6. D.Reiners, G. VOB, J.Behr. OpenSG: Basic Concepts.
www.opensg.org/OpenSGPLUS symposi unyPapers2002,
2002.

7. sgi. Standard Template Library Programmer’s Guide
www.sgi.convtech/stl, 2002

8. International Standard ISO/IEC 14772-1:1997. Infor-
mation technology — Computer graphics and image
processing — The Virtual Reality Modeling Language
(VRML) — Part 1: Functional specification and UTF-8
encoding, 1997.

37

38

