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Abstract. This paper presents a server-based remote walkthrough sys-
tem. The client is assumed to be a thin client, like a handset or a mobile
device, with no strong processor but with some embedded video chip.
The server holds the large environment, generates the frames, encodes
and transmits them to the client. The encoded frames are transmitted
as a video stream to the client, which then decodes the stream and dis-
plays it. We show how the computer generated frames can be efficiently
encoded using layering techniques to yield a lighter stream, which en-
ables its transmission over narrow bandwidth channels and minimizes
the communication latency. To enable the interactivity of the system,
the rendering engine generates the frames in real-time according to the
client input, and feeds the frames to an accelerated video encoder based
on the available optical flow.

1 Introduction

With the increasing availability of the Web and the advances in graphics hard-
ware, the network bandwidth becomes a critical bottleneck. Remote walkthrough
in complex computer-generated environments is an emerging challenge in com-
puter graphics, since the entire model cannot be downloaded from the server
to the client. Even dynamically downloading relevant portions of the model
on demand with respect to the client position is not possible as it may con-
sist of a prohibitive number of polygons or textures. There are different tech-
niques that simplify the representation of the objects to accelerate the walk-
through [6, 14, 18, 17, 3]. Others have focused on Web-based remote walkthrough
[13, 7, 20]. Hybrid-rendering methods, where the client and the server both com-
monly participate in the rendering of the frames are a possible solution that
various researchers have taken [11, 15, 23, 5]. Streaming technologies can allevi-
ate the problem by reducing the bandwidth requirement, but require extensive
computational power from the client.

For most applications, the server should effectively serve as many clients as
possible simultaneously. Thus, it is desirable to shift most of the computation to
the client, and to ease the server load. However, there are scenarios where the
client is thin and most or all of the computation load should be on the server.
This is especially relevant to commercial handsets (e.g. cellphone or PDA) that
contain a weak processor for economic reasons. Typically, a handset is built with
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an old processor that costs much less and whose computation power cannot
support graphical 3D applications. In such a case the server should generate the
frames and transmit them to the thin client, which then needs only to display
them. However, naively transmitting the frames is too expensive since the current
available network bandwidth is extremely narrow.

The proposed solution, presented in this paper, is to use a server-based ap-
proach. The server renders the sequence and encodes the frames into a video
stream. The stream is received by the client, which displays the stream using an
MPEG-4 video chip. Fast online encoding is essential for real-time experience of
the remote walkthrough, and therefore special techniques are needed to reduce
the encoding complexity.

The rest of this paper is organized as follows: In Section 2 we give a brief
overview of the system. In Section 3 we describe the MPEG-4 encoding scheme.
Section 4 describes our per-layer encoding technique. The real-time encoding
is presented in Section 5. We finalize this paper with some results (Section 6),
conclusions and future work (Section 7).

2 System Overview

Our system is server-based, as illustrated in Figure 1. The 3D model of the scene
is held on the server. Once interaction starts, the Interactive Rendering Engine
renders the frames. It provides scene information to the Macro-block Analysis
module for generating layering information and motion hints. The layering infor-
mation is used to vary the quantization level locally over the frame (see Section
4), and motion hints are used for fast encoding (see Section 5).

An interaction back-channel is used for real-time walkthrough in the model.
A Control Data back-channel is used for bandwidth adaptation and for packet
loss information. The Control Data enables the Frame Encoder to retransmit a
lost packet or to adapt the compression ratio and the quality to the available
network bandwidth. The frames generated by the rendering engine are fed into
the Frame Encoder as plain RGB frames. We choose to encode the frames with
the MPEG-4 video standard since today there are already devices that provide
MPEG-4 video decoding. Recently more and more companies have announced
that cellphones capable of decoding MPEG-4 video will soon be available. We
can also expect that in the near future, PDAs and other mobile devices will have
such capabilities in hardware.

3 MPEG-4 Encoding Scheme

MPEG-4 is the new ISO/IEC multimedia standard developed by MPEG (Mov-
ing Picture Experts Group); its format designation is ISO/IEC 14496 [2]. The
standard defines media objects as the primitives in the scene. These objects can
be of synthetic or natural origin and can be visual or aural ones. It also defines
how to multiplex and synchronize these objects to enable their transportation
over the network. One of the media objects defined is MPEG-4 video [1]. As we



Fig. 1. The systemoverview

mentioned in the Introduction, we have implemented our Frame Encoder with
the MPEG-4 video standard as more and more of today’s devices are enabled to
display MPEG-4 video content using on-chip decoders [16, 19, 4]. These devices
can display real-time video according to the user’s preferences and the device’s
location. However, the technique introduced here is not limited to this standard
and could be applied to other block-based video compression schemes.

3.1 Frame Coding Scheme

An MPEG-4 video stream consists of three types of frames: intra frames I, predic-
tive frames P, and bi-directional predictive frames B. The I frames are encoded
independently of the other frames in the sequence, while the P and B frames
are encoded using motion estimation and interpolation techniques. The P and
B frames are substantially smaller than the I frames. The motion estimation of
the P frames is based on preceding P or I frames. The motion estimation of B
frames is based on preceding P or I frames and/or on successive P or I frames.
The P or I frames used for motion estimation are referred to as reference frames.

More specifically, a frame is encoded at the macro-block (MB) level. Each
frame is partitioned into macro-blocks of 16x16 pixels that are encoded indepen-
dently of the other macro- blocks. An Intra macro-block (I-MB) is one whose data
is fully encoded. An Inter macro-block (P-MB) is one whose data is encoded us-
ing motion estimation. The I-MB is encoded by applying DCT (Discrete Cosine
Transform) to its data, quantizing the resulting coefficients, and encoding them



using variable length coding. The P-MB is first motion-estimated by searching
the reference frame for the best match for the macro-block to be encoded. The
co-located macro-block is the macro-block in the reference frame, which has the
same relative location as the P-MB to be encoded. The search for the best match
is done in an area around the co-macro-block. Once a motion vector is found,
the difference between the matching area and the P-MB is DCT-transformed.
The resulting coefficients are quantized and then encoded using variable length
coding.

The quantization level determines the compression ratio and controls the
degree of the lossy compression. Clearly there is a trade-off between the qualities
of the macro-blocks and the degree of compression. The more the macro-block is
compressed (i.e. higher quantizer), the more its quality is degraded. The frame
types are usually defined using a predefined repeating pattern of a sequence of
I, P and B frames, like IBBPBBP or IPPBIP. However, during encoding of a P
frame, each macro-block can be defined as an I-MB or P-MB independently of
the global definition of the entire frame. Identifying different types of encoding
per macro-block imposes an overhead of predicting the estimated error. When
the estimation error is too large, prediction is not used and an I-MB is used
instead.

Encoding a P (or B) macro-block imposes a search for the best candidate
macro-block in the reference frame. A benefit of MPEG-4 is that is does not
restrict the search area. However, searching for a candidate is a complex and
time-consuming task. In Section 8 we describe a technique we use to reduce the
computation complexity of the search to enable a real-time encoding.

3.2 Macro-block Quantization

An important parameter in the encoding process is the quantization value. The
DCT coefficients are quantized and encoded into a variable size length of 3-26
bits. A successful choice of the quantizer is critical for an efficient encoding.
Usually the quantization value is defined globally aiming at generating some
given frame rate. The value is chosen according to the trade-off between better
quality and higher bitrate; the higher the quantizer the better compression to be
achieved and the more degrading quality. The quantization factor varies from 1
to 31 in steps of 1. A step change in the quantizer can improve the compression
ratio while the degradation in quality is almost unnoticeable. MPEG-4 defines
two types of quantization. In the first method, the same quantization value
is used for all DCT coefficients of the macro-block. In the second, a matrix
of quantization values for the macro-block is used where each coefficient can
be quantized with a different value according to the matrix (see [1], Section
7.4.4.1). Further in this paper we refer to the quantization method in which one
quantizer is used for all coefficients. Choosing a quantizer and a quantization
method is an active area of research. Quantizing the correct coefficients with the
correct value gives the best compression ratios while maintaining quality as far
as possible. Another usage of the quantizer is for bit-rate control purposes. A
bit-rate mechanism usually modifies the quantizer on a per-frame base. Current



approaches make use of the human visual system (HVS) to modify the quantizer
on a per macro-block base (see [1], Annex L.).

Figure 2 is an example of the effect of different quantization values. In (a),
one can see the quality of a sequence encoded with a quantizer value of 2. In
(b), the quantization value is 18 and the quality degrades significantly.

(a) (b)

Fig. 2. The effect of applying different quantization values. The quantization value in
(a) is 2, and 18 in (b).

4 Per-layer Quantization

Efficient frame encoding can be achieved by choosing the correct quantization
value per macro-block according to its visual importance. This necessarily re-
quires some image understanding of the scene represented in the sequence.

If depth information is given or some other knowledge about the model in
the image, a frame can be segmented into layers, and each layer can then be
assigned a different visual importance value. However, automatic segmentation
of an image, or a sequence of images, into layers is not simple and still an
active area of research (e.g., [21, 8]) Moreover, real-time segmentation of video
sequences is very complex and is not feasible yet.

When the frame sequence encodes views of a computer-generated model, the
layering problem is trivial. For example, one can easily segment the image into
background and foreground macro-blocks as shown in Figure 3. The figure shows
an image segmented and classified into two layers (see Figure 3(b)). The macro-
blocks containing the foreground objects are colored in white; the less visually
important macro-blocks are in black. Our server-based system is based on the
ability to properly select different quantization values on a per macro-block level
to yield better compression ratios, while degrading only the background macro-
blocks.



The quantization value for background and foreground can differ in several
levels. For example, one can assign a quantization value of 10 to the background
and a quantization value of 2 to the foreground. However, such an approach
can cause artifacts, as the transition from foreground to background might be
noticeable. Our approach uses a gradual change of the quantization value, so
that the transition from foreground to background is not abrupt and noticeable
(see Figure 3(c)).

(a) (b) (c)

Fig. 3. A frame from the Studio sequence in (a), and its foreground/background lay-
ering in (b). In (c) a smoothing of the layering

Using a different quantization value for each layer, our method yields better
compression ratios. The quality is degraded only in areas that are defined as
background. These areas are not in the viewer focus and therefore less visually
important. There are other methods which assign different quantization values
on a per macro-block base [10]. However, these methods do not take into con-
sideration regions of interest. Our approach is based on the knowledge of the
model and on the visual importance of its different parts. Thereby, regions that
are less visually important are compressed with a higher ratio, while preserving
the appropriate quality for regions of higher importance to the viewer.

5 Real-time Encoding

5.1 Selecting the Encoding Pattern

The computer-generated model can be further exploited to compress the frame
sequence by selecting an I frame when it is known to be needed. In a conventional
encoder, a pre-defined pattern is used to determine the type of frame to encode.
Patterns, such as IPPPP or IPBBBPBBI, are used to determine which frame
should be independently encoded and which should be encoded using motion
estimation. Playing a video sequence from a new location in time is termed seek.
I frames (except for the first frame) are used in the encoding process to enable
seek capability at the end viewer and to reduce the propagated error of P frames
over error-prone networks.

Most of the frames types, as defined in the encoding pattern, are motion
estimated ones. In cases of scene cuts, where the whole scene changes in a given



frame, no motion vectors can be found. A scene cut, encoded as a P frame,
imposes a redundant search for each of its macro-blocks. The search does not
find a suitable motion vector since the motion estimation error is too high and
the macro-block ends up being encoded as an I-MB.

Using the scene’s model, one can use I frames only when necessary. The frame
encoding pattern is not pre-defined but determined in real-time as a function of
the walkthrough. The system uses its ability to detect scene-cuts and informs the
Frame Encoder to avoid the search for motion, and to encode the current frame
as an I frame. The Frame Encoder’s complexity is considerably reduced for these
frames and the processing power can be diverted to other time-consuming tasks.
Another case, in which the system informs the Frame encoder to encode a frame
as an I frame, is when the network is error-prone. As back-channel exists, the
client can transmit to the server the statistics of lost frames. As the number of
lost frames increases, the server may increase the number of I frames to reduce
the propagated error of P frames.

5.2 Accelerating Motion Estimation

Searching for a motion vector is the most time-consuming task in the encoding,
and several search algorithms have been proposed to accelerate its computation
[12, 9]. There is a tradeoff between the complexity of the search and its resulting
motion vectors. Typically, there is a direct relation between the complexity of
the search algorithm and quality of the match. An exhaustive search yields the
best possible match, but of course, it is overly expensive, since algorithms with
relatively low complexity can provide acceptable results for real-time applica-
tions.

Wallach et al. introduced in [22] a technique to find the motion vectors based
on the available optical flow information using common graphics hardware. The
Macro-block Analysis module also exploits the known model and accelerates the
search algorithm by providing approximate motion vectors to the Encoder mod-
ule. In our implementation we use the Logarithmic motion estimation algorithm
[12]. This is a hierarchical search that checks the corners, sides, and centers of
a 2Nx2N pixel square, for the best match and continues recursively on the best
result as the new center. This means that in each iteration there are nine possible
motion vectors (4 corners, 4 sides, 1 center). Based on the available scene model
and the available camera parameters, the macro-block analysis module can com-
pute an approximate optical flow for a given macro-block. This is used as the
initial location of a Logarithmic search by the Encoder. This saves the first level
search and gains a speed-up of nine in encoding and yields a real-time encoding
throughput. The speed-up gained in the Logarithmic search time does not come
without cost, since the computation of the optical flow is also time-consuming.
However, in our system this overhead is hidden since the Macro-block Analysis
and the Frame Encoder work simultaneously in a pipeline fashion. Thus, the
acceleration of the encoding improves the overall performance of the system and
enables its usage as in real-time scenarios.



6 Results

We have implemented our technique within the framework of MPEG-4. The en-
coder is implemented in C, the decoder is pure Java and can be used on any
Java-enabled platform, while the rendering engine is based on a proprietary im-
plementation. Table 1 compares the stream size of the frame sequences encoded
with a constant quantization value and those encoded with our method. The size
of each frame in the sequence is CIF (Common Intermediate Format; 352x288).
The figures show that our method provides better compression ratios while only
degrading the quality of the background regions. The background regions have
less importance to the viewer and therefore the degradation in quality is accept-
able. We use the same quantization value for the foreground as in the constant
quantization and a higher quantization value for the background. In the table,
the left column shows the quantization range used (high-low). The lower value
is used for foreground quantization and the higher value is used for background
quantization. The “2-levels” column shows our resulting stream sizes which are
lower than the sizes of the streams in the “low” columns. The “high” column
shows the sizes of streams encoded with the same value we used for the back-
ground. Although its size is lower, its quality is worse than in our 2-levels ap-
proach. This is especially noticeable in the areas of the foreground object itself.
We have repeated the same analysis for a QCIF (Quarter CIF; 176x144) size
type. The results are similar, however the compression gained is somewhat less
than in CIF size. This is because the macro-block size is fixed and therefore the
ratio between the foreground and the background macro-blocks is a bit higher
for QCIF.

Figure 4 compares images encoded by our technique and naive quantiza-
tion, in which the same quantization value is used for all macro-blocks. The
two sequences have been encoded with different ranges. The left column is from
the “Pilot” sequence, encoded in the range of 10-4. The right column is from
the “Studio” sequence, encoded in the range of 12-6. In the upper row, the
lowest value is used as the constant quantization value. While in the lowest
row, the higher value is used. The middle row shows frames of our two-layer
technique. Note that the quality of the foreground object is as high as that
in the upper row. The movies and a player, are available for download at:
http://www.cs.tau.ac.il/~dcor/mpeg4/

7 Conclusions and Future Work

We have introduced a server-based system that alleviates the processing power
required by a thin client to render an interactive remote walkthough. The tech-
nique exploits the fact that a thin client has the ability to decode video sequences
independently of its computational power. Since we are streaming computer-
generated video, we benefit from the available model of the scene to better
compress the sequence and reduce the required bandwidth and communication
latency. Current bandwidth issues might delay the immediate adoption of this



Table 1. The stream sizes (KBytes) of CIF (352x288 frame) in different quantization
levels. Each line represents a different range of quantization values. The column “low”
shows the size of a stream quantized with the lowest value in the range; the “high”
shows the size of the stream with the highest value, and the “2-level” column shows
the size using our per-layer technique .

Quantization Studio Sequence Pilot Sequence

high 2-levels low high 2-levels low

8-2 1,813 3,038 7,307 1,657 3,404 6,947

10-4 1,388 1,980 3,851 1,249 2,121 3,596

12-6 1,105 1,459 2,516 979 1,514 2,326

14-8 908 1,143 1,813 788 1,151 1,657

16-10 767 932 1,388 652 912 1,249

18-12 660 783 1,105 548 744 979

Table 2. The stream sizes (KBytes) of QCIF (176x144 frame) in different quantization
levels as in Table 1.

Quantization Studio Sequence Pilot Sequence

high 2-levels low high 2-levels low

8-2 512 1,160 2,257 430 1,190 1,788

10-4 378 699 1,158 319 698 938

12-6 291 485 735 244 476 609

14-8 230 359 512 191 347 430

16-10 188 278 378 152 264 319

18-12 157 223 485 124 207 244

technique. We expect this technique to be adopted as emerging networks gain
more bandwidth. However, it does not require broadband networks. This tech-
nique can be applied in interactive network games where the server needs to
serve several clients playing in a common virtual environment.

The method we have presented in this paper focuses on the basic set of
MPEG-4 Video [1]. MPEG-4 defines various types of other ”media objects”
rather than video objects. However, today’s devices are still limited to MPEG-4
video decoding and do not provide the ability to display a whole MPEG-4 scene.
Moreover, the devices cannot compose several video objects overlaid. Such a
capability would enable us to enhance this technique and further improve its
performance.
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Fig. 4. A comparison of images encoded by our technique and naive quantization. In
the upper row, the lowest value is used as the constant quantization value. While in
the lowest row, the higher value is used. The middle row shows frames of our two-layer
technique.


