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Abstract
Recent advances in volume scanning techniques have made the task of acquiring volume data of 3-D objects eas-
ier and more accurate. Since the quantity of such acquired data is generally very large, a volume model capable
of compressing data while maintaining a specified accuracy is required. The objective of this work is to con-
struct a multi-resolution tetrahedral representation of input volume data. This representation adapts to local field
properties while preserving their discontinuities. In this paper, we present an accuracy-based adaptive sampling
technique to construct a multi-resolution model, we call a tetrahedral adaptive grid, for hierarchical tetrahedriza-
tion of C1 continuous volume data. We have developed a parallel algorithm of tetrahedral adaptive grid generation
that recursively bisects tetrahedral gird elements by increasing the number of grid nodes, according to local field
properties and such as orientation and curvature of isosurfaces, until the entire volume has been approximated
within a specified level of view-invariant accuracy. We have also developed a parallel algorithm that detects and
preserves both C0 and C1 discontinuities of field values, without the formation of cracks which normally occur
during independent subdivision. Experimental results obtained using a PC cluster system demonstrate the validity
and effectiveness of the proposed approach.

1. Introduction

Recent advances in volume scanning techniques have made
the task of acquiring volume data of 3-D objects easier and
more accurate. The problem of representing, reconstructing
and visualizing such data has received rapidly growing at-
tention in computer graphics [Kau01] [Nie01]. Since the
quantity of such acquired data is generally very large, a vol-
ume model capable of compressing data while maintaining
a speci ed accuracy is required. Thus, researchers have been
faced with the problem of constructing accuracy-based vol-
ume models that can be used ef ciently in various visual
tasks. We address the problem of tetrahedra decomposition
of input volume data. Our goal is to automatically construct a
hierarchical tetrahedra representation of continuous smooth
volume data. Our adaptive representation provides an accu-
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rate and ef cient method for graphical rendering of volume
data. Hierarchical volume models have the advantages of be-
ing simple to obtain from input data and of being able to
approximate any volume at an arbitrary degree of accuracy.
Such hierarchical models have been developed based on var-
ious criteria [CJ86] [ZCK97] [THJW99].

In the last decade, new tetrahedra-based approaches
[Nie97] [JM.95] [Bey95] [NHR99] [GMPV02] [TG00] to
constructing hierarchical models had been introduced since
the simplest and most robust cells are tetrahedra in 3D. One
major and inherent dif culty with hierarchical tetrahedriza-
tion techniques is that cracksmay be formed in the volume
approximation when each tetrahedron is subdivided inde-
pendently, thus making parallel implementation rather dif-
 cult.

The crack problem has approached by several methods.
Mauback proposed the method [JM.95], which has been
used in [TG00], performs a local subdivision  rst and then
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repairs the crack by propagating this split out through the
mesh. The method of Bey [Bey95] uses a combination of two
types of subdivision to avoid cracks and poorly-shaped tetra-
hedra. Nielson recently proposed a new approach [NHR99],
which rather uses a Coons patch local model that cov-
ers over the crack. These new tetrahedra-based approaches
had shown promise, however, many computational and an-
alytical research issues, such as parallel implementation
and view-invariant accuracy criteria for approximation of
smooth volume data, etc., have been remained

In this paper, we present an accuracy-based adaptive sam-
pling technique to construct a multi-resolution model, we
call a tetrahedral adaptive grid, for hierarchical tetrahedriza-
tion of C1 continuous volume data. A tetrahedral adaptive
grid is a straightforward extension to 3D of 2D adaptive
mesh [TF93][Tan95], which was proposed for construction
of a tetrahedral adaptive grid generation that recursively bi-
sects tetrahedra elements by increasing the number of grid
nodes according to local volume properties, such as ori-
entation and curvatures of isosurfaces, until the entire vol-
ume has been approximated within a speci ed level of view-
invariant accuracy.

We have also developed a parallel algorithm that detects
and preserves both C0 and C1 discontinuities of  eld val-
ues, without the formation of cracks. This crack handling al-
gorithm collects  eld value discontinuity information by re-
cursively expanding the neighborhood of adjacent tetrahedra
until the discontinuities are observed. The boundary reached
by this recursive expansion de nes the 3D region of refer-
ence for a grid element. This local de nition of a boundedre-
gion of reference allows each grid element to be subdivided
independently, and concurrently using multiple processors.
Thus, the parallel computation of hierarchical tetrahedriza-
tion with no cracks is performed in bounded time and space.

Experimental results obtained using a PC cluster system
demonstrate the validity and effectiveness of the proposed
approach.

2. Tetrahedral Adaptive Grid Generation

We  rst give an overview of the tetrahedral adaptive grid
algorithm, which is a straightforward extension to 3D of
Adaptive mesh [TF93][Tan95], as shown in Fig. 1 and
Fig. 2. The adaptive mesh was proposed for construction of
an adaptive representation of free-formed smooth surfaces
from input range images, according to view-invariant lo-
cal surface properties such as surface orientation and cur-
vatures. Next, we brie y describe a recursive algorithm of
hierarchical binary subdivision, which was also proposed
by Mauback [JM.95]. Then, we present the discontinuity-
handling algorithm for parallel adaptive subdivision.

[NumQuad_inX  NumQuad_inY] 

InitQuadSize

Step1: mesh initialization. (a) Black circles represent nodes; lines
represent connections aligned with mutually orthogonal (x,y)
coordinate lines of viewing plane. Step2: initial triangulation. (b)
At each node, the surface shape is recovered with depth z, normal
n, principal curvatures k1,k2, and their directions ~e1, ~e2. The region
bounded by each quadrangle is initially approximated by two
triangular patches of four neighboring nodes. Step3:recursive
subdivision. (c,d) According to the curvatures at both ends, the
nodes are increased along the lines to approximate the regions of
high curvature with  ner triangular patches.

Figure 1: Adaptive Mesh Generation [Tan95]

(a)Adaptive mesh
(b)Flat-shaded render-
ing of (a)

Figure 2: Adaptive mesh model of a human face

2.1. Overview of the algorithm

An input to the algorithm is i) a coarse regular hexahedral
grid, and ii) a view-invariant accuracy criterion for isosur-
face approximation. A grid is given as a set of nodes uni-
formly located along x, y and z coordinates of the volume
space, and consists of cubic cell elements of uniform vol-
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ume InitCubeSize3. The 3D region bounded by each cubic
cell elements is initially approximated with a set of six root
straight tetrahedra as shown in Fig. 3. Then, according to
the local  eld properties observed at the bounding nodes,
the root tetrahedra are recursively bisected independently in
the region of rapid  eld variation. This subdivision process
is repeated until the entire volume is approximated with the
given accuracy criterion, Acc_Thresh.

The size of InitCubeSize is arbitrarily chosen. That is, the
initialization of the grid is irrelevant to the accuracy of  -
nal tetrahedrization, because every discontinuity is eventu-
ally detected and preserved by the crack handling algorithm
for discontinuities, which we present in the next section.

Figure 3: Initial tetrahedrization of a cubic cell

2.2. Recursive Binary Subdivision

The algorithm for constructing the hierarchical representa-
tion is based on a stepwise re nement of an initially given
grid. Given an accuracy criterion, binary subdivision of the
parent tetrahedron Tp occurs when the accuracy criterion,
Acc_Thresh, is violated for any six edges of Tp. The subdi-
vision of Tp into two left and right tetrahedron, Tl and Tr ,
occurs by the creation of a new node, M, the middle point
of the base edge E(= −−→P1P2) of maximum length, followed
by initialization of M with the local properties, i.e., the  eld
value, orientation, curvatures of an isosurface containing M.
Then, the violation of Acc_Threshis recursively evaluated
for each Tl and Tr independently.

2.2.1. Tetrahedral Primitives

In recursive binary-subdivision, only three tetrahedral prim-
itives including mirror-symmetry, TYPE-I, TYPE-II and
TYPE-III, as show in Fig. 4. They are cyclically generated
at level 3N, 3N+1, 3N+2, respectively, as shown in Fig. 5.
Fig. 6 shows recursive de nitions of Tl and Tr using the par-
ent node (P0,P1,P2,P3) and M for TYPE-I, TYPE-II, TYPE-
III. As Fig. 5 shows three successive subdivision of a par-
ent tetrahedron Tp of TYPE-I at level 3N, generate the same
type of great-ground children of TYPE-I cyclically at level
3(N+1) with each edge length and its volume decreased by
2 and by 8, respectively.

As Fig. 4 shows, face shapes of TYPE-I, TYPE-II, TYPE-
III are either an isosceles triangle or a right triangle. With the
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Figure 4: Three tetrahedral primitives

TYPE-I

TYPE-III

TYPE-II

TYPE-I

Split Plane

at level 3N

at level 3N+1

at level 3N+2

at level 3(N+1)

Figure 5: Cyclic subdivision of a tetrahedron into TYPE-I,
TYPE-II and TYPE-III primitives

ratio of maximum to minimum edge length
√

3 at TYPE-
I, 2

√
2/
√

3 at TYPE-II, 2 at TYPE-III, respectively. This
binary tetrahedrization using the middle points thus suf -
ciently satis es the equi-angular requirement. Another ad-
vantage of the binary tetrahedrization is that it provides a
more continuous level of volume approximation, because a
tree with fewer descendants has more levels of approxima-
tion for a given range of volume variation.
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Figure 6: Recursive definition of Tl and Tr for three primi-
tives

2.2.2. Orientation of Initial Tetrahedrization

Our initial tetrahedrization of a cube, which is equivalent to
the CFK tetrahedrization, has following features. First, there
is no alternating tetrahedrization required, since, all six faces
of a InitCubicCell have diagonally consistent edges with ad-
jacent faces (Fig. 3(a)). Second, the choice of orientations
in initial tetrahedrization does not effect to the  nal tetra-
hedrization.

As Fig. 21 shows, there are four distinct orientations of
the initial tetrahedrization of a cube, patterns (A), (B), (C)
and (D). These orientations depends on the direction of di-
agonal edges in a cubic cell, shared by all six-root tetrahedra.
However, as Fig. 21 shows, four diagonally different initial
tetrahedrizations reach to the same tetrahedrization after 1
cycle of three successive subdivisions. Fig. 22 shows the ad-
jacency of all four patterns in a InitCubicCell. Each pair of
the same patterned cells of size 1/8 are diagonally positioned
and all four pairs meet at the center of the InitCubic Cell.
Thus, all orientation effects are cancelled out at  ner resolu-
tion.

2.2.3. Binary Subdivision Algorithm

Above steps for recursive binary subdivision of tetrahedra
are summarized in the following pseudo code.

Procedure Divide_Tetrahedron(Tp,Acc_Thresh)
(* Tp : a binary region tree *)

(* Acc_Thresh : homogeneity criteria *)
begin

Step 1: (*Collect subdivision requests from neighbors

for crack handling discontinuities *)

If Neighbor_Require_for_Subdivision(Tp,Acc_Thresh)

then require for subdivision of Tp;

Step 2: (* Neighbors require for subdivision of T p*)
Divide a parent tetrahedron Tp into Tl and Tr
and process them independently

Step 2.1: (*Initialize Tl and Tr using the parent nodes

of Tp and a middle point on the base edge *)
Step 2.2: (* Recursive Subdivision of Tl and Tr *)

Divide_Tetrahedron(Tl ,Acc_Thresh);

Divide_Tetrahedron(Tr ,Acc_Thresh);
end

At each recursion, the volume of every tetrahedron de-
creases by 2, therefore the upper bound of recursion nmax,
assuming that minimum cell size is 1, is given as,

nmax≤ log2(InitCubeSize3) (1)

where InitCubeSizeis the edge length of an initial grid ele-
ment,i.e InitCubicCell.

2.3. Crack Handling for Discontinuities

The major problem with adaptive subdivision techniques is
that cracks,i.e., discontinuities, may arise if each tetrahedron
is subdivided independently, as shown in Fig. 7.

Crack

Figure 7: The crack problem. The tetrahedron TA,B,C,E con-
sists of four vertices A, B, C and E. The tetrahedron has been
subdivided into two tetrahedra TA,M,B,C and TA,M,B,E at a
middle point M. However, the tetrahedron TA,C,D,E has not
been subdivided. This problem causes making holes when
generating isosurfaces of input volume data.

When there is a large  eld variation near the initial grid el-
ement, a crack may be formed along the boundary between
the grid elements. This crack is caused by the unilateral sub-
division of a grid element on one side of the large  eld vari-
ation. In order to avoid cracks between adjacent tetrahedra,
we have developed an algorithm that collects subdivision in-
formation from neighbors by recursively expanding the 3D
region of reference until a sudden  eld change is observed.

In the binary subdivision, every tetrahedron is subdivided
only at the middle point of its base edge, the insertion of
the middle point in uences the subdivision of adjacent tetra-
hedra only along the base edge. For the base edge E of Tp,
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we associate a 3D region of in uence RI(E) bounded by a
group of tetrahedra sharing E, which is called a diamond in
[GMPV02].

E2

E1E0

Cb(i, j,k) Cb(i, j,k)
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(a) RI(E1) at level 3N
(b) RI(E2) at level 3N+1

(c) RI(E3) at level 3N+2

Figure 8: Three types of 3D region of influence : RI(Ei)

Let Ix = (1,0,0), Iy = (0,1,0) and Iz(0,0,1) be x, y and
z element of an unit vector I , respectively. And let L be an
edge length of a cubic cell at current level n(=3n).

If E1 is a diagonal edge inside a cubic cell at level n(=3N)
then RI(E1) is the cubic cell itself consisting of six tetrahedra
sharing E1, as shown in Fig 8(a). Eight vertices Pi |(0≤ i ≤
7) of RI(E1) can be computed from Eq. 2.
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(2)

If E2 is a diagonal edge on a bounding face shared by adja-
cent cubic cell, then RI(E2) consists of 4 tetrahedron sharing
E2, two from its own cubic cell and other two from the ad-
jacent cell, as shown in Fig 8(b). Six vertices Pi |(0≤ i ≤ 5)
of RI(E2) can be computed from Eq. 3.




P0
P1
P2
P3
P4
P5




=




P1
P1
P2
P1

(P1 +P2)/2
(P1 +P2)/2




+L×




−Iy
0
0
Iz

Ix/2
−Ix/2




(3)

If E3 is parallel to one of the X, Y and Z coordinate axes,
then RI(E3) consists of eight tetrahedron from four adjacent
cubic cells sharing E3, as shown in Fig 8(c). Ten vertices Pi
|(0≤ i ≤ 9) of RI(E3) can be computed from Eq. 4.
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(4)

Then, we add another constraint on the subdivision of Tp

in RI(E). That is, " if anyother one of tetrahedra in RI(E) is
bisected at M, then also bisect Tp at M".

Thus, if the given accuracy criteria is violated for anyedge
of anyone of tetrahedra in RI(E), then Tp is subdivided into
two tetrahedra Tl and Tr at M.

For each grid element Cb(i, j,k), we process its root tetra-
hedra Rt[i]i:0, ... , 5, independently. For each tetrahedron Tp,
we  rst evaluate the accuracy achieved along its base edge
E. If the accuracy along E has not reached the given accu-
racy criteria, we immediately decide the subdivision of Tp

without further examining the neighbors. The reasons are:

1) From the constraint on E with its region of in uence
RI(E), all tetrahedra in RI(E) are also subdivided at M, thus
there are no cracks in RI(E), even if  eld discontinuities are
observed inside of one of tetrahedron in RI(E), and

2) The insertion of M in uences only the subdivision
within RI(E), and does not in uence the subdivision of
neighbors outside RI(E). Otherwise, we postpone the deci-
sion until we are able to con rm it from subdivision infor-
mation collected from the neighbors of Cb(i, j,k).

Next, we associate each of base edges of Tl and Tr with
its region of in uence RI(Ei) |(0≤ i ≤ 2), respectively, then
evaluate whether the accuracy in RI(Ei) has been reached
at the given threshold. This evaluation process leads to the
recursive de nition of the regions of in uence for each base
edge of Tl and Tr at successive levels.

If the accuracy reached in RI(E(n)) along the base edge
E(n) de ned at the nth level, does not satisfy the thresh-
old, the request for a subdivision arises at level n, then re-
quests for s subdivision of all ancestor tetrahedra will be
propagated to the root tetrahedra of Cb(i, j,k). Otherwise,
the recursive de nition of RI(E(n)) followed by the expan-
sion of RR(Cb(i, j,k)) continues until the size of RI(E(n))
becomes 1(a minimum size cell). In this case,  eld values
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in the neighboring region bounded by RR(Cb(i, j,k)) is con-
stant, so the region bounded by Cb(i, j,k) can be suf ciently
approximated with six root tetrahedra.

The volume of RI(E) decreases by a factor of 23 af-
ter three successive recursions, causing the base edge
length reduction by a factor 2. Thus, a region of reference
RR(Cb(i, j,k)), will be recursively expanded. Fig. 23 and
Fig. 24 show neighboring regions considered in the subdi-
vision of Cb(i, j,k). Fig. 24 shows the 3D region of ref-
erence RR(Cb(i, j,k)) expanded by recursive de nition of
RI(E(n)) at each level. Fig. 23 shows the 2D projection
of RI(E) after three successive subdivisions of 6 root tetra-
hedra in a Cb(i, j,k). This leads to the recursive expansion
of the overall regions referenced for Cb(i, j,k), denoted by
RR(Cb(i, j,k)).

The projection of distance d, on either the X-Y, Y-Z and
Z-X coordinate plane, from the boundary of Cb(i, j,k) to the
farthest region RI(E) after the ith expansions is given as,

d =
k

∑
i=1

(InitCubeSize/(2i)) < InitCubeSize (5)

where k = bn/3c and InitCubeSizeis the edge length of an
initial grid element.

Eq. 5 indicates that the upper bound dmax is limited by
InitCubeSize, as shown in Fig. 9. Thus, we can de ne the
boundedregion of reference RR(Cb(i, j,k)) of volume 8 1

3 (=
1+6+8∗ (1/6))∗ (InitCubeSize)3 for each initial grid ele-
ment Cb(i, j,k), as shown in Fig. 24(f).

The upper bound of recursion nmax is also given as,

nmax≤ log2
1
6
(InitCubeSize)3 (6)

The local de nition of a boundedregion of reference al-
lows each grid element to be subdivided independently. This
enables parallel computations of tetrahedrization, with no
cracks, in bounded time of O(log2(InitCubeSize)3), and in
bounded space of 8 1

3 ∗ (InitCubeSize)3.
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Figure 9: Upper bound dmax ( ≤ InitCubeSize)

These steps are summarized in the following pseudo
codes.

Procedure Neighbor_Require_for_Subdivision(Tp,Acc_Thresh)

(* Tp : a binary region tree *)
(* Acc_Thresh: homogeneity criteria *)

begin

Step 0: If CurrAcc along BaseEdge E of Tp does not
reach Acc_Thresh then

return a request for subdivision of Tp.
Step 1: Estimate the size of Tp

If Tp is the smallest Tetrahedra then

return !NeedSubdivision
Step 2:Associate E with RI(E) of a group of

tetrahedra {Tpi} sharing E.
Step 3:(* Recursive Expansion of RR(Cb(i, j,k)) *)

(* Evaluate Acc_Thresh for Tl and Tr of each of

Tpi ∈ RI(E) independently *)
for each Tpi ∈ RI(E)

Step 3.1:Divided Tpi into Tl i and Tr i at a middle point of E.
Step 3.2:(* Recursively evaluate Acc_Thresh for Tl i and Tr i

CurrDepth++
Neighbor_Require_for_Subdivision(Tl i,Acc_Thresh)

Neighbor_Require_for_Subdivision(Tr i,Acc_Thresh)

Step 4:If any neighbor requires for subdivision
then require for the subdivision of Tp.

Step 5:Return (!NeedDivision).
end

3. Accuracy Criterion

Our accuracy criterion is given as the ratio of a curve of  eld
value changes to its linear approximation.

We  rst consider  eld value changes along every edge Ei
of a tetrahedron in the following 2D space S, where the x
axis is along Ei and  eld values along Ei are represented as
heights in the direction of the y axis, as shown in Fig. 25.
Field values changes of C1 continuous volume data along
Ei will draws a curve rather than a line. Linear interpolation
of  eld values inside a tetrahedron, which is conventionally
used in many method [GMPV02] [TG00] is equivalent to
draw a line between Pl and Pr in S.

Let Pl and Pr be end points of Ei in Sand let Di be a 3D
distance between Pl and Pr and Ri be the arc length of a curve
of  eld values along Ei . Such curves can be obtained with
conventional curve interpolation techniques, e.g., B-spline
interpolation. In our implementation, such curves are esti-
mated using the both end nodes illustrated in Fig. 25.

A curve of  eld values between two points Pl and Pr is
estimated as three B-spline segments, painted pink, green
and red, using B-spline interpolation. The B-spline control
points colored purple and yellow are generated according to
osculating circles de ned at Pl and Pr , which are computed
from curvatures of iso-surfaces estimated at Pl and Pr , and
an angle θ speci ed at Acc_threth. The centers Ol and Or

of the osculating circles are determined from the normals,
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−→nl = −−→
Ol Pl /‖−−→Ol Pl‖, −→nr = −−→

OrPr/‖−−→OrPr‖, and the curvature,
k1 = 1/‖−−→Ol Pl‖, k2 = 1/‖−−→OrPr‖, at Pl and Pr in the direction
of −−→P1P2.

Our accuracy criterion is given as the ratio of a curve of
 eld value changes to its linear approximation, and is applied
to every edge Ei of all tetrahedra, That is,

Acc_Thresh=
m
π

sin(
π
m

) (7)

where m speci es the accuracy which is equivalent to the m-
hedron approximation of a unit circle, illustrated in Fig. 10.
This criterion is equivalent to constraining angles between
gradient vectors of adjacent tetrahedra, which also con-
strains an angle between adjacent triangles(patches) of iso-
surface approximation.

With the above accuracy criterion, the condition on sub-
division of a given tetrahedra Tp is stated as follows:

∀i
Ri

Di
≤ Acc_Thresh,(0≤ i ≤ 5). (8)

{
m

m m

D D=2Sin(       )
m

m

2 R

2

{

Figure 10: A m-hedron approximation of a unit circle, where
R is an arc length and D is a chord length. Acc_thresh
is given as an m-hedron approximation of a unit circle,
Acc_thresh = (arc length)/(chord length) =π / m sin(π/m),
which constrains an angleθ between gradient vectors of ad-
jacent tetrahedra asθ ≤ π− 2π/m, which also constrains
an angle between adjacent triangles(patches) of isosurface
approximation.

4. Experiments

We have implemented the tetrahedral adaptive grid algo-
rithm in C++ programming language, VTK(the Visualiza-
tion ToolKit) as graphic library and MPI library to run it on
a PC cluster system. Our PC cluster system consists of 16
host computers, one CPU for job control, one CPU for mem-
ory control and 14 CPUs for parallel computation, with the
Score Cluster System Software. Every host computer con-
sists of dual Xeon 2.8 GHz CPU, 2GB of main memory and
Myrinet 2000 NIC.

We applied the algorithm to two kinds of volume data.
The one is Lobster of size 321×321×33. The another one is
Human Foot of size 161×321×129, which is reconstructed
from CT  les of a female cadaver, as collected for the Na-
tional Library of Medicine’s Visible Human Program. The
initial cube size of Lobster and Human Foot is 32. Hence, the
max decomposition level becomes 15. The accuracy crite-
rion was speci ed as, Acc_Thresh=(20sin 1

20 ), i.e., the 20Π-
hedron approximation of a unit circle.

We  rst tested the algorithm on Lobster data (Fig. 11).
Fig. 12, Fig. 13 and Fig 14 show the results of hierarchical
tetrahedrization projected on X-Y, Y-Z and Z-X planes at
level 6, 9 and 12. Table. 1 shows results of compression rate
at level 3, 6, 9, 12 and 15, respectively.

Table 1: Compression rate (lobster)

Level time(s) Non-Adaptive Adaptive Compression rate(%)

3 0.044664 1,323 416 31.4

6 0.084752 8,405 1,983 23.60

9 0.394752 59,049 11,937 20.200

12 3.08826 440,657 42,475 9.3902

15 18.7092 3,400,353 298,892 8.79000

Figure 11: Input Data -Lobster-

Second, we tested on Human foot. The Input data is
shown in Fig. 15. And the result that applied the algorithm
is shown in Fig. 16. Fig. 17 and Fig 18 show the results of
hierarchical tetrahedrization projected on X-Y plane at level
9 and 12. The compression rates of each level are 15.2063%
and 10.3186%, respectively.

Performance of algorithm is evaluated on the PC clus-
ter system by increasing the number of CPUs. Fig. 19 and
Fig. 20 show evaluation results on Human foot comparing
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Figure 12: the result of Lobster at Level 6

Figure 13: the result of Lobster at Level 9

computation time V.S. the number of CPUs for constructing
the adaptive grids of 6 and 9, respectively.

5. Conclusions

We have proposed a parallel algorithm of tetrahedral adap-
tive grid generation that automatically generate hierarchical
tetrahedral representation of input volume data. The repre-
sentation can be used as an accurate and ef cient volume
model. Such hierarchical tetrahedrization has the advantages
of being intrinsic to the volume and of satisfying the arbi-
trarily speci ed absolute accuracy. We have also proposed

Figure 14: the result of Lobster at Level 12

Figure 15: the Input data of Human Foot

a recursive search algorithm that collects subdivision infor-
mation from neighbors to avoid cracks in the volume ap-
proximation. Then, from the boundary of the neighbors ref-
erenced, we de ned a region of reference for each grid el-
ement. This local de nition of bounded neighbors for each
grid element allows each grid element to be subdivided in-
dependently. This enables parallel computation of hierar-
chical tetrahedrization with no cracks in bounded time and
space.The method is general and can be applied to adaptive
data compression of any volumetric data.

References

[Bey95] BEY J.: Tetrahedral mesh ri nement. Comput-
ing Vol.55, No.13 (1995), pp.355–378.

[CJ86] CHIEN C., J.K.AGGARWAL: Volume sur-

c© The Eurographics Association 2004.

132



Yasufumi Takama, Akinori Kimura and Hiromi T. Tanaka/Tetrahedral Adaptive Grid for Parallel Hierarchical Tetrahedrization

Figure 16: the result of Human Foot

Figure 17: the result of Human Foot at level 9

face octrees for the representation of three-
dimensional objects. Computer Vision Graph-
ics and Image Processing Vol.36(1986),
pp.100–113.

[GMPV02] GREGORSKI B., M.DUCHAINEAU,
P.LINDSTROM, V.PASCUCCI: Interactive
view-dependent rendering of large isosurfaces.
IEEE Visualization 2002(2002), pp.475–482.

[JM.95] JM.MAUBACK: Local bisection re nement
for n-simplicial grids generated by re ection.
SIAM Journal of Scientific Computing Vol.16,
No.1 (1995), pp.210–227.

[Kau01] KAUFMAN A.: State of the art in volume
graphics. In Volume Graphics. Springer, 2001,
pp. pp.3–28.

[NHR99] NIELSON G., HOLLIDAY D., ROXBOROUGH

R.: Cracking the cracking problem with coons
patches. Proc.IEEE Visualization ’99, San
Francisco, CA(1999).

[Nie97] NIELSON G.: Tools for triangulations and
tetrahedrizations int Scientific Visualization.
IEEE CS, 1997.

[Nie01] NIELSON G.: Volume modelling. In Volume
Graphics. Springer, 2001, pp. pp.29–48.

[Tan95] TANAKA H.: Accuracy-based sampling and
reconstruction with adaptive meshs for paral-
lel hierarchical triangulation. COMPUTER VI-
SION AND IMAGE UNDERSTANDING Vol.61,
No.3 (1995), pp.335–350.

Figure 18: the result of Human Foot at level 12

Figure 19:Computing time V.S. # of CPUs
at (level 6)

Figure 20:Computing time V.S. # of CPUs
at (level 9)

[TF93] TANAKA H., F.KISHINO: Adaptive mesh
generation for surface reconstruction: Paral-
lel hierarchical triangulation without cracks.
Proc.IEEE 10th International Conference on
Pattern Recognition(1993), pp.88–94.

[TG00] T.ROXBOROUGH, G.M.NIELSON: Tetrahe-
dron based, least squares, progressive volume
models with application to freehand ultrasound
data. IEEE 2000(2000), pp.93–100.

[THJW99] TROTTS.I, HAMANN.B, JOY.K, WILEY.D:
Simpli cation of tetrahedral meshes with error
bounds. IEEE Transactions of Visualization and
Computer Graphics(1999).

[ZCK97] ZHOU Y., CHEN B., KAUFMAN A.: Mul-
tiresolution tetrahedral framework for visualis-
ing regular volume data. Proc.IEEE Visualiza-
tion ’97, Phoenix, AZ(1997), pp.135–142.

c© The Eurographics Association 2004.

133




