
View-independent Environment Maps

Wolfgang Heidrich and Hans-Peter Seidel

Computer Graphics Group
University of Erlangen

{heidrich,seidel}@informatik.uni-erlangen.de

Abstract

Environment maps are widely used for approximating reflec-
tions in hardware-accelerated rendering applications. Unfor-
tunately, the parameterizations for environment maps used
in today’s graphics hardware severely undersample certain
directions, and can thus not be used from multiple view-
ing directions. Other parameterizations exist, but require
operations that would be too expensive for hardware imple-
mentations.

In this paper we introduce an inexpensive new parame-
terization for environment maps that allows us to reuse the
environment map for any given viewing direction. We de-
scribe how, under certain restrictions, these maps can be
used today in standard OpenGL implementations. Further-
more, we explore how OpenGL could be extended to support
this kind of environment map more directly.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture-Graphics processors; 1.3.3 [Computer Graph-
ics]: Picture/Image Generation-Bitmap and framebuffer
operations; 1.3.6 [Computer Graphics]: Methodology and
Techniques--Standards 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism-Color, Shading, Shad-
owing and Texture 1.4.1 [Image Processing and Computer
Vision]: Digitization and Image Capture ~-Sampling

Keywords: Environment mapping, OpenGL

1 Introduction

The basic idea of environment maps is striking [l]: if a re-
flecting object is small compared to its distance from the
environment, the incoming illumination on the surface re-
ally only depends on the direction of the reflected ray. Its
origin, that is the actual position on the surface, can be ne-
glected. Therefore, the incoming illumination at the object
can be precomputed and stored in a 2-dimensional texture
map.

If the paramet,erization for this texture map is cleverly
chosen, the illumination for reflections off the surface can
be looked up very efficiently. Of course, the assumption
of a small object compared to the environment often does

not hold, but environment maps are a good compromise be-
tween rendering quality, and the need to store the full, 4-
dimensional radiance field on the surface.

Both offline [3, 91 and interactive, hardware-based render-
ers [g] have used this implementation of reflections, often
with amazing results.

Given the above description of environment maps, one
would think that it should be possible to use a single map
for all viewing positions and directions. After all, the en-
vironment map is supposed to contain information about
illumination from all directions. Thus, it should be possible
to modify the lookup process in order to extract the correct
information for all possible points of view.

In reality, however, this is not quite true. The parameter-
ization used in most of today’s graphics hardware exhibits
a singularity as well as areas of extremely poor sampling.
As a consequence, this form of environment map cannot be
used for any viewing direction except the one for which it
was originally generated.

This leaves us with a situation, where the environment
map has to be re-generated for each frame even in simple
applications such as walkthroughs. Other parameterizations
exist (see Section 2), but require operations that would be
too expensive for hardware implementations. In this paper
we introduce a parameterization for environment maps that
uses only simple operations (additions, multiplications and
matrix operations), but provides a good enough sampling so
that one map can be used for all viewing directions.

In the following, we first discuss existing parameteriza-
tions for environment maps and their deficiencies. Then,
in Section 3, we introduce our new parameterization, and
describe how it can be used on contemporary graphics hard-
ware under certain restrictions (Section 5). Finally, we pro-
pose a simple extension to the texture coordinate generation
of OpenGL that would add direct support for our method
(Section 6), and we present results of our implementation in
(Section 7).

2 Previous Work

The parameterization used most commonly in com-
puter graphics hardware today, are spherical environment
maps [8]. It is based on the simple analogy of a small, per-
fectly mirroring ball centered around the object. The image
that an orthographic camera sees when looking at this ball
from a certain viewing direction is the environment map. An
example environment map from the center of a colored cube
is shown in Figure 1.

The sampling rate of this map is maximal for directions
opposing the viewing direction (that is, objects behind the
viewer), and goes towards zero for directions close to the
viewing direction. Moreover, there is a singularity the in
viewing direction, since all points where the viewing vec-
tor is tangential to the sphere show the same point of the

39

Figure 1: A spherical environment map from the center of
a colored cube. Note the bad sampling of the cube face
directly in front of the observer (light gray).

environment.
With these properties, it is clear that this parameteri-

zation is not suitable for viewing directions other than the
original one. The major reason why it is used anyway, is
that the lookup can be computed efficiently with simple op-
erations in hardware. The parameterization proposed in this
paper solves the sampling problems while at the same time
maintaining the simplicity of the lookup process.

Another parameterization are latitude-Zongztude maps [9].
Here, the s, and t parameters of the texture map are inter-
preted as the latitude and longitude, respectively, with re-
spect to a certain viewing direction. Apart from the fact that
these maps are severely oversampled around the poles, the
lookup process involves the computation of inverse trigono-
metric functions, which is inappropriate for hardware imple-
mentations.

Finally, cubical environment maps [2, 101 consist of 6 in-
dependent perspective images from the cent,er of a cube
through each of its faces. The sampling of these maps is
fairly good, as the sampling rates for the directions differ by
a factor of 3& z 5.2. Also, the lookup process within each
of the 6 images is inexpensive. However, the difficulty is to
decide which of the six images to use for the lookup. This
requires several conditional jumps, and interpolation of tex-
ture coordinates is difficult for polygons containing vertices
in more than one image. Because of these problems cubical
environment maps are difficult and expensive to implement
in hardware, although they are quite widespread in software
renderers (e.g. [9]).

Many interactive systems initially obtain the illumination
as a cubical environment map, and then resample this in-
formation into a spherical environment map. There are two
ways this can be done. The first is to re-render the cubi-
cal map for every frame, so that the cube is always aligned
with the current viewing direction. Of course this is slow
if the: environment contains complex geometry. The other

method is to generate the cubical map only once, and then
re-compute the mapping from the cubical to the spherical
map for each frame. This, however, makes the resampling
step more expensive, and can lead to numerical problems
around the singularity.

In both cases, the resampling can be performed as a mul-
tipass algorithm in hardware, using morphing and texture
mapping. Yet, the bandwidth imposed by this method onto
the graphics system is quite large: the six textures from the
cubical representation have to be loaded into texture mem-
ory, and the resulting image has to be transferred from the
framebuffer into texture RAM or even into main memory.

3 A New Parameterization

The parameterization we use is based on an analogy simi-
lar to the one used to describe spherical environment maps.
Assume that the reflecting object lies in the origin, and that
the viewing direction is along the negative z axis. The im-
age seen by an orthographic camera when looking at the
paraboloid

f(GY) = ; - p + Y”), x2 + y2 < 1 (1)

contains the information about the hemisphere facing to-
wards the viewer. The complete environment is stored in
two separate textures, each containing the information of
one hemisphere. The geometry is depicted in Figure 2.

4 \

Figure 2: The rays of an orthographic camera reflected on a
paraboloid sample a complete hemisphere of directions.

It should be noted that this parameterization has recently
been introduced by Nayar [6, 51 in a different context. Nayar
actually built a lens and camera system that is capable of
capturing this sort of image from the real world. Besides ray-
tracing and resampling of cubical environment maps, this is
actually one way of acquiring maps in the proposed format.
Since two of these cameras can be attached back to back [5],
it is possible to create full 360” images of real world scenes.

The geometry described above has some interesting prop-
crties. Firstly, the reflection rays in each point of the
paraboloid all intersect in a single point, the origin (see
dashed lines in Figure 2). This means that the resulting
image can indeed be used as an environment map for an
object in the origin.

Secondly, the sampling rate varies by a factor of 4 over the
complete image, as depicted in Figure 3. Pixels in the outer
regions of the map cover only l/4 of the solid angle covered
by center pixels. This means that directions perpendicular

40

to the viewing direction are sampled at a higher rate than di-
rections parallel to the viewing direction. Depending on how
we select mipmap levels, the factor of 4 in the sampling rate
corresponds t,o one or two levels difference, which is quite
acceptable. In particular this is better than the sampling of
cubical environment maps.

I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 3: The change of solid angle w covered by a single
pixel versus the angle 6’ between the viewing direction and
the reflected ray. The sampling rate varies by a factor of 4
over the environment map. Directions perpendicular to the
viewing direction are sampled at a higher rate than direc-
tions parallel to the viewing direction.

Figure 4 shows the two images comprising an environment
map for the simple scene used in Figure 1. The top image
represents the hemisphere facing towards the camera, while
the bottom image represents the hemisphere facing away
from it.

4 Lookups from Arbitrary
Viewing Positions

In the following, we describe the math behind the lookup
of a reflection value from an arbitrary viewing position. We
assume that environment maps are specified relative to a
coordinate system, where the reflecting object lies in the
origin, and the map is generated for a viewing direction of
d, = (O,O, --1)r. It is not necessary that this coordinate
system represents the object space of the reflecting object,
although this would be an obvious choice. However, it is
important that the transformation between this space and
eye space is a rigid body transformation, as this means that
vectors do not have to be normalized after transformation.
To simplify the notation, we will in the following use the
term “object, space” for this space

In the following, v, denotes the normalized vector from
the eye point to the point on the surface, while the vector
n, = (%,z,%,y,%.z) r is the normal of the surface point
in eye space. Furthermore, the (affine) model-view mat,rix is

Figure 4: The two textures comprising an environment map
for an object in the center of a colored cube.

given as M. This means, that the normal vector in eye space
n, is really the transformation M-r n, of some normal
vector in object space. If M is a rigid body transformation,
and n, was normalized, then so is n,. The reflection vector
in eye space is then given as

r, =v,+2(n,,-v,).n,. (2)

Transforming this vector with the inverse of M yields the
reflection vector in object space:

ro = M-’ rr. (3)

41

The illumination for this vector in object space is stored
somewhere in one of the two images. More specifically, if the
z component of this vector is positive, the vector is facing
towards the viewer, and thus the value is in the first im-
age, otherwise it is in the second. Let us, for the moment,
consider the first case.

r. is the reflection of the constant vector d, = (O,O, -l)T
in some point (z, y, z) on the paraboloid:

r. = d, + 2 (n, -do). n, (4)

where n is the normal at that point of the paraboloid.
Due to the formula of the paraboloid from Equation 1, this
normal vector happens to he

(5)

Combining Equations 4 and 5 yields 4

k.x
do-r,=2(n,v)n= k.y () (6)

k

In summary, this means that z and y, which can be di-
rectly mapped to texture coordinates, can be computed by
calculating the reflection vector in eye space (Equation 2),
transforming it back into object space (Equation 3), sub-
tracting it from the (constant) vector d, (Equation 6), and
finally dividing by the .z component of the resulting vector.

The second case, where the z component of the reflection
vector in object space is negative, can he handled similarly,
except that -d has to he used in Equation 6, and that the
resulting values are --z and -y.

5 OpenGL Implementation

An interesting observation of the above equations is that al-
most all the required operations are linear. There are two
exceptions. The first is the calculation of the reflection vec-
tor in eye space (Equation 2), which is quadratic in the com-
ponents of the normal vector n,. The second exception is
the division at the end, which can, however, be implemented
as a perspective divide.

Given the reflection vector re in eye coordinates, the
transformations for the frontfacing part of the environment
can be written in homogeneous coordinates as follows:

[i] =P.S.(M,)-‘. [ii;] > (7)

where

rl 0 0 01

is a projective transformation that divides by the .z compo-
nent,

r-i 0 0 do,, 1

computes d, - ro, and Ml is the linear part of the affine
transformation M. Another matrix is required for mapping
z and y into the interval [0, l] for the use as texture coordi-
nates:

[i]..[i I i g].[;]
Similar transformations can he derived for the backfacing

parts of the environment. These matrices can he used as
texture matrices, if re is specified as the texture coordinate
for the vertex. Note that re changes from vertex to vertex,
while the matrices remain constant.

Due to the non-linearity of the reflection vector, re has to
be computed in software. This is the step that corresponds
to the automatic generation of texture coordinates for spher-
ical environment maps in OpenGL (glTexGen). Actually,
this process can he further simplified by assuming that the
vector v from the eye to the object point is constant. This
is true, if the object is far away from the camera, compared
to its size, or if the camera is orthographic. Otherwise, the
assumption breaks down, which is particularly noticeable on
flat objects.

What remains to he done is to combine frontfacing and
backfacing regions of the environment into a single image.
To this end we use OpenGL’s alpha test feature. In the
two texture maps, we mark those pixels inside the circle
zr2 + y2 5 1 with an alpha value of 1, the pixels outside the
circle with an alpha value of 0. Then the algorithm works
as follows:

glAlphaFunc (GL_EQUAL, 1.0) ;
glEnable (GL_ALPHA-TEST) ;
glMatrixMode(CL-TEXTURE 1;

glBindTexture(GL_TEXTURE_2D,
frontFacingMap);

glLoadMatrix(frontFacingMatrix 1;
draw object with r0 as texture coord.

glBindTexture(GL_TEXTURE_2D,
backFacingMap 1;

glLoadMatrix(backFacingMatrix);
draw object with r0 as texture coord.

The important point here is that backfacing vectors r,, will
result in texture coordinates x2 + yz > 1 while the matrix for
the frontfacing part is active, and will thus not be rendered.
Similarly frontfacing vectors will not he rendered while the
matrix for the hackfacing part is active.

6 Extending OpenGL

White the method described in Section 5 works, and is also
quite fast (see Section 7), it is not the best one could hope
for. Firstly, since the texture coordinates have to be gener-
ated in software, it is not possible to use display lists’. Sec-
ondly, many vectors required to compute the reflected vector

‘Actually, since the texture coordinates are identical for both
passes of our method, display lists can be used to render the two
passes within one frame, but they cannot be reused for other
frames.

42

re are already available further down the pipeline (that is,
when OpenGL texture coordinate generation takes place),
but are not easily available in software.

For example, the normal vector in a vertex is typically
only known in object space. In order to compute n,, this
vector has to be transformed by hand, although the trans-
formed normal is later being transformed by the hardware
anyway (for lighting calculations).

Interestingly, the texture coordinates generated for spher-
ical environment maps are the z and y components of the
halfway vector between the reflection vector re and the neg-
ative viewing direction (0, 0, l)T [8]. Thus, current OpenGL
implementations essentially already require the computation
of re for environment mapping.

We would like to emphasize that this computation of the
reflection vector is really necessary, even with the standard
OpenGL spherical environment maps. On first sight, one
could think that for this parameterization, it would be pos-
sible to directly use the x and y components of the surface
normal as texture coordinates. This, however, would only
yield the desired result for orthographic views. For per-
spective views it would lead to sever artifacts, such as flat
mirroring surfaces being colored in a single, uniform color.

Because OpenGL implementations already compute the
reflection vector, the changes necessary to fully support our
parameterization are minimal. All that is required, is a new
mode for texture coordinate generation that directly stores
re into the s, t, and T texture coordinates, and sets CJ to 1.

Furthermore, and independent of this proposal, it would
be possible get rid the second rendering pass by allowing for
multiple textures to be bound at the same time. OpenGL
extensions for this purpose are currently being discussed by
the OpenGL architecture review board.

7 Results

We have implemented the software-based method described
in Section 5, and tested it with several scenes. Figure 5
shows two images making up one environment map. These
images where generated using ray-casting. The circles indi-
cate regions with x2 +y2 5 1. The regions outside the circles
are do not really belong to the map, but have been gener-
ated during the ray-casting step by extending the paraboloid
to the domain -1 5 2,~ < 1. We found it useful to have
an additional ring of one or two pixels available outside the
act.ual circle, in order to avoid seams in regions where front-
and backfacing regions touch.

Figure 6 shows a sphere to which this environment map
has been applied. The images have been taken from different
viewpoints, but with the same environment map. This image
can be rendered in full screen (1280 x 1024) at about 15
frames per second on an SGI 02 and at > 20 frames per
second on an SGI RealityEngine:!. The tessellation used for
this sphere was 72 x 72 quadrilaterals.

A closeup of the seams between frontfacing and backfacing
regions of the environment map can be seen in Figure 7. In ,
the left image, the curve indicates this seam, which hard to
detect in the right image.

Finally, Figure 8 shows a torus with the environment map
applied. Here we used a tessellation of 144 x 72, and the
timings where 13 frames per second on the 02, and > 20
frames per second on the RealityEngineS, again at full screen
resolution

Based on the discussion in Section 6, we are confident,
that these times could be further improved, if some minor

Figure 5: The two textures of the environment map for an
object in the center of an office scene.

extensions were made to the texture coordinate generation
mechanism of OpenGL.

8 Conclusions

In this paper, we have introduced a novel paramcteriza-
tion for environment maps, which allows us to reuse them
from multiple viewpoints. This allows us to generate walk-
throughs of scenes with reflecting objects without the need
to recompute environment maps for each frame.

We have shown how the new parameterization can be used
today in standard OpenGL implementations. Although this
method is partly based on a software algorithm, we have

43

Figure 6: The environment map from Figure 5 applied to a
sphere seen from t,wo different viewpoints.

demonstrated it, t,o be efficient, enough for xrlarly practical
purposes.

Further performance improvements are possible by adding
some direct support, for our parameterization into t,he
OpenGL API. <My minimal changes would he necessary
for this support, and they would he backwards compatible
to the current interface.

References

[l] J. F. Blinn and M. E. Newell. Texture and reflection
in computer generated images. Communications of the
ACM, 19:542 546, 1976.

Figure 7: A closeup of the seams between the frontfacing
and the hackfacing regions of the environment map. The
curve in the left image indicates the location of the seam,
which is hard to detect in the right image.

PI

131

[41

151

Fl

[71

[81

PI

WI

Ned Greene. Applications of world projections. 111
M. Green, editor, Proceedings of Graphics Interface ‘86,
pages 108114, May 1986.

Pat Hanrahan and Jim Lawson. A language for shad-
ing and lighting calculation. Computer Graphics (SIG-
GRAPH ‘90 Proceedings), 24(4):289-298, August 1990.

Shree Nayar. Omnicamera home page Available from
http://www.cs.columhia.edu/CAVE/omnicam, 1997.

Shree Nayar. Omnidirectional image sensing. Invited
Talk at the 1998 Workshop on Image-Based Modeling
and R.endering, March 1998.

Shree K. Nayar. Catadioptric omnidirectional camera.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 482.-488, June 1997.

J. Neider, T. Davis, and M. Woo. OpenGL Program-
ming Guide. Addison Wesley, 1993.

OpenGL ARB. OpenGL Specification, Version 1.1,
1995.

Pixar. The RenderMan Interface, Version 3.1. Pixar,
San R.afael, CA, September 1989.

Douglas Voorhies and Jim Foran. Reflection vector
shading hardware In Computer Graphics (SIGGRAPH
‘94 Proceedings), pages 163-166, July 1994.

44

Figure 8: A torus with view-independent environment mapping, rendered using Opx~GL

45

