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Abstract 

Currently graphics devices that offer both high 
performance and high quality interactive 
rendering have been priced at a level that 
places them out of the reach of the broad 
number of users that constitutes the mass- 
market. Because of the cost constraints placed 
on graphics devices designed for the mass- 
market, they often trade off image quality in 
order to get reasonable rendering rates with 
minimum use of hardware. This approach is 
not leading to a rapid adoption of true 3D 
graphics technology for the broadest number 
of users. 

The goal of the Talisman initiative is to make 
3D graphics truly ubiquitous. This requires 
that both high performance and high quality 
interactive rendering be made available at 
mass-market price points. This means that 
trading off image quality, as a means to obtain 
high performance rendering is unacceptable. 

In this paper it will be shown that high quality 
rendering is a natural extension of the high- 
performance rendering architecture embodied 
in Talisman. 

Introduction 

TaZisntan [l] is the code name for a Microsoft 
technology initiative in research and 
deployment of advanced multimedia and 3D 
technologies for the PC industry. In essence 
the Talisman initiative is an effort to bring PC 
multimedia to the next level. The elements 

needed for the multimedia experience includes 
both high performance and high quality 
rendering. The goal is to provide technology 
to the PC industry to allow truly compelling 
content to be created. For this to occur, 
hardware must be produced that allows very 
complex scenes with antialiasing, and high 
quality texture mapping, that can be updated at 
the refresh rate of the monitor. 

The fundamental issue that must be addressed 
in order to achieve high performance rendering 
is bandwidth. In traditional architectures this is 
addressed in two ways. First the evolution of 
silicon processing technology has allowed 
designs with greater clock speeds to be used. 
Simply re-implementing existing architectures 
in a newer generation of logic will increase the 
bandwidth of the system. The second way 
traditional systems address the bandwidth 
issue is to design wider buses for the graphics 
memory system. This approach is often used 
on high-end graphics devices. The technique 
increases the memory bandwidth, but can 
increase the system cost to the point where this 
approach is not useful for mass-market 
graphics devices. 

It is important to note that over the years 
several unique architectures [2,3,4] have been 
proposed that address the memory bandwidth 
problem in various ways. However, these 
innovative architectures have typically been 
targeted for implementation in high-end 
devices rather than for mass-market devices 
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Addressing the Bandwidth problem 

Talisman addresses the bandwidth issue with 
three techniques: 

l Capture bandwidth on chip where it is 
affordable. 

l Selective rendering. 

l Aggressive use of compression. 

Capturing bandwidth on chip: 

Each image (represented by a DirectDraw 
surface) is chunked into smaller pieces prior 
to rendering. In the reference design [l] each 
chunk was 32 X 32 pixels. Chunking is 
accomplished in the DirectX driver by 
subdividing the Dire&Draw surface into chunk 
sized regions (i.e. 32 X 32 pixels). Then the 
triangles within the Dire&Draw surface are 
sorted so that each triangle is processed with 
every chunk it touches. It is important to note 
that chunking is completely hidden from the 
application. However there is some overhead 
associated with the chunking. The big 
advantage is that chunking allows on-chip 
color buffers, on-chip Z-buffers, and an on- 
chip antialiasing engine. Having these units 
on-chip makes it possible to replace the 
external bandwidth requirements with on chip 
data accesses where the bandwidth is more 
affordable. It is interesting to note that other 
than the fact the memory is on chip, and it 
supports antialiasing, the Talisman rendering 
engine performs like a typical rendering 
engine. 

Over the years, the cost per bit of DRAM has 
fallen dramatically (about 40% per year). 
Unfortunately this does not solve the DRAM 
bandwidth problem. Although the cost per bit 
of memory has dropped dramatically, the price 
of DRAM bandwidth has been improving at 
only about 12% per year. On the other hand 
the price performance of logic devices has 
been improving at about 42% per year. There 
are two implications of this; first, designs 

primarily based on exploiting the bandwidth to 
external DRAM’s have note realized the full 
potential that I.C. technology can offer. 
Second, designs that continue to rely on 
bandwidth to external memory for 
performance will not keep pace with designs 
based on exploiting on chip bandwidth, 

The chart below illustrates how quickly the 
relative performance of these two approaches 
is diverging. There are significant benefits to 
capturing bandwidth on-chip today. These 
advantages will become even more 
pronounced as time goes on and gate 
performance and density continue to grow 
dramatically, while bandwidth to external 
memory continues to grow relatively slowly. 
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Figure 1: On chip vs. External Bandwidth 

Selective rendering: 

In smoothly moving interactive sequences 
most of the image is either the same or nearly 
the same from frame to frame. In a game, the 
characters may move around, but the 
background remains nearly the same between 
two frames. In fact, in the short time it takes to 
display two frames the main action characters 
may not have moved much. Even when the 
camera is moving, many of the pixels will 
have moved just a short distance fi-om their 
last location. 

In traditional graphics each frame is thrown 
away and the next one built from the 
beginning. It should be noted that there have 
been some very innovative people that have 
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seen that this is a waste of rendering resources 
and have written software that limits the 
regions that need to be re-rendered for new 
frames. However, hardware to exploit this 
image coherence does not exist today. 

The graph below shows that for a scene from a 
typical interactive animation sequence that a 
relatively small percentage of the fiarne is new 
data. 

Frame-to-Frame Change 

Figure 2: Frame to Frame Image Coherence 

In order to use selective rendering a scene is 
broken into objects. Each object is then 
rendered as its OWII DirectDraw surface 
(called a sprite when stored in the graphics 
hardware system memory). There may be 
many of these surfaces in a scene. Each 
surface would typically contain objects that are 
spatially separated from other objects in the 
scene. For example: an airplane may be 
rendered to one surface and a mountain into 
another surface. As the airplane flies past the 
mountain, the mountain may never need to be 
re-rendered. There are two possibilities for 
handling the airplane. In one case the airplane 
may be spinning around and so the display 
surface that it uses may require re-rendering. 
In the other case the airplane may have such 
subtle changes that it could effectively be 
pushed across the sky. Applying an affine 

transformation to the display surface of the 
airplane does this pushing. 

The general idea is to reuse as many display 
surfaces as possible for each frame. By reusing 
previously rendered parts of the scene, the 
rendering engine is freed to render more 
objects, or to apply higher quality rendering to 
the existing objects. 

Aggressive use of compression: 

Data transfers between chips require 
bandwidth. A major usage of this bandwidth in 
a traditional system involves reading and 
writing color and depth information to the 
frame buffer. Another major bandwidth use is 
transferring texture data from texture memory 
into the rendering engine. Compressed data 
requires less inter-chip bandwidth. In 
Talisman, most inter-chip data is passed in a 
compressed format. This can include both 
texture data and rendered images. This 
compressed data not only reduces bandwidth 
requirements; it also reduces storage 
requirements. 

The Talisman Rendering Pipeline: 

The details of the reference design can be 
found in the Siggraph paper in reference 1. 
Instead of repeating that information here, 
another way of looking at Talisman will be 
given. This view is a conceptual model of the 
Talisman graphics pipeline. There are seven 
main stages. These are: 

1. The application program. The Talisman 
unique part of this stage is that the image is 
broken into display surfaces. Each surface 
contains an object that does not penetrate 
another object. These surfaces could be as 
complex as an entire frame or a single 
object within the frame. As an example, an 
entire object such as an airplane could 
occupy a unique surface. The other 
extreme is that independently moveable 
parts of an object, such as the flap on the 
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wing of an airplane, may be placed in its 
own surface. 

2. The geometry and setup stage processes 
one surface at a time. The processing 
includes transformation, lighting, 
chunking, clipping, and polygon 
rasterization setup. 

3. The rendering engine processes a chunk at 
a time. This is the stage where pixel level 
operations occur. These operations include 
color and depth interpolation, texture 
filtering, and antialiasing. There may be a 
data compression unit at the back end of 
the rendering block. 

4. Sprite data for each of the display surfaces 
is stored, in compressed format, in a RAM 
array. This is envisioned to consist of off 
the shelf memory devices. Note that the 
sprite data includes newly rendered chunks 
from the rendering engine, along with 
older data that was rendered for a previous 
frame and can be reused in the current 
frame. Also note that in addition to the 
chunked data, compressed texture data is 
stored here as well. 

5. The per-frame operation starts in the 
sprite-image-processing block. As each of 
the compressed chtmks of image data is 
needed for display, it is pulled into the 
sprite-image-processing block. The data is 
first decompressed. Next the affine 
transformation is applied and an image 
filtering step is performed. Note that this 
filtering step is in addition to the texture 
filtering that is done earlier in the pipeline. 
The filtering step at this stage is required 
only to improve the quality of the affine 
transformation. 

6. The data from the various display surfaces 
are assembled in the compositing logic. At 
this point the overlapping surfaces are 
resolved at each pixel. The data is then sent 
out in scan line order as typical RGB data. 

7. The display is a typical device, such as a 
CRT or LCD. 

1 
Sprite Data 

(And Texture) 
Storage 

I II I L 
Sprite-image Cornpositing 

Processing w Logic 

Figure 3 : The Talisman Pipeline 
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Using the Talisman Pipeline to Produce 
High Quality Interactive Images: 

The requirements of interactive image 
generation place a large demand on the 
rendering hardware. However, the 
architectures used in current mass-market 
graphics devices are severely limited in the 
amount of work they can perform to produce 
any single frame. Because of this limitation 
most hardware uses fast approximations [S] to 
render images. For example: typically 
polygons are sampled once per pixel as 
opposed to being sampled at multiple 
locations. The use of this approximation 
results in the well-known aliasing artifacts. In 
addition if texture filtering is performed, it is 
often done using a filter that does not account 
for the space-variant, elliptically shaped 
projection of the pixel back into the texture 
map. The use of these texture filtering 
approximations, such as the bilinear or trilinear 
method, results in noticeable blurring in the 
image. In addition there are other image 
quality features, such as reflections, complex 
shadowing and motion blur, that are so far 
beyond the capabilities of today’s mass-market 
graphics hardware, that they are not 
approximated in real time. 

Antialiasing 

Perhaps the most noticeable artifacts in most 
interactive systems are the aliasing artifacts. 
This issue has been addressed in some of 
today’s high-end graphics devices. The highest 
quality interactive antialiasing hardware 
available today is based on sampling each 
pixel within a polygon at several sub-pixel 
locations [6]. At each of these sub-pixel 
sample locations the color and ‘2” information 
is found. The rendering works in the normal 
fashion, only with sub-pixel accuracy. After 
the frame is rendered the color samples fi-om 
each sub-sample location are added together 
and divided by the number of sub-pixel sample 
locations. This produces the final color at each 

pixel. For example a polygon with an edge 
passing half way through a pixel that is 
sampled at 16 sub-pixel locations may 
contribute 8 of the sub-samples used to 
construct the final color. In this example the 
final pixel color will be a mix of one half the 
polygon color and one half the background 
color. The effect on the screen is a smooth 
antialiased edge. The problem with this 
method is one of bandwidth. Using this 
method with a traditional architecture, you 
need up to 16 times the frame buffer storage 
and it requires up to 16 times the number of 
accesses to the frame buffer and depth buffer 
memory. In high-end machines the cost of this 
extra memory and controller logic is reflected 
in the high cost of the machine. 

The Talisman architecture uses a technique 
called clunking to reduce the amount of 
memory and off-chip bandwidth required to 
perform antialiasing. In talisman an image is 
rendered in small chunk regions, one at a time. 
This allows the entire region, including the 
color buffer, depth buffer, and antialiasing 
fragment buffers to be contained on chip. The 
primary benefit of this approach comes about 
because very fast and wide buses can be used 
to connect the on chip data path with the on 
chip memory. By capturing the bandwidth on 
chip, the bandwidth requirements for high 
quality antialiasing can be met. 

Since the driver bins all of the triangles for 
each chunk, the rendering engine can be 
thought of as containing a chunk of a typical 
frame buffer. The important point is that the 
rendering is done on chip and thus requires no 
external bandwidth. This means that various 
antialiasing techniques could benefit from the 
Talisman architecture. Thus various Talisman 
implementations may use different antialiasing 
algorithms. For example the reference design 
uses a variation of the Carpenter A-buffer 
algorithm [7] with the coverage mask idea 
similar to the one described by Schilling [S]. In 
addition the multi-sample algorithm could also 
benefit from the on chip memory accesses. 

83 



Anisotropic Texture Filtering: 

Traditional texture filtering methods (bilinear 
and trilinear) produce blurred images when an 
object is tilted with respect to the view plane. 
This is because they rely on a round filter 
kernel. Unfortunately as an image is tilted the 
projection of the pixel on to the texture is no 
longer round, but elliptical in shape. Talisman 
accounts for this change in shape by 
computing the appropriate filter kernel while 

rendering. The result is that images produced 
using anisotropic filtering contain more detail 
and appear sharper than images produced 
using the other, more traditional methods. An 
example scene is shown below. The image on 
the left side of the page is rendered using 
traditional trilinear texture filtering. The image 
on the right hand side is shown rendered using 
anisotropic texture filtering. 

Traditional Trilinear Filtering 

Figure 4: Visual Result When Applying 
Different Filtering Techniques to an Image 

Talisman Anisotropic Filtering 
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Over the years there has been a great deal of 
research on how to best map texture data onto 
a pixel. For the most part analytical solutions 
have produced very high quality images at a 
large computational cost. These analytical 
approaches account for the actual projection of 
the screen pixel on to the texture map. For 
example the shaded regions in Figure 5 shows 
a screen pixel and it’s projection back into the 
texture map. 

The pixel projection onto the texture map can 
give rise to complex geometrical shapes. In 
hardware these complex shapes are often 
approximated. One of the most common 
approximations is T&linear MIP mapping. 
The essence of this approach is to pre-compute 
several filtered versions of the texture map. A 
square region that best approximates the 
projection of the screen pixel is then found. 
Next a square of four texels fi-om the map that 

Anisotropic Filtering Algorithm: 

SCREEN TEXTURE MAP 

Figure 5: The Projection of a Screen Pixel into the Texture Map 

has more detail than the best fit square is 
blended with the set of four texels from the 
map level with less detail than the best fit 
square. This works well in regions where the 
projection of the screen pixel is nearly 
isotropic in the texture map. However as the 
projection changes to a more asymmetrical 
shape, such as shown in Figure 5, the image 
quality degrades. An example of the visual 
results of using the trilinear method was shown 
in Figure 4. 

Note that hardware that uses better 
approximations for the projection of the screen 
pixel back into the texture map have been 
proposed [9, 111. It is in this sprit that the 
algorithm used in the reference design was 
developed. 

The hardware required for the anisotropic 
texturing algorithm used in the Talisman 
reference design is set up similar to hardware 
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used for traditional trilinear texture filtering. 
This includes using the same pre-filtered MD? 
map structure for storing the texture data. In 
addition both algorithms use the texture 
gradient information at each rasterized pixel in 
order to filter the texel data. These gradients 
are: 

s/ x s/ Y 

t/ x t/ Y 
However, when performing anisotropic 
filtering the gradient information is used 
differently than in the traditional trilinear 
filtering system. These differences are 
explained using the geometry shown in Figure 
6 below. 

Figure 6: Geometry Used to Find Gradients 

The long side of the rectangle is used to 
determine the orientation and line of 
anisotropy of the footprint. The shorter side is 
used to determine the level of detail. In 
addition the ratio of these two determines the 
amount of anisotropy. 

The actual filtering is now a two step process. 
These steps are: 

0 Perform tri-linear interpolation in the MIP 
map for texture values along the line of 
anisotropy. Note that when using 
traditional tri-linear texture mapping 
hardware, the selection of which MlP 
levels to access is based on the largest 
gradient ( s/ y in Figure 6). In this 
algorithm the selection is based on the 
smaller gradient ( t/ x in Figure 6). This 
results in using texels Corn MIP levels 
with more detail. 

l The values that are found by stepping 
along the line of anisotropy are then 
filtered. Note if the anisotropic ratio is 1 - 
to - 1, then the single value that is 
calculated by performing one t&linear 
filtering operation is used as the texel 
value. If the ratio is between 1 - to - 1, up 
to 2 - to - 1 then two IA-linear filtering 
operations are performed and the resulting 
texel value is found by linear interpolation 
between the two t&linear values. If the 
ratio is greater than 2 - to - 1 then a 
trapezoidal shaped reconstruction filter is 
used. In this case the two end points get 
less weight than the samples in the middle. 

To view this process we will examine the 
texels being accessed in one level of the MIP 
map. Figure 7 shows the texture map. It is 
assumed that the texel values read by the 
hardware are shown at the intersections of the 
grid lines in the figure. In addition it is 
assumed that the anisotropy is about 2: 1. 

In this example the top four sample values 
read from the texture map are combined in 
proportion to the geometric location of the top 
reconstructed value. Note that the color values 
obtained for this reconstructed value will be 
the same as if this point were chosen for a 
single tri-linear filtering operation. However, 
we will also obtain a set of color data based on 
the geometric location of the lower 
reconstruction value. Note that these two 
reconstruction values lie along the line of 
anisotropy. The final step of the process is to 
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linearly interpolate between these two 
reconstruction values to the projection of the 
screen space pixel’s center on the texture map. 
Note that at higher ratios of anisotropy 
additional trilinear filtering steps would be 
preformed. 

p Recorstiucted value 

Reconstructid 

Note: C rcles at-E where be MIP nap is SC mpled 

Figure 7: Reconstruction Use the MD? MAP 

Fitting Into the Talisman Architecture: 

The most striking thing about the 
implementation of the anisotropic texture 
filtering algorithm is that it requires more data 
to be read from the texture map. This apparent 
bottleneck is overcome in three ways by the 
Talisman architecture. First the aggressive use 
of compression. In Talisman the texture data is 
stored in a compressed format in the “sprite 
data and texture storage” block shown in 
Figure 3. This means that the extra bandwidth 
required for reading this extra data is 
significantly reduced from the requirements of 
a non-compressed texture. Second, there are 
data caches for the texture data. This is similar 
to most current texture mapping hardware in 
that recently used texel values are saved on 
chip. Third, a large amount of the bandwidth is 
captured on chip. Note that once a block of 
texels is decompressed, the entire block is 
stored in a decompressed format on chip. As 

an example the reference design called for 
storage for sixteen 8 X 8 blocks of 
decompressed texture data. Iu addition to the 
large cache of data, there is high speed 
accesses to that data over on chip data buses. 
In the reference design texture filtering with 
anisotropic ratios of 2:l could be performed at 
the full rasterization rate. 

Other Quality Features: 

Other quality features such as reflections and 
shadowing are made possible by the unified 
sprite and texture storage. 

For example: to produce a reflection on a 
surface the scene is rendered using a view-port 
that is Zooking at the scene through the object 
that the reflection is to appear on. Next this 
rendered image is used as a texture map that is 
placed on the object as the scene is being 
rendered from the desired view-port. The 
effect is that the scene appears to be reflected 
off of the object. The most difficult part of this 
process for most hardware is to move the 
rendered image into the texture storage space. 
Iu Talisman the unified memory, shown as the 
“sprite data and texture storage” block in 
Figure 3, simplifies this process. In this 
example the data is rendered into the memory 
on the first pass. On the second rendering pass 
it is read as texture data from the memory. 
Note that in Talisman the texture data and 
sprite data are stored in the same format. 

Just as reflections can be produced, so can 
other multi-pass rendering effects [lo], such as 
shadows. 

Complex Scenes: 

One item that is often over looked as a metric 
of image quality is scene complexity. The 
highest visual quality often times requires the 
greatest scene complexity. In Talisman the 
sprite data that is stored in the memory array 
can often be used for many frames. In order to 
make this reuse possible the “sprite image 
processing block”, shown in Figure 3, contains 
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logic to perform affine transformations on the 
sprite data. 

The idea is to use high quality rendering to 
produce each sprite. Then as subsequent 
frames are rendered a test can be performed to 
determine how much the objects have changed 
since the sprite was last rendered. If it is 
determined that the objects in the sprite have 
not changed significantly, then apply an affine 
transformation to the sprite and reuse it in the 
current frame. 

Note that there will be an affine library that 
will accompany DirectX. This library will aid 
applications by finding the best afIine 
transformation to apply to a sprite. In addition 
it will return error terms that characterize the 
distortion and color errors that would result 
from using the affine transformation, instead 
of re-rendering the object. The application can 
then use these error terms to balance reuse 
with re-rendering for the various objects in a 
scene. The result of using this process is that 
the rendering engine’s effective pixel 
production rate is multiplied by the amount of 
reuse that is possible. This allows high quality, 
complex scenes to be created that can not 
currently be produced using mass-market 
graphics devices. 

Conclusion 

The three primary techniques used in the 
Talisman architecture to address the memory 
bandwidth issues can be exploited to improve 
image quality. Using the Talisman architecture 
allows unprecedented levels of performance 
and image quality to be made available at the 
price point needed for mass-market graphics 
device. The goal is to bring these 
unprecedented levels of performance and 
quality to the broadest number of users. 
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